Lattice QCD

Maarten Golterman
(San Francisco State University)

TAE 2017, Sept. 2017, CCBPP, Benasque

References:

Textbooks:

- M. Creutz, "Quarks, gluons and Lattices," Cambridge, 1983
- I. Montvay and G. Münster, "Quantum Fields on a Lattice," Cambridge, 1994
- J. Smit, "Introduction to Quantum Fields on a Lattice," Cambridge, 2002
- T. DeGrand and C. DeTar, "Lattice Methods for Quantum Chromodynamics," World Scientific, 2006

Les Houches Summer School (2009) ("LH"):

- L. Lellouch, R. Sommer, B. Svetitsky, A. Vladikas and L. Cugliandolo, "Modern Perspectives in Lattice QCD," Oxford, 2011
- S. Aoki et al. (FLAG), "Review of lattice results concerning low-energy particle physics," arXiv:1607.00299 (EPJC)

Plan:

- Lattice field theory: what does field theory look like on the lattice
- Important: lattice fermions ("species doubling")
- Examples of non-perturbative applications (main reason to be interested in lattice field theory!)
- What is lattice gauge theory good for? (examples)

Numerical simulations: I'll explain (examples of) what is computed, not how it's done (see references)

Continuum QCD in euclidean space

Lagrangian: $\quad \mathcal{L}_{\mathrm{QCD}}=\frac{1}{2} \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\bar{\psi}(\not D+m) \psi \quad$ (one quark)

$$
\mathscr{D}=\not \partial+i g_{\mathcal{A}}, \quad\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}
$$

Free fermion propagator:

$$
S^{-1}(p)=i \not p+m
$$

Running coupling: $\mu \frac{d g^{2}}{d \mu}=-\beta\left(g^{2}\right)<0$,
hence $g^{2}(\mu)$ decreases with increasing energy: asymptotic freedom

Lattice: covariant derivative

Hypercubic, lattice spacing a
points $x_{\mu}=n_{\mu} a, \quad n_{\mu} \in \mathbb{Z}$
$x+\mu$ is neighbor of x in μ direction

$\partial_{\mu} \psi(x) \quad \rightarrow \quad \partial_{\mu}^{+} \psi(x) \equiv \frac{1}{a}(\psi(x+\mu)-\psi(x))$
$\leftrightarrow a$
Make covariant: parallel transport $\psi(x+\mu)$ back to x
$D_{\mu}^{+} \psi(x)=\frac{1}{a}\left(U_{\mu}(x) \psi(x+\mu)-\psi(x)\right), \quad U_{\mu}(x) \in S U(N)$
Gauge transformations:

$$
\begin{aligned}
\psi(x+\mu) & \rightarrow g(x+\mu) \psi(x+\mu) \\
\bar{\psi}(x) & \rightarrow \bar{\psi}(x) g^{\dagger}(x) \\
U_{\mu}(x) & \rightarrow g(x) U_{\mu}(x) g^{\dagger}(x+\mu)
\end{aligned}
$$

then $\bar{\psi}(x) \gamma_{\mu} D_{\mu}^{+} \psi(x)$ is gauge invariant

Lattice quark lagrangian

Write $\quad U_{\mu}(x)=\exp \left(\operatorname{iag} A_{\mu}(x)\right)=1+\operatorname{iag} A_{\mu}(x)+O\left(a^{2}\right)$
then $\quad \frac{1}{a}\left(U_{\mu}(x) \psi(x+\mu)-\psi(x)\right)=\frac{1}{a}\left(\left(1+\operatorname{iag} A_{\mu}(x)+\ldots\right)\right.$

$$
\begin{aligned}
& \left.\times\left(\psi(x)+a \partial_{\mu} \psi(x)+\ldots\right)-\psi(x)\right) \\
= & \partial_{\mu} \psi(x)+i g A_{\mu}(x) \psi(x)+O(a)
\end{aligned}
$$

$\mathcal{L}_{\text {quark }}=\frac{1}{2 a}\left(\bar{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x+\mu)-\bar{\psi}(x+\mu) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x)\right)+m \bar{\psi}(x) \psi(x)$
(choice guarantees hermiticity of lattice hamiltonian)

Yang-Mills part

Make smallest gauge-invariant object out of the link variables:

hence $\sum_{x, \mu<\nu}\left(1-\frac{1}{N} \operatorname{Retr} U_{\mu \nu}(x)\right)=\frac{1}{N} \sum_{x, \mu<\nu} \operatorname{tr}\left(\frac{1}{2} a^{4} g^{2} F_{\mu \nu}^{2}+\ldots\right)$

$$
\rightarrow \frac{g^{2}}{4 N} \int d^{4} x \sum_{\mu \nu} \operatorname{tr} F_{\mu \nu}^{2}
$$

Lattice QCD action

Take $S_{\text {plaquette }}=\beta \sum_{x, \mu<\nu}\left(1-\frac{1}{N} \operatorname{Retr} U_{\mu \nu}(x)\right)$ with $\beta=\frac{2 N}{g^{2}}$
then $S_{\mathrm{QCD}}=S_{\text {plaquette }}(U)$

$$
\begin{aligned}
& +a^{4} \sum_{x, \mu} \frac{1}{2 a}\left(\bar{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x+\mu)-\bar{\psi}(x+\mu) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x)\right) \\
& +a^{4} \sum_{x} m \bar{\psi}(x) \psi(x)
\end{aligned}
$$

- Simplest lattice action; many other possibilities!
- Symanzik improvement program: can design other actions with different $O(a)$ terms and take linear combinations without them, these are closer to the continuum limit. (Weisz in LH)

Free lattice fermions

Free fermion action:

$$
S=\frac{1}{2 a} a^{4} \sum_{x, \mu}\left(\bar{\psi}(x) \gamma_{\mu} \psi(x+\mu)-\bar{\psi}(x+\mu) \gamma_{\mu} \psi(x)\right)+m \text { term }
$$

Fourier transform:

$$
\psi(x)=\int_{p} e^{i p x} \psi(p), \quad \bar{\psi}(x)=\int_{p} e^{-i p x} \bar{\psi}(p), \quad \int_{p} \equiv \int_{-\pi / a}^{\pi / a} \frac{d^{4} p}{(2 \pi)^{4}}
$$

then

$$
\text { hen }=\frac{1}{2 a} a^{4} \sum_{x, \mu} \int_{p} \int_{q} \bar{\psi}(p) \gamma_{\mu} \psi(q)\left(e^{-i p x+i q(x+\mu)}-e^{-i p(x+\mu)+i q x}\right)+m \text { term }
$$

With $a^{4} \sum_{x} e^{-i p x+i q x}=(2 \pi)^{4} \bar{\delta}(p-q)=(2 \pi)^{4} \sum_{n} \delta\left(p-q+\frac{2 \pi n}{a}\right)$
this yields

$$
S=\frac{1}{2 a} \int_{p} \sum_{\mu} \bar{\psi}(p) \gamma_{\mu} \psi(p)\left(e^{i p_{\mu} a}-e^{-i p_{\mu} a}\right)+m \int_{p} \bar{\psi}(p) \psi(p)
$$

Species doublers

Fermion propagator: $S^{-1}(p)=\sum_{\mu} \frac{i}{a} \gamma_{\mu} \sin \left(a p_{\mu}\right)+m \xrightarrow{a \rightarrow 0} i \not p+m$
But, massless propagator has poles not only at $p=0$ but at all

$$
p=\bar{p} \in\{(0,0,0,0),(\pi / a, 0,0,0), \ldots,(\pi / a, \pi / a, \pi / a, \pi / a)\}
$$

Take $p_{\mu}=\bar{p}_{\mu}+q_{\mu}$ then $\sin \left(a p_{\mu}\right)=S_{\mu} \sin \left(a q_{\mu}\right), \quad S_{\mu}= \pm 1$

$$
\begin{gathered}
\Rightarrow \sum_{\mu} \frac{i}{a} \gamma_{\mu} \sin \left(a p_{\mu}\right) \xrightarrow{a \rightarrow 0} \sum_{\mu} i\left(S_{\mu} \gamma_{\mu}\right) q_{\mu}+m \\
\left\{S_{\mu} \gamma_{\mu}, S_{\nu} \gamma_{\nu}\right\}=2 S_{\mu} S_{\nu} \delta_{\mu \nu}=2 \delta_{\mu \nu}
\end{gathered}
$$

- Continuum limit contains 16 relativistic quarks: fermion doubling problem
- Cannot project onto $\bar{p}=0$: all species get pair-produced!
- Can we choose a smarter action without this problem?

No: Species doublers and the anomaly
For $m=0$ invariance under $U(1)_{A}: \quad \psi \rightarrow e^{i \alpha \gamma_{5}} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma_{5}}$
However, this symmetry is anomalous in continuum, $\partial_{\mu} j_{\mu}^{A}=\frac{g^{2}}{8 \pi^{2}} \operatorname{tr}(F \tilde{F})$ in conflict with the lattice!

Assign $Q_{A}=+1$ to $\bar{p}=0$ quark, then for quark near other \bar{p}
$\tilde{\gamma}_{\mu}=S_{\mu} \gamma_{\mu} \quad \Rightarrow \quad \tilde{\gamma}_{5}=\tilde{\gamma}_{1} \tilde{\gamma}_{2} \tilde{\gamma}_{3} \tilde{\gamma}_{4}=S_{1} S_{2} S_{3} S_{4} \gamma_{5}= \pm \gamma_{5}$
eight quarks with $Q_{A}=+1$
eight quarks with $Q_{A}=-1$
and $\partial_{\mu} j_{\mu}^{A}=\sum_{A} Q_{A} \frac{g^{2}}{8 \pi^{2}} \operatorname{tr}(F \tilde{F})=0: \begin{aligned} & \text { doublers provide anomaly-free } \\ & \text { representation }\end{aligned}$ (Karsten\&Smit, Nielsen\&Ninomiya)

Yes: Wilson fermions

Regulator needs to break chiral symmetry to recover anomaly! (PV: fermion with large mass; dimreg: $\left[\gamma_{\mu}, \gamma_{5}\right]=0$ in extra dimensions)

Here: give the doublers a mass! Momentum-dependent mass term (Wilson)

$$
\begin{aligned}
& \text { Replace } a^{4} \sum_{x} m \bar{\psi} \psi \rightarrow \\
& \begin{array}{l}
a^{4} \sum_{x}(m \bar{\psi}(x) \psi(x)+\frac{1}{2 a} \underbrace{\left.\sum_{\mu}(2 \bar{\psi}(x) \psi(x)-\bar{\psi}(x) \psi(x+\mu)-\bar{\psi}(x+\mu) \psi(x))\right)}_{=-a^{2} \bar{\psi} \square \psi} \\
\quad=\int_{p} \bar{\psi}(p) \psi(p) \underbrace{\frac{1}{a}\left(a m+1-\cos \left(a p_{\mu}\right)\right)}_{=m+a p^{2}+\ldots}
\end{array}
\end{aligned}
$$

Wilson fermions, cont'd

Take $p=\bar{p}+q$ then mass term is

$$
m+\frac{1}{a} \sum_{\mu}\left(1-S_{\mu} \cos \left(a q_{\mu}\right)\right) \rightarrow m+\frac{2 n}{a}+O(a)
$$

with n equal to \# components $\frac{\pi}{a}$ in \bar{p}
Removes (decouples) species doublers, breaks chiral symmetry even for $m=0$

- No multiplicative renormalization of mass, need $\frac{1}{a}$ counter term
- Tune bare mass to set renormalized mass to zero, for $g^{2} \neq 0$ ("tune $\kappa_{c}=(8+2 a m)^{-1}$ ")

Lattice fermions

- LQCD with n_{f} Wilson fermions gives correct continuum limit (proof to all orders in perturbation theory (Reisz)) But, not the only game in town!
- "clover" fermions: Symanzik-improved Wilson fermions, no $O(a)$ add (latticized version) of $c_{S W} a \bar{\psi} \sigma_{\mu \nu} F_{\mu \nu} \psi$ (Sheikholeslami\&Wohlert)
- domain-wall fermions: use extra dimension to exponentially suppress $1 / a$ counter term, $g^{2} / a \rightarrow g^{2} e^{-L_{5} / a} / a$
L_{5} extent of lattice in $5^{\text {th }}$ direction (Kaplan, Shamir)
- overlap fermions: take limit $L_{5} \rightarrow \infty$ (very non-trivial limit!) (Neuberger)
- staggered fermions: reduce \& make use of doublers keeps an exact (flavored) chiral symmetry on the lattice (Kogut\&Susskind)

Path integral

$$
\begin{aligned}
Z & =\int \prod_{x, \mu} d U_{\mu}(x) \int \prod_{x} d \psi(x) d \bar{\psi}(x) e^{-S(U, \psi, \bar{\psi})} \\
& =\int \prod_{x, \mu} d U_{\mu}(x) \operatorname{Det}(D(U)+m) e^{-S_{\text {plaquette }}}
\end{aligned}
$$

$d U$ is gauge-invariant Haar measure:
$U(1): \quad U=e^{i \phi} \quad \int d U=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi$ invariant under $\phi \rightarrow \phi+\alpha$
$S U(2): \quad U=\sigma+i \vec{\tau} \cdot \vec{\pi}, \quad \sigma^{2}+\vec{\pi}^{2}=1$

$$
d U=d \sigma d^{3} \pi \delta\left(\sigma^{2}+\vec{\pi}^{2}-1\right)=\frac{1}{\sqrt{1-\vec{\pi}^{2}}} d^{3} \pi
$$

$S U(N): \quad U=U(\vec{\alpha}) \quad d U=\operatorname{norm} \sqrt{\operatorname{det} g} \prod_{k} d \alpha^{k}, g_{k \ell}=\frac{1}{2} \operatorname{tr}\left(\frac{\partial U}{\partial \alpha^{k}} \frac{\partial U^{\dagger}}{\partial \alpha^{\ell}}\right)$
Note: no gauge fixing needed!

Pure Yang-Mills: expansion in $\beta=2 \mathrm{~N} / \mathrm{g}^{2}$

Consider large $R \times T$ Wilson loop ($R=T=3 a$ in figure)

Pure Yang-Mills: expansion in $\beta=2 N / g^{2}$

Lowest-order contribution when plaquettes tile Wilson loop

Hence
$\langle W(R \times T$ loop $)\rangle \propto \beta^{R T}$ area law interpretation: $e^{-T V(R)}$
hence linear potential $V(R) \propto R$
quark confinement! (Wilson)

However, result at strong coupling, $g^{2} \sim \infty$
Continuum limit: take $g^{2}(1 / a) \rightarrow 0$ (asymptotic freedom)
No phase transition observed between strong and weak coupling (numerical)

Back to QCD: pion propagator

Take $\pi^{+}(x)=\bar{d}(x) \gamma_{5} u(x)$

$$
\begin{aligned}
&\left\langle\pi^{+}(x) \pi^{-}(0)\right\rangle= \frac{1}{Z} \int D U \prod_{\psi=u, d} D \psi D \bar{\psi} \underbrace{\bar{d}(x) \gamma_{5} u(x)}_{\pi^{+}(x)} \underbrace{\bar{u}(0) \gamma_{5} d(0)}_{\pi^{-}(0)} e^{-S(U, \psi, \bar{\psi})} \\
&=-\frac{1}{Z} \int d U \operatorname{Det}\left(D(U)+m_{u}\right) \operatorname{Det}\left(D(U)+m_{d}\right) e^{-S_{\text {plaquette }}} \\
& \times \operatorname{tr}\left(\left(D(U)+m_{u}\right)^{-1}(x, 0) \gamma_{5}\left(D(U)+m_{d}\right)^{-1}(0, x)\right)
\end{aligned}
$$

Do the integral over gauge fields numerically and probabilistically: generate gauge-field configurations with $p(U)=\frac{1}{Z} e^{-S_{\text {plaquette }}(U)} \operatorname{Det}^{2}(U)$ This is the reason for euclidean space!
State of the art lattice: $144^{3} \times 288 \times 4 \times 8 \approx 3 \times 10^{10}$ links!

$$
\begin{aligned}
&\left\langle\pi^{+}(x) \pi^{-}(0)\right\rangle= \frac{1}{Z} \int D U \prod_{\psi=u, d} D \psi D \bar{\psi} \underbrace{\bar{d}(x) \gamma_{5} u(x)}_{\pi^{+}(x)} \underbrace{\bar{u}(0) \gamma_{5} d(0)}_{\pi^{-}(0)} e^{-S(U, \psi, \bar{\psi})} \\
&=-\frac{1}{Z} \int d U \operatorname{Det}\left(D(U)+m_{u}\right) \operatorname{Det}\left(D(U)+m_{d}\right) e^{-S_{\text {plaquette }}} \\
& \times \operatorname{tr}\left(\left(D(U)+m_{u}\right)^{-1}(x, 0) \gamma_{5}\left(D(U)+m_{d}\right)^{-1}(0, x)\right)
\end{aligned}
$$

Need to invert $D(U)+m$ for the propagators

Need to compute $\operatorname{Det}(D(U)+m)$, or rather, variation with gauge field:

$$
\begin{aligned}
\delta \log \operatorname{Det}(D(U)+m) & =\delta \operatorname{Tr} \log (D(U)+m) \\
& =\operatorname{Tr}\left((D(U)+m)^{-1} \delta D(U)\right)
\end{aligned}
$$

Again, we need the inverse: need reliable and fast inverter for very large (sparse) matrices! (Lüscher in LH)

- Note: can vary "valence" mass (inside propagator) and "sea" mass (inside determinant) independently!
"Partial quenching" -- can be useful (MG in LH)

Pion propagator -- interpretation

Take $\vec{p}=0$, i.e., define $\pi^{+}(t)=\sum_{\vec{x}} \pi^{+}(\vec{x}, t)$
In QM, for a lattice of extent $T=N a$ in the time direction
$Z=\operatorname{Tr} e^{-\hat{H} T}=\int d q\langle q| e^{-\hat{H} T}|q\rangle=\operatorname{Tr} \hat{T}^{N}=\int_{\mathrm{pbc}} D q e^{-S}$
with $\hat{T}=e^{-\hat{H} a}$ the "transfer matrix" and \hat{H} the (lattice) hamiltonian

- In Minkowski space $e^{-\hat{H} a} \rightarrow e^{i \hat{H} a}$ becomes the evolution operator
- Can get spectrum of theory directly from \hat{T} (Osterwalder\&Schrader)

Pion propagator, cont'd

$$
\begin{aligned}
& C(t)=\left\langle\pi^{+}(t) \pi^{-}(0)\right\rangle=\frac{1}{Z} \operatorname{Tr}\left(\hat{T}^{N-t / a} \hat{\pi}^{+} \hat{T}^{t / a} \hat{\pi}^{-}\right) \\
&=\frac{1}{Z} \sum_{n, m}\langle n| \hat{\pi}^{-} \hat{T}^{N-t / a}|m\rangle\langle m| \hat{\pi}^{+} \hat{T}^{t / a}|n\rangle \\
&=\frac{\sum_{n, m} e^{-E_{m}(T-t)} e^{-E_{n} t}\langle m| \hat{\pi}^{+}|n\rangle\langle n| \hat{\pi}^{-}|m\rangle}{\sum_{m} e^{-E_{m} T}} \\
&\left.\xrightarrow{T \rightarrow \infty} \sum_{n} e^{-\left(E_{n}-E_{0}\right) t}\left|\langle n| \hat{\pi}^{-}\right| 0\right\rangle\left.\right|^{2} \\
&|n\rangle=\left|\pi^{-}\right\rangle, \quad\left|(3 \pi)^{-}\right\rangle, \quad\left|\pi^{-}(1300)\right\rangle, \ldots
\end{aligned}
$$

Extract pion mass from large-t behavior, excited states from multi-exponential fits (in principle!)

Propagator at finite T

$$
\begin{aligned}
C(t)=\left\langle\pi^{+}(t) \pi^{-}(0)\right\rangle & =\frac{1}{Z} \operatorname{Tr}\left(\hat{T}^{N-t / a} \hat{\pi}^{+} \hat{T}^{t / a} \hat{\pi}^{-}\right) \\
& =\frac{1}{Z} \sum_{n, m}\langle n| \hat{\pi}^{-} \hat{T}^{N-t / a}|m\rangle\langle m| \hat{\pi}^{+} \hat{T}^{t / a}|n\rangle \\
& =\frac{\sum_{n, m} e^{-E_{m}(T-t)} e^{-E_{n} t}\langle m| \hat{\pi}^{+}|n\rangle\langle n| \hat{\pi}^{-}|m\rangle}{\sum_{m} e^{-E_{m} T}} \\
& \left.=\frac{1}{Z(T)} \sum_{n}\left(e^{-E_{n} t}+e^{-E_{n}(T-t)}\right)\left|\langle n| \hat{\pi}^{-}\right| 0\right\rangle\left.\right|^{2}+\ldots \\
& =\sum_{n} A_{n}(T) \cosh \left[(T / 2-t)\left(E_{n}-E_{0}\right)\right]+\ldots
\end{aligned}
$$

Connection with statistical mechanics

Note that for large (euclidean) time, and vanishing spatial momenta our propagator falls off like

$$
e^{-m t} \quad\left(\vec{p}=0 \rightarrow E_{n}=m, \text { assume } E_{0}=0\right)
$$

In stat.mech., correlation functions decay like $e^{-t / \xi}$, with ξ the correlation length, over a (euclidean) distance t-- note the correspondence $m \leftrightarrow 1 / \xi$

QFT: continuum limit taken by sending $m=a m_{\text {phys }} \rightarrow 0$

Stat.mech.: $\quad \xi=\xi_{\text {phys }} / a \rightarrow \infty$
\Rightarrow continuum limit corresponds to a second-order phase transition in d=4 equilibrium statistical mechanics system!

Matrix elements

Example: $\left\langle\bar{K}^{0}\right| \mathcal{O}_{\Delta S=2}\left|K^{0}\right\rangle$,

$$
\mathcal{O}_{\Delta S=2}=\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)
$$

Measure $m_{K},\langle 0| \bar{K}^{0}\left|\bar{K}^{0}\right\rangle,\left\langle K^{0}\right| \bar{K}^{0}|0\rangle$ from two-point functions and extract $\left\langle\bar{K}^{0}\right| \mathcal{O}_{\Delta S=2}\left|K^{0}\right\rangle \quad$ (Lellouch in LH)
(fig. credit S. Sharpe)

Matrix elements, cont'd

Then $B_{K}=\frac{\left\langle\bar{K}^{0}\right| \mathcal{O}_{\Delta S=2}\left|K^{0}\right\rangle}{\frac{8}{3} m_{K}^{2} f_{K}^{2}}$
factor in SM expression for $\varepsilon_{K}=\frac{\Gamma\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{\Gamma\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)}$, measure of indirect $\subset p$

- Need to match $\mathcal{O}_{\Delta S=2}^{\text {lattice }}$ with $\mathcal{O}_{\Delta S=2}^{\overline{\mathrm{MS}}}$
- In continuum this operator renormalizes multiplicatively: $\bar{s}_{L} \Gamma d_{L}$ has $\Gamma=\gamma_{\mu}$ because of $S U(3)_{L} \times S U(3)_{R}$ symmetry
- Wilson fermions: only $S U(3)_{V}$, mixing with $(\bar{s} \Gamma d)(\bar{s} \Gamma d), \Gamma=1, \gamma_{\mu}, \gamma_{5}, \ldots$
- No mixing with lower-dimension, because $(\bar{s} d)(\bar{s} d)$ in 27 of $S U(3)_{V}$ (Vladikas in LH)

Errors -- statistical

Suppose we have K gauge-field configurations distributed according to
$\frac{1}{Z} e^{S_{\text {gauge }}(U)} \operatorname{Det}(D(U)+M)>0$
then $\langle\mathcal{O}\rangle=\lim _{K \rightarrow \infty} \sum_{i=1}^{K} \mathcal{O}\left(U_{i}\right)$
statistical error $\sqrt{\frac{1}{K-1} \sum_{i=1}^{K}\left(\mathcal{O}\left(U_{i}\right)-\langle\mathcal{O}\rangle\right)^{2}}$
(if all U_{i} and U_{j} for $i \neq j$ are uncorrelated)

Error in the average $\sim 1 / \sqrt{K}$; increasing \#configs. by 100 reduces error by 10

Errors -- systematic

- $a \neq 0$: need multiple lattice spacings to extrapolate
- $T<\infty$: excited-state contamination (nucleons!)
- $L<\infty$: finite-volume effects, for simple quantities $\sim e^{-m_{\pi} L}$ pions going "around the world" (periodic boundary conditions)
- $m_{u}=m_{d}$ too large, (often) still needed (for a number of reasons) inversion of $D+m$ more expensive as $m \rightarrow 0$
($\langle\bar{\psi} \psi\rangle=-\pi \rho(0), \rho(\lambda)$ density of eigenvalues (Banks\&Casher)) extrapolate to physical values with chiral perturbation theory (MG in LH)
- operator mixing: use lattice fermions with good chiral symmetry!

Banks-Casher formula

$$
\begin{aligned}
\langle\bar{\psi}(x) \psi(x)\rangle & =\lim _{m \rightarrow 0} \lim _{V \rightarrow \infty}-\frac{1}{V} \sum_{x}\langle\operatorname{tr}(\psi(x) \bar{\psi}(x))\rangle \\
& =-\lim _{m \rightarrow 0} \lim _{V \rightarrow \infty} \frac{1}{V} \sum_{x}\left\langle\sum_{\lambda} \frac{\operatorname{tr}\left(f_{\lambda}(x) f_{\lambda}^{\dagger}(x)\right)}{i \lambda+m}\right\rangle \\
& =-\lim _{m \rightarrow 0} \int_{-\infty}^{\infty} d \lambda \frac{\rho(\lambda)}{i \lambda+m} \\
& =-\int_{-\infty}^{\infty} d \lambda \rho(\lambda)\left(P \frac{1}{i \lambda}+\pi \delta(\lambda)\right) \\
& =-\pi \rho(0)
\end{aligned}
$$

if $\rho(\lambda)=\rho(-\lambda)$ which is true if $\left\{D, \gamma_{5}\right\}=0$
so that $D f_{\lambda}=i \lambda f_{\lambda} \Rightarrow D \gamma_{5} f_{\lambda}=-\gamma_{5} D f_{\lambda}=-i \gamma_{5} \lambda f_{\lambda}=-i \lambda f_{-\lambda}$

Consider five-dimensional fermions $\psi(x, s), s \geq 0$ with $M \sim 1 / a$

$$
\left(\not \partial+\gamma_{5} \partial_{s}+M\right) \psi(x, s)=0
$$

Note: no chiral symmetry, γ_{5} is one of the gamma matrices!
\Rightarrow construction can be discretized using Wilson fermions in five dimensions with no change in conclusions

Typical solutions have mass $\sim M$ but \exists zero modes bound to boundary:
$\psi(x, s)=\chi_{ \pm}(x) u_{ \pm}(s)$ with $\not \partial \chi_{ \pm}=0, \quad P_{ \pm} \chi_{ \pm}=\chi_{ \pm} \Rightarrow u_{ \pm}(s)=u_{ \pm}(0) e^{\mp M s}$
u_{-}is not normalizable, but u_{+}is!
Chiral massless fermion in four dimensions ($s=0$) ("surface mode")
$U(1)_{A}$ anomaly produced by 5 d massive fermions in the bulk (Callan\&Harvey)

Now take $0 \leq s \leq L_{5}$

$$
\gamma_{5}=+1 \text { (RH) @s=0 }
$$

RH
LH

$$
\gamma_{5}=-1(\mathrm{LH}) @ s=L_{5}
$$

zero modes now approximate:
$u_{+}(s) u_{-}(s) \sim M e^{-M L_{5}} \rightarrow 0$ for $L_{5} \rightarrow \infty$
\Rightarrow "residual mass" $m_{\mathrm{res}} \sim \frac{1}{a} e^{-M L_{5}}$ ("chirally improved Wilson fermion")

- quark mass: couple $m\left(\bar{\psi}\left(x, L_{5}\right) P_{+} \psi(x, 0)+\bar{\psi}(x, 0) P_{-} \psi\left(x, L_{5}\right)\right)$
- gauge fields: keep in four dimensions, $D_{5} \equiv D_{4}(U)+\gamma_{5} \partial_{s}+M$
- wrong-chirality mixing for $B_{K}: \sim m_{\text {res }}^{2} \sim e^{-2 M L_{5}}$ need two chirality flips, i.e., two "crossings"

What is Lattice QCD (lattice gauge theory) good for?

- Verification of QCD, e.g., spectrum, incl. resonances(!) - glueballs, hybrids??
- Parameters of Standard Model and flavor physics (FLAG report)
- Nuclear Physics from QCD(!) (e.g., Savage in Lattice 2016)
- QCD at finite temperature, equation of state (Philipsen in LH)
(famous problem: QCD at finite density)
- Beyond the Standard Model:
- high precision flavor physics
- muon anomalous magnetic moment: hadronic contributions
- non-SM B parameters
- vary gauge group and fermion representations: strongly-coupled theories (composite Higgs, DeGrand, Rev. Mod. Phys.'16)
- Lattice: an "honest" non-perturbative regulator

Set scale and strange/light quark masses ($m_{u}=m_{d}$) with m_{Ξ}, m_{π}, m_{K}
Three lattice spacings, physical strange quark mass, pion mass down to 190 MeV

Mass splittings

BMW coll. '14

Includes charm (" $1+1+1+1$ "), QED, isospin breaking, 4 lattice spacings smallest charm mass $a m_{c}=0.35$, smallest pion mass 195 MeV

Note lattice errors smaller than experimental errors for two splittings!

The ρ resonance

800
$900 \downarrow$ bound state 1000

$$
m_{\rho}=\operatorname{Re}\left(E_{\rho}\right) / \mathrm{MeV}
$$

From Briceno, Dudek\&Young, '17 review
Idea: spectrum in finite box is related to resonances in infinite volume (same hamiltonian! (Lüscher))

Note precision of lattice computations
green: incorporated in FLAG average; red: not all syst. errors controlled

Flavor physics, II

FLAG '16
from
$f_{+}(0)$ squares
$f_{K^{+}} / f_{\pi^{+}}$triangles

assumes Standard Model, i.e., unitarity of CKM matrix
Note precision of lattice computations green: incorporated in FLAG average; red: not all syst. errors controlled

Muon anomalous magnetic moment I

$$
\begin{aligned}
& \vec{\mu}=g\left(\frac{e}{2 m}\right) \vec{S} \quad \rightarrow \quad V(\vec{x})=-\vec{\mu} \cdot \vec{B}_{\mathrm{ext}} \\
& a_{\mu}=(g-2) / 2 \propto\left(\alpha=\frac{e^{2}}{4 \pi \hbar c}\right) \neq 0
\end{aligned}
$$

$$
\uparrow \text { Schwinger term } a_{\mu}=\frac{\alpha}{2 \pi}=0.0011614
$$

Hadronic corrections:
$1^{\text {st }}$ green blob: H(adronic) V(acuum) P(olarization) (HVP)
$2^{\text {nd }}$ green blob: H(adronic) L(ight) b(y) L(ight) (HLbL)

Low energy: LQCD is the only game in town for a theory computation!

HVP precision issue:

$$
a_{\mu}^{\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} w\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]
$$

Integrand looks like:

Smallest momentum is $2 \pi / T$

Small error in vacuum polarization can lead to large error! The weight function $w\left(Q^{2}\right) / Q^{2} \sim 1 / \sqrt{Q^{2}}$ is a "magnifying glass" Note that data are very sparse in the region with most curvature

Muon anomalous magnetic moment II

- Experimental value $a_{\mu}^{\exp }=116592089(63) \times 10^{-11}$ (dominated by BNL E821)
- Standard-Model value (from Blum et al. review '13)

	VALUE $\left(\times 10^{-11}\right)$ UNITS	
QED $(\gamma+\ell)$	$116584718.951 \pm 0.009 \pm 0.019 \pm 0.007 \pm 0.077_{\alpha}$	
HVP(lo) [20]	6923 ± 42	
HVP(lo) [21]		6949 ± 43
HVP(ho $)[21]$	-98.4 ± 0.7	
HLbL model estimate!	105 ± 26	
EW		154 ± 1
Total SM [20]	$116591802 \pm 42_{\mathrm{H}-\mathrm{LO}} \pm 26_{\mathrm{H}-\mathrm{HO}} \pm 2_{\text {other }}\left(\pm 49_{\text {tot }}\right)$	Davier et al.
Total SM [21]	$116591828 \pm 43_{\mathrm{H}-\mathrm{LO}} \pm 26_{\mathrm{H}-\mathrm{HO}} \pm 2_{\text {other }}\left(\pm 50_{\text {tot }}\right)$	Hagiwara et al.

- Difference: $\Delta a_{\mu}(\mathrm{E} 821-\mathrm{SM})=287(80) \times 10^{-11}[20] \quad(3.6 \sigma)$

$$
=261(80) \times 10^{-11}[21] \quad(3.3 \sigma)
$$

- New Fermilab experiment: error reduction with factor 4 expected!

Muon anomalous magnetic moment III

HLbL (Blum et al., at Lattice 2017, see also Mainz group)

$$
a_{\mu}^{\mathrm{cHLbL}}+a_{\mu}^{\mathrm{dHLbL}}=(116.0 \pm 9.6-62.5 \pm 8.0) \times 10^{-10}
$$

- One lattice spacing (0.114 fm), one volume (5.5 fm), physical pion mass
- More "disconnected" diagrams (but suppressed by powers of $m_{s}-m_{u, d}$)
- Fermilab exp.: reproduction of BNL result end of 2018 (Roberts@g-2 workshop '17)

