Lattice QCD

Maarten Golterman (San Francisco State University)

TAE 2017, Sept. 2017, CCBPP, Benasque

References:

Textbooks:

- M. Creutz, "Quarks, gluons and Lattices," Cambridge, 1983
- I. Montvay and G. Münster, "Quantum Fields on a Lattice," Cambridge, 1994
- J. Smit, "Introduction to Quantum Fields on a Lattice," Cambridge, 2002
- T. DeGrand and C. DeTar, "Lattice Methods for Quantum Chromodynamics," World Scientific, 2006

Les Houches Summer School (2009) ("LH"):

- L. Lellouch, R. Sommer, B. Svetitsky, A. Vladikas and L. Cugliandolo, "Modern Perspectives in Lattice QCD," Oxford, 2011
- S. Aoki et al. (FLAG), "Review of lattice results concerning low-energy particle physics," arXiv:1607.00299 (EPJC)

Plan:

- Lattice field theory: what does field theory look like on the lattice
- Important: lattice fermions ("species doubling")
- Examples of non-perturbative applications (main reason to be interested in lattice field theory!)
- What is lattice gauge theory good for? (examples)

Numerical simulations: I'll explain (examples of) what is computed, not how it's done (see references)

Continuum QCD in euclidean space

Lagrangian:

$$\mathcal{L}_{\text{QCD}} = \frac{1}{2} \operatorname{tr}(F_{\mu\nu}F_{\mu\nu}) + \overline{\psi}(D + m)\psi$$
 (one quark)
 $D = \partial \!\!\!/ + ig \mathcal{A} , \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$

Free fermion propagator:

$$S^{-1}(p) = i\not p + m$$

Running coupling:
$$\mu rac{dg^2}{d\mu} = -eta(g^2) < 0$$
 ,

hence $g^2(\mu)$ decreases with increasing energy: asymptotic freedom

Lattice: covariant derivative

Hypercubic, lattice spacing apoints $x_{\mu}=n_{\mu}a$, $n_{\mu}\in\mathbb{Z}$ $x + \mu$ is neighbor of x in μ direction

$$\partial_{\mu}\psi(x) \rightarrow \partial^{+}_{\mu}\psi(x) \equiv \frac{1}{a}(\psi(x+\mu)-\psi(x))$$

Make covariant: parallel transport $\psi(x + \mu)$ back to x

$$D^{+}_{\mu}\psi(x) = \frac{1}{a} \left(U_{\mu}(x)\psi(x+\mu) - \psi(x) \right) , \quad U_{\mu}(x) \in SU(N)$$

Gauge transformations: $\psi(x+\mu) \rightarrow g(x+\mu)\psi(x+\mu)$ $\overline{\psi}(x) \to \overline{\psi}(x)g^{\dagger}(x)$ $g(x) \in SU(N)$ $U_{\mu}(x) \rightarrow g(x)U_{\mu}(x)g^{\dagger}(x+\mu)$

then $\overline{\psi}(x)\gamma_{\mu}D^{+}_{\mu}\psi(x)$ is gauge invariant

Lattice quark lagrangian

Write
$$U_{\mu}(x) = \exp(iagA_{\mu}(x)) = 1 + iagA_{\mu}(x) + O(a^2)$$

then
$$\frac{1}{a}(U_{\mu}(x)\psi(x+\mu)-\psi(x)) = \frac{1}{a}\left((1+iagA_{\mu}(x)+\dots)\right)$$
$$\times \left(\psi(x)+a\partial_{\mu}\psi(x)+\dots\right)-\psi(x)\right)$$
$$= \partial_{\mu}\psi(x)+igA_{\mu}(x)\psi(x)+O(a)$$

$$\mathcal{L}_{\text{quark}} = \frac{1}{2a} \left(\overline{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x+\mu) - \overline{\psi}(x+\mu) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x) \right) + m \overline{\psi}(x) \psi(x)$$

(choice guarantees hermiticity of lattice hamiltonian)

Yang-Mills part

Make smallest gauge-invariant object out of the link variables:

Lattice QCD action

Take
$$S_{\text{plaquette}} = \beta \sum_{x,\mu < \nu} \left(1 - \frac{1}{N} \operatorname{Re} \operatorname{tr} U_{\mu\nu}(x) \right)$$
 with $\beta = \frac{2N}{g^2}$
then $S_{\text{QCD}} = S_{\text{plaquette}}(U)$
 $+ a^4 \sum_{x,\mu} \frac{1}{2a} \left(\overline{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x+\mu) - \overline{\psi}(x+\mu) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x) \right)$
 $+ a^4 \sum_x m \overline{\psi}(x) \psi(x)$

- Simplest lattice action; many other possibilities!
- Symanzik improvement program: can design other actions with different O(a) terms and take linear combinations without them, these are closer to the continuum limit. (Weisz in LH)

Free lattice fermions

Free fermion action:

$$S = \frac{1}{2a} a^4 \sum_{x,\mu} \left(\overline{\psi}(x) \gamma_{\mu} \psi(x+\mu) - \overline{\psi}(x+\mu) \gamma_{\mu} \psi(x) \right) + m \text{ term}$$

Fourier transform:

$$\psi(x) = \int_p e^{ipx} \psi(p) \ , \qquad \overline{\psi}(x) = \int_p e^{-ipx} \overline{\psi}(p) \ , \qquad \int_p \equiv \int_{-\pi/a}^{\pi/a} \frac{d^4p}{(2\pi)^4}$$

then

$$S = \frac{1}{2a} a^4 \sum_{x,\mu} \int_p \int_q \overline{\psi}(p) \gamma_\mu \psi(q) \left(e^{-ipx + iq(x+\mu)} - e^{-ip(x+\mu) + iqx} \right) + m \text{ term}$$

With
$$a^4 \sum_x e^{-ipx+iqx} = (2\pi)^4 \overline{\delta}(p-q) = (2\pi)^4 \sum_n \delta\left(p-q+\frac{2\pi n}{a}\right)$$

this yields

$$S = \frac{1}{2a} \int_{p} \sum_{\mu} \overline{\psi}(p) \gamma_{\mu} \psi(p) \left(e^{ip_{\mu}a} - e^{-ip_{\mu}a} \right) + m \int_{p} \overline{\psi}(p) \psi(p)$$

Species doublers

Fermion propagator: $S^{-1}(p) = \sum_{\mu} \frac{i}{a} \gamma_{\mu} \sin(ap_{\mu}) + m \xrightarrow{a \to 0} i p + m$

But, massless propagator has poles not only at p=0 but at all

$$p = \overline{p} \in \{(0, 0, 0, 0), (\pi/a, 0, 0, 0), \dots, (\pi/a, \pi/a, \pi/a, \pi/a)\}$$

Take $p_{\mu} = \overline{p}_{\mu} + q_{\mu}$ then $\sin(ap_{\mu}) = S_{\mu}\sin(aq_{\mu})$, $S_{\mu} = \pm 1$

$$\Rightarrow \sum_{\mu} \frac{i}{a} \gamma_{\mu} \sin(ap_{\mu}) \xrightarrow{a \to 0} \sum_{\mu} i(S_{\mu}\gamma_{\mu})q_{\mu} + m$$
$$\{S_{\mu}\gamma_{\mu}, S_{\nu}\gamma_{\nu}\} = 2S_{\mu}S_{\nu}\delta_{\mu\nu} = 2\delta_{\mu\nu}$$

- Continuum limit contains 16 relativistic quarks: fermion doubling problem
- Cannot project onto $\overline{p} = 0$: all species get pair-produced!
- Can we choose a smarter action without this problem?

No: Species doublers and the anomaly

For m = 0 invariance under $U(1)_A: \psi \to e^{i\alpha\gamma_5}\psi, \quad \overline{\psi} \to \overline{\psi}e^{i\alpha\gamma_5}\psi$

However, this symmetry is anomalous in continuum, $\partial_{\mu} j_{\mu}^{A} = \frac{g^{2}}{8\pi^{2}} \operatorname{tr}(F\tilde{F})$ in conflict with the lattice!

Assign $Q_A = +1$ to $\overline{p} = 0$ quark, then for quark near other \overline{p}

$$\tilde{\gamma}_{\mu} = S_{\mu}\gamma_{\mu} \quad \Rightarrow \quad \tilde{\gamma}_5 = \tilde{\gamma}_1\tilde{\gamma}_2\tilde{\gamma}_3\tilde{\gamma}_4 = S_1S_2S_3S_4\gamma_5 = \pm\gamma_5$$

eight quarks with $Q_A = +1$ eight quarks with $Q_A = -1$

and $\partial_{\mu} j^{A}_{\mu} = \sum_{A} Q_{A} \frac{g^{2}}{8\pi^{2}} \operatorname{tr}(F\tilde{F}) = 0$: doublers provide anomaly-free representation (Karsten&Smit, Nielsen&Ninomiya)

Yes: Wilson fermions

Regulator needs to break chiral symmetry to recover anomaly! (PV: fermion with large mass; dimreg: $[\gamma_{\mu}, \gamma_5] = 0$ in extra dimensions)

Here: give the doublers a mass! Momentum-dependent mass term (Wilson)

Replace
$$a^{4} \sum_{x} m\overline{\psi}\psi \rightarrow$$

 $a^{4} \sum_{x} \left(m\overline{\psi}(x)\psi(x) + \frac{1}{2a} \underbrace{\sum_{\mu} (2\overline{\psi}(x)\psi(x) - \overline{\psi}(x)\psi(x+\mu) - \overline{\psi}(x+\mu)\psi(x))}_{=-a^{2}\overline{\psi}\Box\psi}\right)$
 $= \int_{p} \overline{\psi}(p)\psi(p) \underbrace{\frac{1}{a} (am+1-\cos(ap_{\mu}))}_{=m+ap^{2}+...}$

Wilson fermions, cont'd

Take $p = \overline{p} + q$ then mass term is

$$m + \frac{1}{a} \sum_{\mu} (1 - S_{\mu} \cos(aq_{\mu})) \to m + \frac{2n}{a} + O(a)$$

with n equal to # components $\frac{\pi}{a}$ in \overline{p}

Removes (decouples) species doublers, breaks chiral symmetry even for m=0

- No multiplicative renormalization of mass, need $\frac{1}{a}$ counter term
- Tune bare mass to set renormalized mass to zero, for $g^2 \neq 0$ ("tune $\kappa_c = (8 + 2am)^{-1}$ ")

Lattice fermions

- LQCD with n_f Wilson fermions gives correct continuum limit (proof to all orders in perturbation theory (Reisz))
 But, not the only game in town!
- "clover" fermions: Symanzik-improved Wilson fermions, no O(a)add (latticized version) of $c_{\rm SW}a\overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}\psi$ (Sheikholeslami&Wohlert)
- domain-wall fermions: use extra dimension to exponentially suppress $1/a\,$ counter term, $g^2/a\to g^2e^{-L_5/a}/a$
 - L_5 extent of lattice in 5th direction (Kaplan, Shamir)
- overlap fermions: take limit $L_5
 ightarrow \infty$ (very non-trivial limit!) (Neuberger)
- staggered fermions: reduce & make use of doublers keeps an exact (flavored) chiral symmetry on the lattice (Kogut&Susskind)

Path integral

$$Z = \int \prod_{x,\mu} dU_{\mu}(x) \int \prod_{x} d\psi(x) d\overline{\psi}(x) e^{-S(U,\psi,\overline{\psi})}$$
$$= \int \prod_{x,\mu} dU_{\mu}(x) \operatorname{Det}(D(U) + m) e^{-S_{\text{plaquette}}}$$

dU is gauge-invariant Haar measure:

$$U(1): \qquad U = e^{i\phi} \qquad \int dU = \frac{1}{2\pi} \int_0^{2\pi} d\phi \text{ invariant under } \phi \to \phi + \alpha$$

$$SU(2): \qquad U = \sigma + i\vec{\tau} \cdot \vec{\pi} , \quad \sigma^2 + \vec{\pi}^2 = 1$$

$$dU = d\sigma d^3 \pi \,\delta(\sigma^2 + \vec{\pi}^2 - 1) = \frac{1}{\sqrt{1 - \vec{\pi}^2}} \,d^3 \pi$$

$$SU(N): \qquad U = U(\vec{\alpha}) \quad dU = \operatorname{norm} \sqrt{\det g} \prod_k d\alpha^k , \ g_{k\ell} = \frac{1}{2} \operatorname{tr} \left(\frac{\partial U}{\partial \alpha^k} \frac{\partial U^{\dagger}}{\partial \alpha^\ell} \right)$$

Note: no gauge fixing needed!

Pure Yang-Mills: expansion in $\beta = 2N/g^2$

Consider large $R \times T$ Wilson loop (R = T = 3a in figure)

Pure Yang-Mills: expansion in $\beta = 2N/g^2$

Lowest-order contribution when plaquettes tile Wilson loop

Hence $\langle W(R \times T \text{ loop}) \rangle \propto \beta^{RT}$ area law interpretation: $e^{-TV(R)}$ hence linear potential $V(R) \propto R$ quark confinement! (Wilson)

However, result at strong coupling, $g^2 \sim \infty$ Continuum limit: take $g^2(1/a) \rightarrow 0$ (asymptotic freedom) No phase transition observed between strong and weak coupling (numerical)

Back to QCD: pion propagator

Take
$$\pi^+(x) = \overline{d}(x)\gamma_5 u(x)$$

 $\langle \pi^+(x)\pi^-(0) \rangle = \frac{1}{Z} \int DU \prod_{\psi=u,d} D\psi D\overline{\psi} \underbrace{\overline{d}(x)\gamma_5 u(x)}_{\pi^+(x)} \underbrace{\overline{u}(0)\gamma_5 d(0)}_{\pi^-(0)} e^{-S(U,\psi,\overline{\psi})}$
 $= -\frac{1}{Z} \int dU \operatorname{Det}(D(U) + m_u) \operatorname{Det}(D(U) + m_d) e^{-S_{\text{plaquette}}}$
 $\times \operatorname{tr}\left((D(U) + m_u)^{-1}(x,0)\gamma_5(D(U) + m_d)^{-1}(0,x)\right)$

Do the integral over gauge fields numerically and probabilistically: generate gauge-field configurations with $p(U) = \frac{1}{Z} e^{-S_{\text{plaquette}}(U)} \text{Det}^2(U)$ This is the reason for euclidean space!

State of the art lattice: $144^3 \times 288 \times 4 \times 8 \approx 3 \times 10^{10}$ links!

$$\langle \pi^+(x)\pi^-(0)\rangle = \frac{1}{Z} \int DU \prod_{\psi=u,d} D\psi D\overline{\psi} \ \overline{\underline{d}(x)\gamma_5 u(x)}_{\pi^+(x)} \ \overline{\underline{u}(0)\gamma_5 d(0)}_{\pi^-(0)} \ e^{-S(U,\psi,\overline{\psi})}$$
$$= -\frac{1}{Z} \int dU \operatorname{Det}(D(U) + m_u) \operatorname{Det}(D(U) + m_d) \ e^{-S_{\text{plaquette}}}$$
$$\times \operatorname{tr}\left((D(U) + m_u)^{-1}(x,0)\gamma_5(D(U) + m_d)^{-1}(0,x) \right)$$

Need to invert D(U) + m for the propagators

Need to compute Det(D(U) + m), or rather, variation with gauge field: $\delta \log Det(D(U) + m) = \delta Tr \log(D(U) + m)$ $= Tr ((D(U) + m)^{-1} \delta D(U))$

Again, we need the inverse: need reliable and fast inverter for very large (sparse) matrices! (Lüscher in LH)

 Note: can vary "valence" mass (inside propagator) and "sea" mass (inside determinant) independently! "Partial quenching" -- can be useful (MG in LH)

Pion propagator -- interpretation

Take $\vec{p} = 0$, *i.e.*, define $\pi^+(t) = \sum_{\vec{x}} \pi^+(\vec{x}, t)$

In QM, for a lattice of extent T = Na in the time direction

$$Z = \operatorname{Tr} e^{-\hat{H}T} = \int dq \langle q | e^{-\hat{H}T} | q \rangle = \operatorname{Tr} \hat{T}^N = \int_{\text{pbc}} Dq \, e^{-S}$$

with $\hat{T} = e^{-\hat{H}a}$ the "transfer matrix" and \hat{H} the (lattice) hamiltonian

- In Minkowski space $e^{-\hat{H}a}
 ightarrow e^{i\hat{H}a}$ becomes the evolution operator
- Can get spectrum of theory directly from \hat{T} (Osterwalder&Schrader)

Pion propagator, cont'd

$$C(t) = \langle \pi^{+}(t)\pi^{-}(0) \rangle = \frac{1}{Z} \operatorname{Tr} \left(\hat{T}^{N-t/a} \hat{\pi}^{+} \hat{T}^{t/a} \hat{\pi}^{-} \right)$$

$$= \frac{1}{Z} \sum_{n,m} \langle n | \hat{\pi}^{-} \hat{T}^{N-t/a} | m \rangle \langle m | \hat{\pi}^{+} \hat{T}^{t/a} | n \rangle$$

$$= \frac{\sum_{n,m} e^{-E_m (T-t)} e^{-E_n t} \langle m | \hat{\pi}^{+} | n \rangle \langle n | \hat{\pi}^{-} | m \rangle}{\sum_m e^{-E_m T}}$$

$$\xrightarrow{T \to \infty} \sum_n e^{-(E_n - E_0)t} |\langle n | \hat{\pi}^{-} | 0 \rangle|^2$$

 $|n\rangle = |\pi^{-}\rangle$, $|(3\pi)^{-}\rangle$, $|\pi^{-}(1300)\rangle$,...

Extract pion mass from large-t behavior, excited states from multi-exponential fits (in principle!)

$\label{eq:propagator} {\rm Propagator} \ {\rm at} \ {\rm finite} \ T$

$$C(t) = \langle \pi^{+}(t)\pi^{-}(0) \rangle = \frac{1}{Z} \operatorname{Tr} \left(\hat{T}^{N-t/a} \hat{\pi}^{+} \hat{T}^{t/a} \hat{\pi}^{-} \right)$$

$$= \frac{1}{Z} \sum_{n,m} \langle n | \hat{\pi}^{-} \hat{T}^{N-t/a} | m \rangle \langle m | \hat{\pi}^{+} \hat{T}^{t/a} | n \rangle$$

$$= \frac{\sum_{n,m} e^{-E_m(T-t)} e^{-E_n t} \langle m | \hat{\pi}^{+} | n \rangle \langle n | \hat{\pi}^{-} | m \rangle}{\sum_m e^{-E_m T}}$$

$$= \frac{1}{Z(T)} \sum_n \left(e^{-E_n t} + e^{-E_n(T-t)} \right) |\langle n | \hat{\pi}^{-} | 0 \rangle|^2 + \dots$$

$$= \sum_n A_n(T) \cosh\left[(T/2 - t) (E_n - E_0) \right] + \dots$$

Connection with statistical mechanics

Note that for large (euclidean) time, and vanishing spatial momenta our propagator falls off like

$$e^{-mt}$$
 $(\vec{p}=0 \rightarrow E_n = m , \text{assume } E_0 = 0)$

In stat.mech., correlation functions decay like $e^{-t/\xi}$, with ξ the correlation length, over a (euclidean) distance t -- note the correspondence $m \leftrightarrow 1/\xi$

QFT: continuum limit taken by sending $m = am_{phys} \rightarrow 0$

Stat.mech.: $\xi = \xi_{\rm phys}/a \to \infty$

⇒ continuum limit corresponds to a second-order phase transition in d=4 equilibrium statistical mechanics system!

Matrix elements

Example:
$$\langle \overline{K}^0 | \mathcal{O}_{\Delta S=2} | K^0 \rangle$$
, $\mathcal{O}_{\Delta S=2} = (\overline{s}\gamma_\mu (1-\gamma_5)d)(\overline{s}\gamma_\mu (1-\gamma_5)d)$

Measure m_K , $\langle 0 | \overline{K}^0 | \overline{K}^0 \rangle$, $\langle K^0 | \overline{K}^0 | 0 \rangle$ from two-point functions and extract $\langle \overline{K}^0 | \mathcal{O}_{\Delta S=2} | K^0 \rangle$ (Lellouch in LH)

(fig. credit S. Sharpe)

Matrix elements, cont'd

Then
$$B_K = \frac{\langle \overline{K}^0 | \mathcal{O}_{\Delta S=2} | K^0 \rangle}{\frac{8}{3} m_K^2 f_K^2}$$

factor in SM expression for $\varepsilon_K = \frac{\Gamma(K_L \to (\pi \pi)_{I=0})}{\Gamma(K_S \to (\pi \pi)_{I=0})}$, measure of indirect QP

- Need to match $\mathcal{O}_{\Delta S=2}^{\text{lattice}}$ with $\mathcal{O}_{\Delta S=2}^{\overline{\text{MS}}}$
- In continuum this operator renormalizes multiplicatively: $\overline{s}_L \Gamma d_L$ has $\Gamma = \gamma_\mu$ because of $SU(3)_L \times SU(3)_R$ symmetry
- Wilson fermions: only $SU(3)_V$, mixing with $(\overline{s}\Gamma d)(\overline{s}\Gamma d)$, $\Gamma = 1, \gamma_{\mu}, \gamma_5, \dots$
- No mixing with lower-dimension, because $(\overline{s}d)(\overline{s}d)$ in **27** of $SU(3)_V$ (Vladikas in LH)

Errors -- statistical

Suppose we have K gauge-field configurations distributed according to

$$\frac{1}{Z} e^{S_{\text{gauge}}(U)} \operatorname{Det}(D(U) + M) > 0 \qquad \text{(Schaefer in LH)}$$
then $\langle \mathcal{O} \rangle = \lim_{K \to \infty} \sum_{i=1}^{K} \mathcal{O}(U_i)$
statistical error $\sqrt{\frac{1}{K-1} \sum_{i=1}^{K} (\mathcal{O}(U_i) - \langle \mathcal{O} \rangle)^2}$

(if all U_i and U_j for $i \neq j$ are uncorrelated)

Error in the average $\sim 1/\sqrt{K}$; increasing #configs. by 100 reduces error by 10

Errors -- systematic

- $a \neq 0$: need multiple lattice spacings to extrapolate
- $T < \infty$: excited-state contamination (nucleons!)
- $L < \infty$: finite-volume effects, for simple quantities $\sim e^{-m_{\pi}L}$ pions going "around the world" (periodic boundary conditions)
- $m_u = m_d$ too large, (often) still needed (for a number of reasons) inversion of D + m more expensive as $m \to 0$ $(\langle \overline{\psi}\psi \rangle = -\pi\rho(0), \ \rho(\lambda)$ density of eigenvalues (Banks&Casher)) extrapolate to physical values with chiral perturbation theory (MG in LH)
- operator mixing: use lattice fermions with good chiral symmetry!

Banks-Casher formula

$$\begin{split} \langle \overline{\psi}(x)\psi(x)\rangle &= \lim_{m \to 0} \lim_{V \to \infty} -\frac{1}{V} \sum_{x} \langle \operatorname{tr}(\psi(x)\overline{\psi}(x))\rangle \\ &= -\lim_{m \to 0} \lim_{V \to \infty} \frac{1}{V} \sum_{x} \left\langle \sum_{\lambda} \frac{\operatorname{tr}(f_{\lambda}(x)f_{\lambda}^{\dagger}(x))}{i\lambda + m} \right\rangle \\ &= -\lim_{m \to 0} \int_{-\infty}^{\infty} d\lambda \, \frac{\rho(\lambda)}{i\lambda + m} \\ &= -\int_{-\infty}^{\infty} d\lambda \, \rho(\lambda) \left(P \frac{1}{i\lambda} + \pi \delta(\lambda) \right) \\ &= -\pi \rho(0) \end{split}$$

if $\rho(\lambda) = \rho(-\lambda)$ which is true if $\{D, \gamma_5\} = 0$

so that $Df_{\lambda} = i\lambda f_{\lambda} \Rightarrow D\gamma_5 f_{\lambda} = -\gamma_5 Df_{\lambda} = -i\gamma_5 \lambda f_{\lambda} = -i\lambda f_{-\lambda}$

Domain-wall fermions

(Kaplan, Shamir; Kaplan in LH)

Consider five-dimensional fermions $\psi(x,s), \ s \geq 0$ with $M \sim 1/a$

 $(\partial \!\!\!/ + \gamma_5 \partial_s + M)\psi(x,s) = 0$

Note: no chiral symmetry, γ_5 is one of the gamma matrices!

⇒ construction can be discretized using Wilson fermions in five dimensions with no change in conclusions

Typical solutions have mass $\sim M$ but \exists zero modes bound to boundary:

 $\psi(x,s) = \chi_{\pm}(x)u_{\pm}(s)$ with $\partial \chi_{\pm} = 0$, $P_{\pm}\chi_{\pm} = \chi_{\pm} \Rightarrow u_{\pm}(s) = u_{\pm}(0)e^{\mp Ms}$

u_{-} is not normalizable, but u_{+} is!

Chiral massless fermion in four dimensions (s=0) ("surface mode") $U(1)_A$ anomaly produced by 5d massive fermions in the bulk (Callan&Harvey)

zero modes now approximate:

 $u_+(s)u_-(s) \sim Me^{-ML_5} \to 0 \text{ for } L_5 \to \infty$

 \Rightarrow "residual mass" $m_{
m res} \sim rac{1}{a} e^{-ML_5}$ ("chirally improved Wilson fermion")

- quark mass: couple $m\left(\overline{\psi}(x,L_5)P_+\psi(x,0)+\overline{\psi}(x,0)P_-\psi(x,L_5)\right)$
- gauge fields: keep in four dimensions, $D_5\equiv D_4(U)+\gamma_5\partial_s+M$
- wrong-chirality mixing for B_K : $\sim m_{\rm res}^2 \sim e^{-2ML_5}$ need two chirality flips, *i.e.*, two "crossings"

What is Lattice QCD (lattice gauge theory) good for?

- Verification of QCD, *e.g.*, spectrum, incl. resonances(!) glueballs, hybrids??
- Parameters of Standard Model and flavor physics (FLAG report)
- Nuclear Physics from QCD(!) (*e.g.*, Savage in Lattice 2016)
- QCD at finite temperature, equation of state (Philipsen in LH) (famous problem: QCD at finite density)
- Beyond the Standard Model:
 - high precision flavor physics
 - muon anomalous magnetic moment: hadronic contributions
 - non-SM B parameters
 - vary gauge group and fermion representations:
 strongly-coupled theories (composite Higgs, DeGrand, Rev. Mod. Phys.'16)
- Lattice: an "honest" non-perturbative regulator

Set scale and strange/light quark masses ($m_u = m_d$) with m_{Ξ} , m_{π} , m_K Three lattice spacings, physical strange quark mass, pion mass down to 190 MeV

Includes charm ("1+1+1+1"), QED, isospin breaking, 4 lattice spacings smallest charm mass $am_c=0.35$, smallest pion mass $195~{
m MeV}$

Note lattice errors smaller than experimental errors for two splittings!

The ρ resonance

From Briceno, Dudek&Young, '17 review Idea: spectrum in finite box is related to resonances in infinite volume (same hamiltonian! (Lüscher))

 $f_+(0) = 0.9704(33) \ (n_f = 2 + 1 + 1)$

Note precision of lattice computations green: incorporated in FLAG average; red: not all syst. errors controlled

assumes Standard Model, *i.e.*, unitarity of CKM matrix

Note precision of lattice computations green: incorporated in FLAG average; red: not all syst. errors controlled

Muon anomalous magnetic moment I

Low energy: LQCD is the only game in town for a theory computation!

HVP precision issue:

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \frac{dQ^2}{Q^2} w(Q^2) [\Pi(Q^2) - \Pi(0)]$$

Small error in vacuum polarization can lead to large error! The weight function $w(Q^2)/Q^2 \sim 1/\sqrt{Q^2}$ is a "magnifying glass" Note that data are very sparse in the region with most curvature

Muon anomalous magnetic moment II

- Experimental value $a_{\mu}^{exp} = 116592089(63) \times 10^{-11}$ (dominated by BNL E821)
- Standard-Model value (from Blum *et al.* review '13)

	Value $(\times 10^{-11})$ units	
QED $(\gamma + \ell)$ 116 584 718.951 \pm 0.00	$9 \pm 0.019 \pm 0.007 \pm 0.077_{\alpha}$	
HVP(lo) [20]	6923 ± 42	
$HVP(lo)$ [21] from e'e' \rightarrow hadrons	6949 ± 43	
HVP(ho) [21]	-98.4 ± 0.7	
HLbL model estimate!	105 ± 26	
\mathbf{EW}	154 ± 1	
Total SM [20] $116591802 \pm 42_{H-L}$	$_{ m AO}\pm26_{ m H-HO}\pm2_{ m other}\left(\pm49_{ m tot} ight)$	Davier <i>et al</i> .
Total SM [21] $116591828 \pm 43_{H-L}$	$_{ m AO}\pm26_{ m H-HO}\pm2_{ m other}\left(\pm50_{ m tot} ight)$	Hagiwara <i>et al</i> .

- Difference: $\Delta a_{\mu}(\text{E821} \text{SM}) = 287(80) \times 10^{-11} [20] (3.6 \sigma)$ = $261(80) \times 10^{-11} [21] (3.3 \sigma)$
- New Fermilab experiment: error reduction with factor 4 expected!

Muon anomalous magnetic moment III

HLbL (Blum et al., at Lattice 2017, see also Mainz group)

 $a_{\mu}^{\text{cHLbL}} + a_{\mu}^{\text{dHLbL}} = (116.0 \pm 9.6 - 62.5 \pm 8.0) \times 10^{-10}$

- One lattice spacing (0.114 fm), one volume (5.5 fm), physical pion mass
- More "disconnected" diagrams (but suppressed by powers of $m_s m_{u,d}$)
- Fermilab exp.: reproduction of BNL result end of 2018 (Roberts@g-2 workshop '17)