Higgs Physics at LHC Lecture 3 -Searches and future challenges TAE 2017

Kado Marumi LAL, Orsay **Benasque TAE** September, 2017

Overall Contents

Lecture 1: Fundamentals, The beauty and overwhelming success of the Standard Model

Lecture 2: Experimental profile of the Higgs boson, current challenges

Lecture 3: Future challenges (and future machines), implications and searches for new physics beyond the Standard Model

Higgs physics Landscape Redefined Flurry of new ideas !

Precision

- Mass and width
- Coupling properties
- Quantum numbers (Spin, CP)
- Differential cross sections
- Off Shell couplings and width
- Interferometry

Is the SM minimal?

- 2 HDM searches
- MSSM, NMSSM searches
- Doubly charged Higgs bosons

Rare decays

- Ζγ, γγ*
- Muons μμ
- LFV μτ, eτ
- $J/\Psi\gamma$, ZY, WD etc...

Tool for discovery

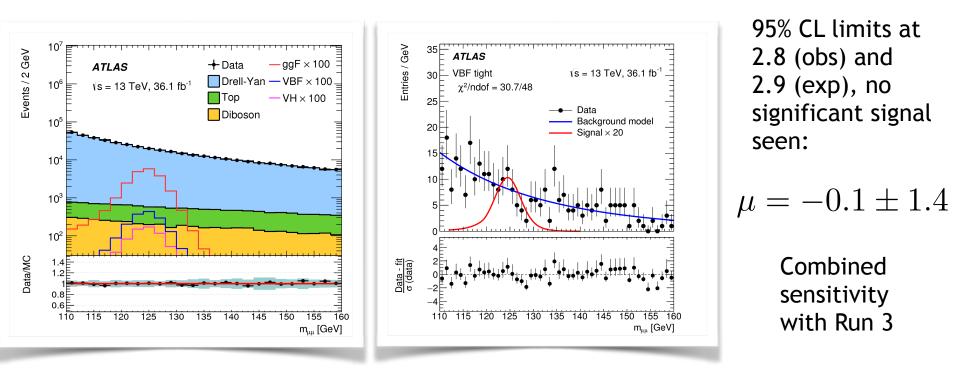
- Portal to DM (invisible Higgs)
- Portal to hidden sectors
- Portal to BSM physics with H⁰

in the final state (ZH⁰, WH⁰, H⁰H⁰)

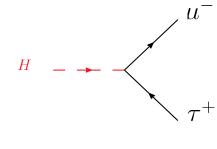
...and More!

- FCNC top decays
- Di-Higgs production
- Trilinear couplings prospects
- Etc...

Higgs Physics - Lecture 3


Beyond main channels, and future challenges

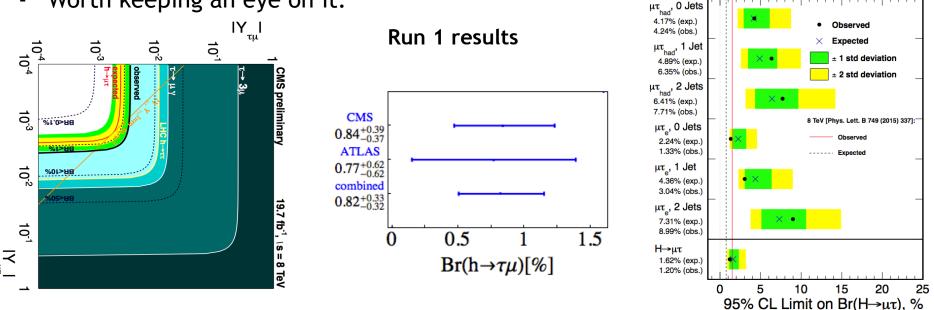
- 1.- Searches for rare decays
- 2.- Searches for rare production modes
- 3.- Double Higgs production
- 4.- Searches for extended Higgs sectors
- 5.- Future projects


Dimuon Channel

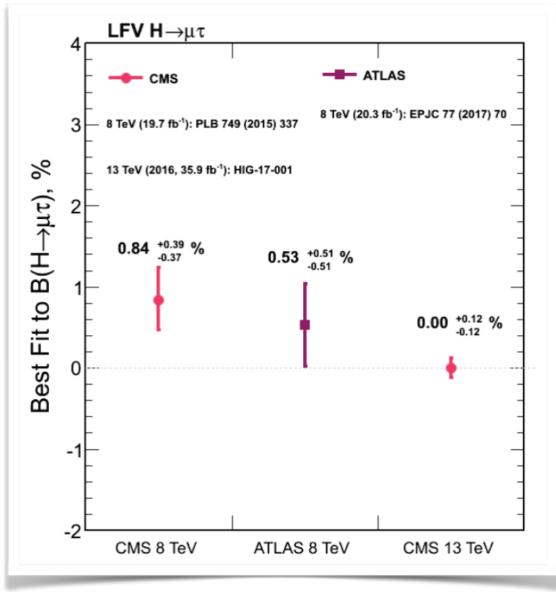
Analysis strategy: Very low s/b, search for peak in $m_{\mu\mu}$ spectrum over smooth background (categorize events according to VBF and ggF signature enriched). Very low s/b require excellent background description.

Excellent data/MC agreement, but s/b very low, background systematic uncertainties are a delicate point.

LFV Decays of the Higgs boson


Strong Constraints on $Br(H \rightarrow e\mu) < O(10^{-8})$ from $\mu \rightarrow e\gamma$

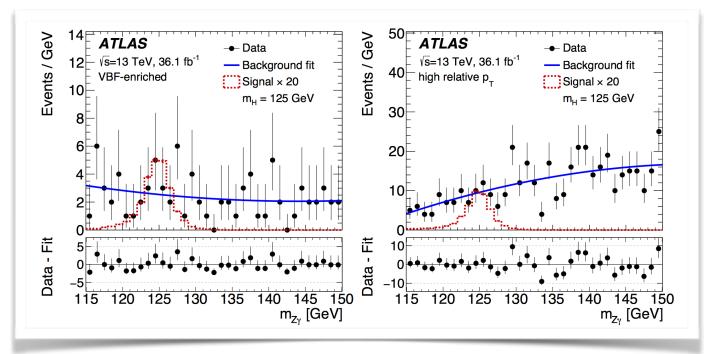
 $\tau\mu$ channel studied at Run 1, with analyses in both the hadronic and leptonic decay channels of the tau both in ATLAS and CMS.


CMS Preliminary

2.3 fb⁻¹ (13 TeV)

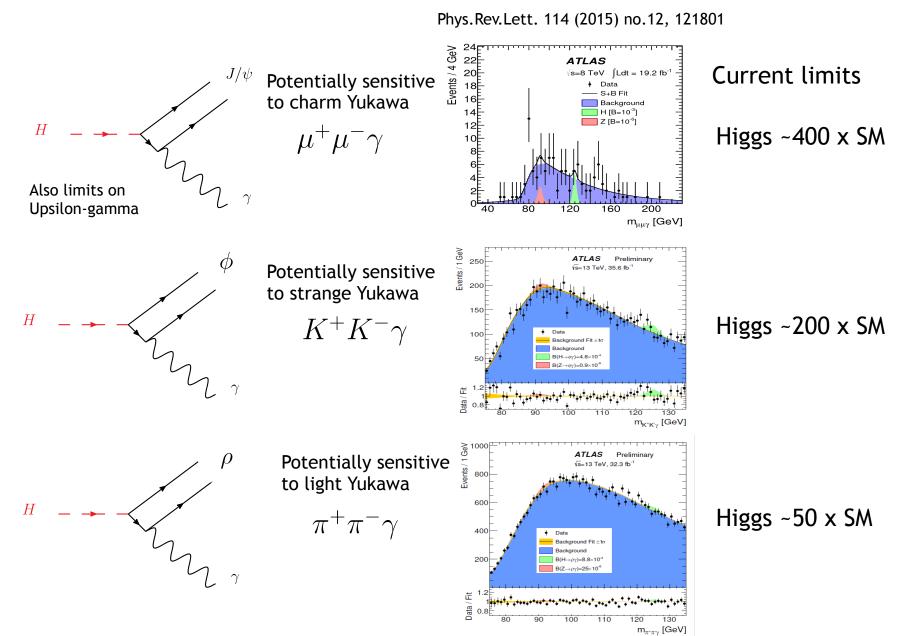
- Different background estimation strategy in ATLAS and CMS for the fully leptonic channel.
- Modest excess observed (more significant in CMS) at Run 1.
- Early Run 2 analysis performed by CMS in 2015 data no excess observed.
- Worth keeping an eye on it.

LFV Decays of the Higgs boson

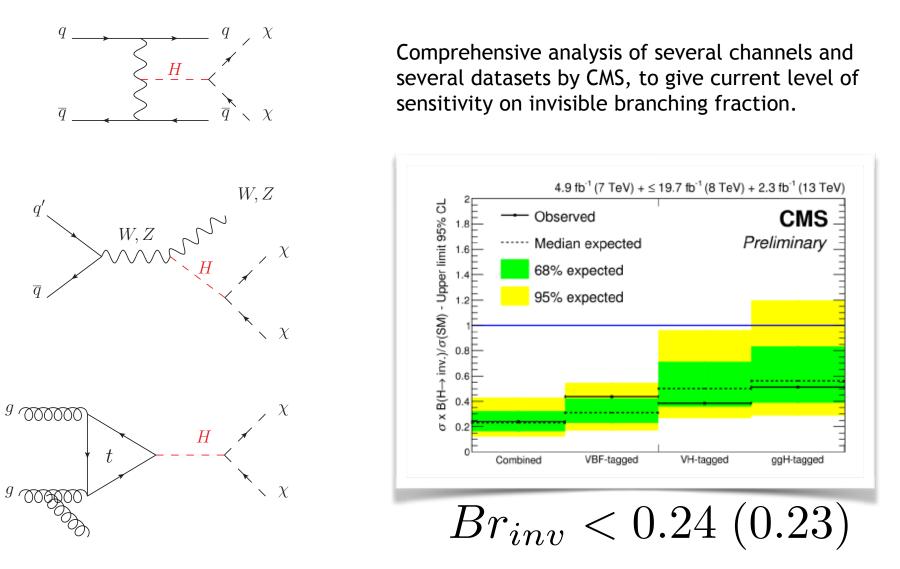


F. Meng Higgs Hunting 2017

$\mathbf{Z}\gamma$ Channel


Not so small branching fraction of 1.5 10-3 however search for leptonic decays of the Z boson.

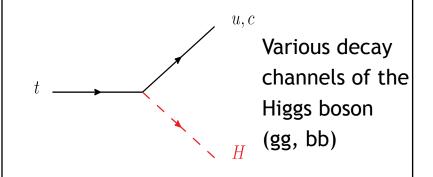
Analysis strategy: Categorised in main production modes gluon fusion (at high pT) and VBF (with the typical VBF topology). Improved mass reconstruction with FS correction for muons.


95% CL limits at 6.6 (obs) and 5.2 (exp), no significant signal observed.

Decays with to Quarkonia and a photon

Invisible decays of the Higgs boson

CMS-PAS-HIG-16-016

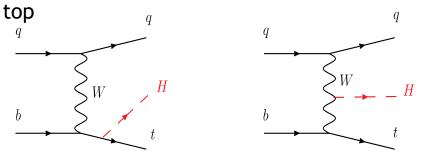

Higgs Physics - Lecture 3

Beyond main channels, and future challenges

- 1.- Searches for rare decays
- 2.- Searches for rare production modes
- 3.- Double Higgs production
- 4.- Searches for extended Higgs sectors
- 5.- Future projects

Rare Production Modes

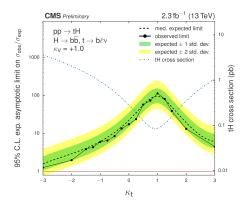
Run 1 only Flavor changing neutral curent decays of the top quark


Limits on $Br(t \rightarrow Hq)$ SM Branching ~10⁻¹⁵

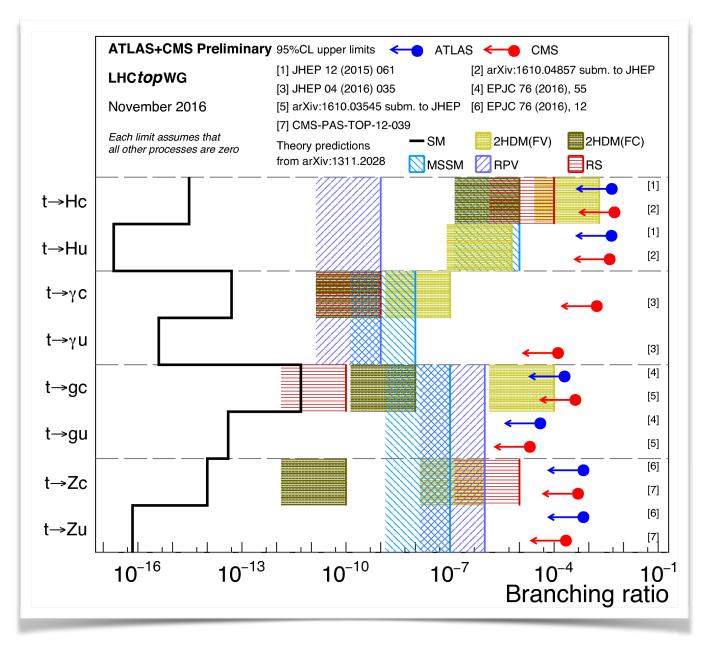
 $Br(t \rightarrow cH) < 0.79 \ (0.51)\%$

JHEP 06 (2014) 08

Single top associated production


Tree level interference between W and

 $\propto 3.3 \times \kappa_W^2 - 5.1 \times \kappa_t \kappa_W + 2.8 \times \kappa_t^2$


Allows to further constrain the top Yukawa coupling, in particular to exclude a negative relative sign

CMS	Upper limit x SM (expected)
SM	113.7 (98.6)
ITC	6.0 (6.4)

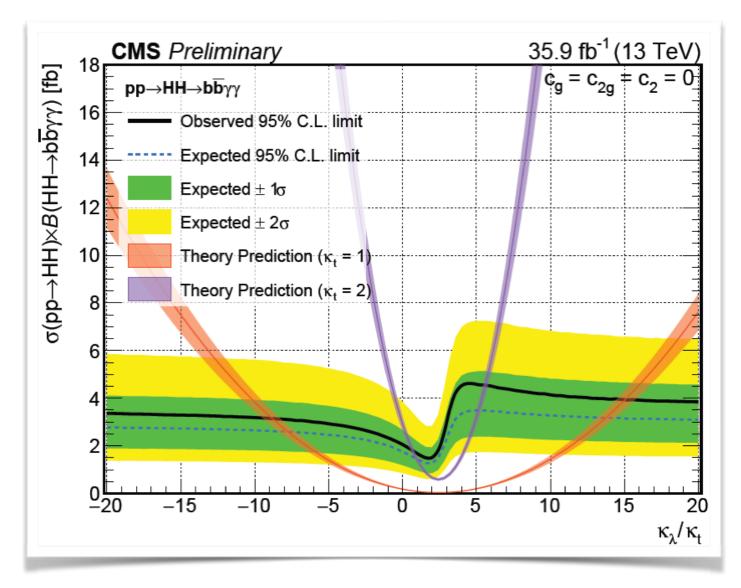
CMS-PAS-HIG-16-019

Higgs decays in Top Summary of FCNCs

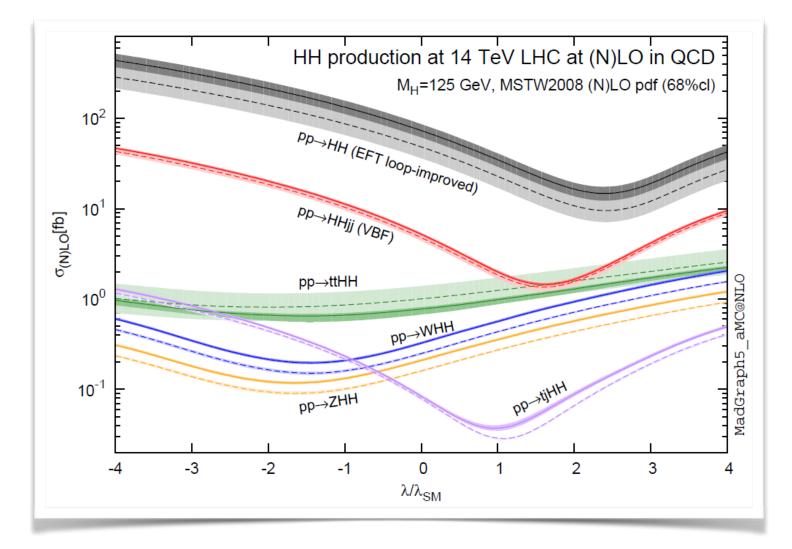
Higgs Physics - Lecture 3

Beyond main channels, and future challenges

- 1.- Searches for rare decays
- 2.- Searches for rare production modes
- 3.- Double Higgs production
- 4.- Searches for extended Higgs sectors
- 5.- Future projects


Double Higgs Production

- Search very similar to the Off Shell couplings of the Higgs boson in the two vector bosons channels. It is also done far Off shell in mass.
- Similarly to the Off-Shell analysis there is a large destructive interference between the triangle and the box contributions.
- The total production cross section is very small.
- The main channels are:


$$b\overline{b}\gamma\gamma$$
 $b\overline{b}\tau^{+}\tau^{-}$ $b\overline{b}b\overline{b}$ $b\overline{b}W^{+}W^{-}$ $\gamma\gamma W^{+}W^{-}$

Double Higgs Production

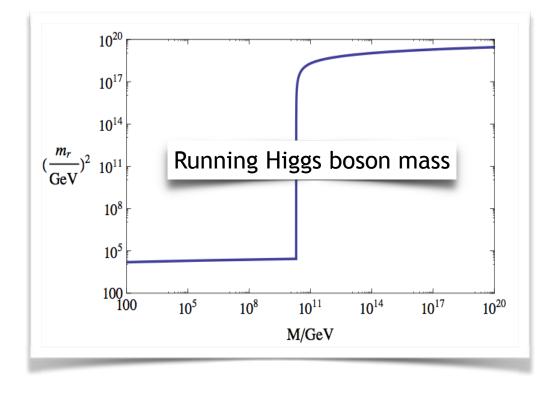
Current 95% CL limit is at 19.2 x SM expectation

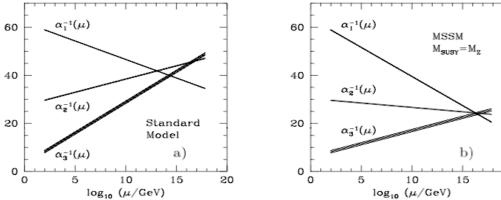
Double Higgs Production

Careful analysis of as many decay channels as possible and as many production channels as possible will be important.

Double Higgs Production Summary of Results

	bbgg	bbtt	bbWW	bbbb	WWgg
ATLAS	<117 (161)	-	-	<29 (38)	<747 (386)
CMS	<19 (17)	<30 (25)	<79 (89)	<342 (308)	-


Higgs Physics - Lecture 3


Beyond main channels, and future challenges

- 1.- Searches for rare decays
- 2.- Searches for rare production modes
- 3.- Double Higgs production
- 4.- Searches for extended Higgs sectors
- 5.- Future projects

A word on Naturalness and the Higgs boson

20

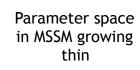
R. Barbieri Nobel Coloquium

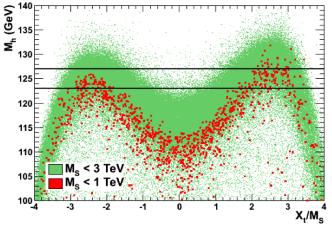
Solutions:

- Weakly coupled (SUSY)
- Strongly coupled (Composite)
- Anthropic principle

SUSY also...

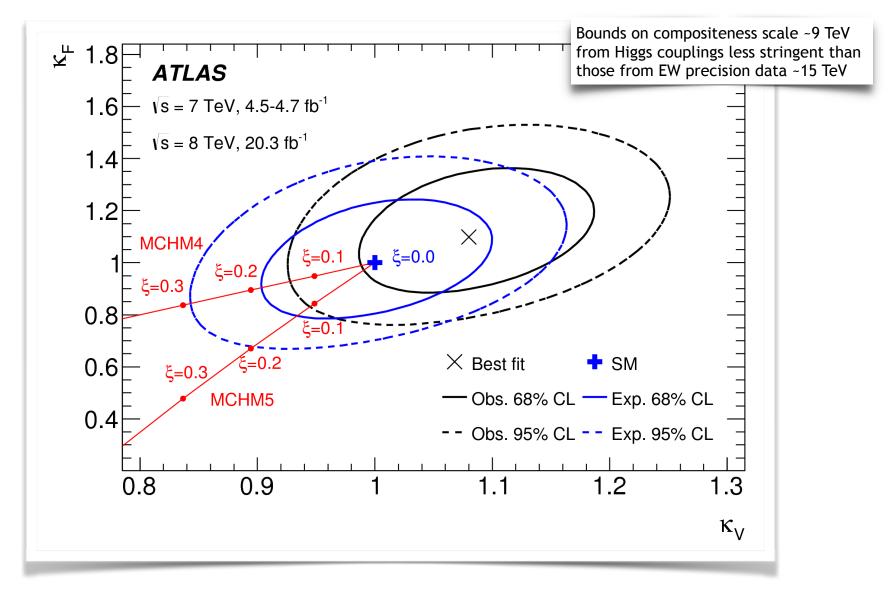
- Allows the unification of couplings
- Local SUSY: spin 3/2 gravitino (essential ingredient in strings)
- Natural candidate for Dark Matter


Extented Higgs Sectors


- 1.- Why should it be minimal?
- 2.- Additional doublets (2 HDMs) ?

SUSY: Two doublets with opposite hypercharges are needed to cancel anomalies (and to give masses independently to different isospin fermions)

- 2 HDMs in general : 5 Higgs bosons
 - Two CP even h and H
 - One CP odd A
 - Two charged Higgs bosons

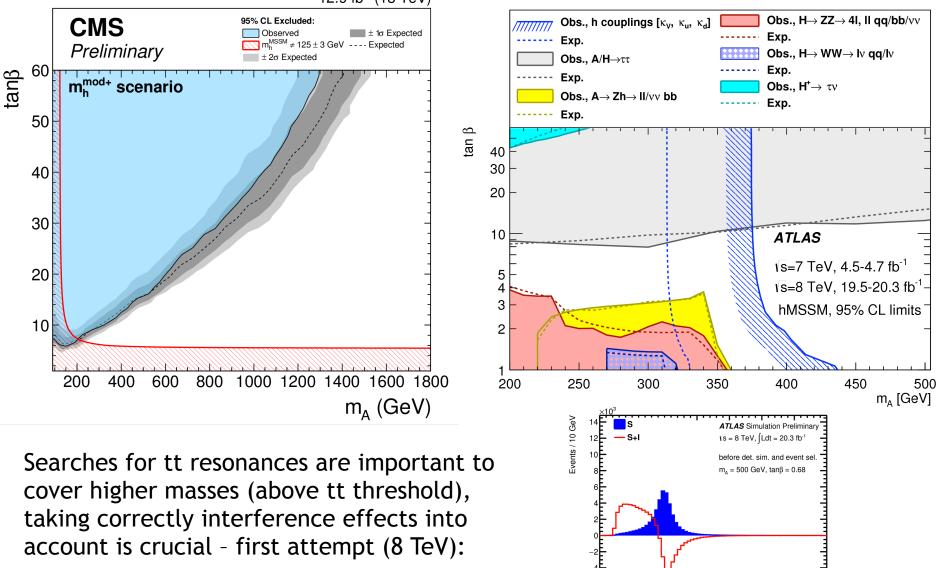


 μ parameter (of the superpotential) problem in SUSY, can be solved by the introduction of a singlet field in the NMSSM

4.- Additional triplet(s) ?

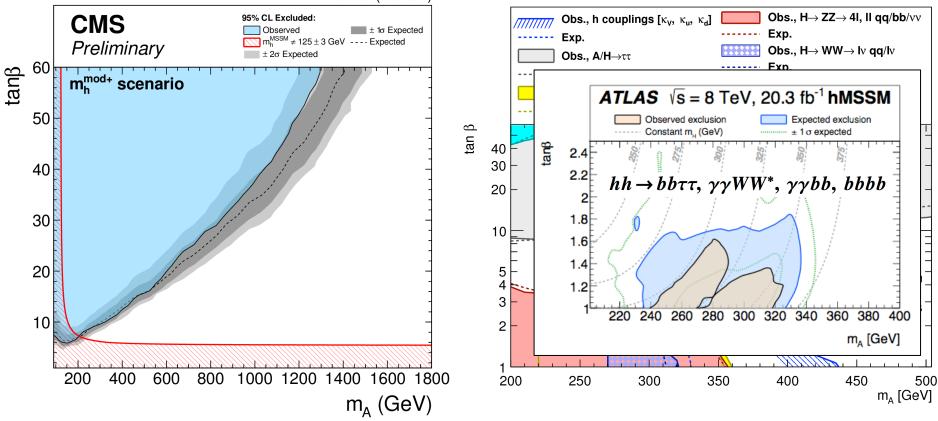
In order to generate Majorana mass terms for neutrinos

Minimal Composite Higgs Scenarios

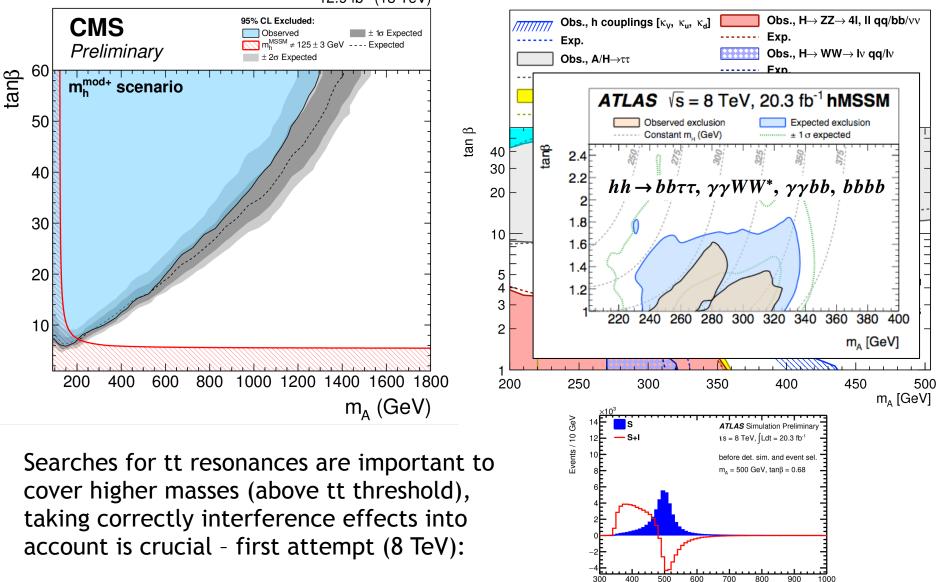

MCHM: Indirect constraints from the up vs down type fermions and vector bosons

	ATLAS	CMS	Other experiments
CP-even H	*	*	
$H o \gamma \gamma$	*	*	
$H \to Z\gamma$	*	*	
$H \to Z Z \to 4\ell$	*	*	
$H \to ZZ \to \ell\ell\nu\nu$	*	*	
$H o ZZ o \ell \ell q \overline{q}$	*	*	
$H \to ZZ \to \nu \nu q \overline{q}$			
$H \to WW \to \ell \nu \ell \nu$	*	*	
$H \to WW \to \ell \nu \ell \nu $ (2HDM)	*	*	
$H \to WW \to \ell \nu q \overline{q'}$	*	*	
$H \to VV \to q\overline{q'}q\overline{q'}(JJ)$	*	*	
$\underline{H \to hh \to b\bar{b}\tau\tau, b\bar{b}\gamma\gamma, 4b, \gamma\gamma WW^*}$	*	*	

* Run 1 or other experiments * Run 2


	ATLAS	CMS	Other experiments
$\overline{\text{CP-odd } A \text{ (and/or CP-even } H)}$			
$H, A \to \tau^+ \tau^-$	*	*	*
$H, A \to \mu^+ \mu^-$	*	*	
$H, A \to t\bar{t}$	*	*	
$H, A ightarrow b\overline{b}$		*	*
$A \to hV \to b \overline{b} q \overline{q'}, b \overline{b} \ell \nu, b \overline{b} \ell \ell, \ell \ell \tau \tau, \nu \overline{\nu} b \overline{b}$	*	*	
Charged H^{\pm}			
$H^{\pm} \to \tau^{\pm} \nu$	*	*	
$H^{\pm} \to cs$	*	*	
$H^{\pm} \rightarrow tb$	*	*	
$H^{\pm} \to W^{\pm} Z$	* _	*	
CP-odd NMSSM a			
$a \rightarrow \mu^+ \mu^-$	*	*	
$h ightarrow aa ightarrow 4\mu, 4 au, 2\mu 2 au, 4\gamma$	*	*	
$\Upsilon_{1s,3s} o a\gamma$			*
Doubly Charged H^{\pm}	*	*	

12.9 fb⁻¹ (13 TeV)



m, [GeV]

12.9 fb⁻¹ (13 TeV)

12.9 fb⁻¹ (13 TeV)

m, [GeV]

Higgs Physics - Lecture 3

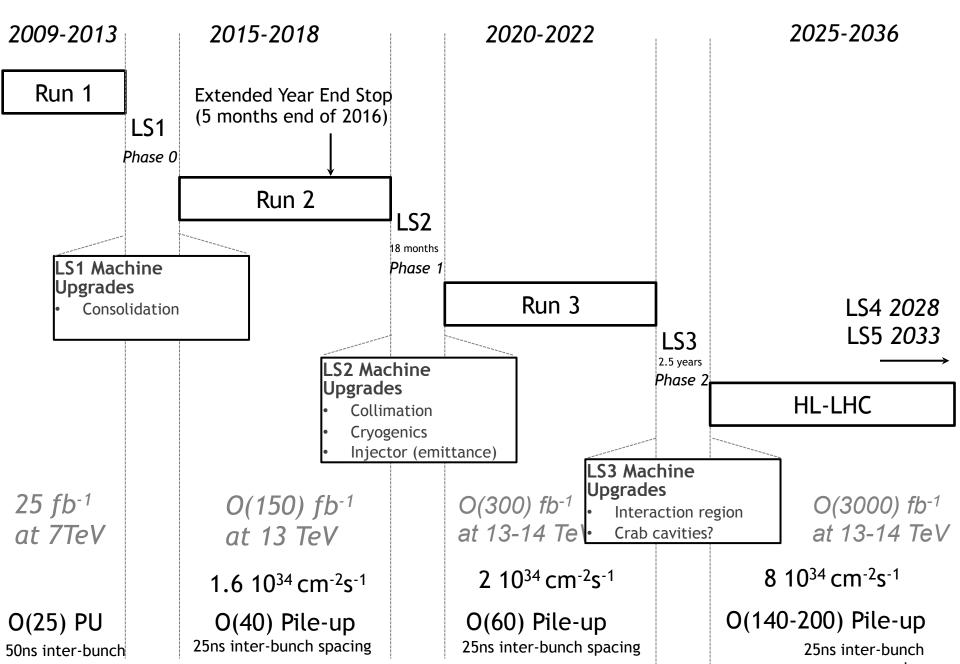
Beyond main channels, and future challenges

- 1.- Searches for rare decays
- 2.- Searches for rare production modes
- 3.- Double Higgs production
- 4.- Searches for extended Higgs sectors
- 5.- Future projects

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

Pushing LHC Limits

HL-LHC

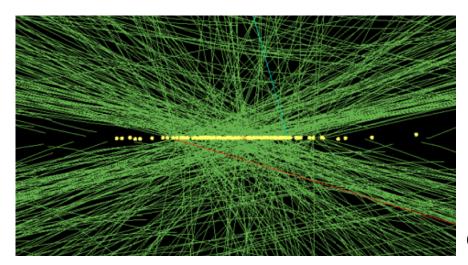

$$\mathcal{L} = \frac{N_p^2 k_b f_{rev} \gamma}{4\pi \beta^* \varepsilon_N} F$$

- Filling at the beam-beam effects limit Increasing the number of protons per bunch by a factor of 2 to 3.
- Going to smaller β^* Going to 15cm will require larger quadrupole aperture.
- Luminosity leveling To mitigate the highest peak instantaneous luminosity level luminosity to minimize loss in integrated luminosity.
- Crossing angle To mitigate the long range beam-beam effect 285 μ rad to 590 μ rad. Goal is a leveled luminosity of ~5 10³⁴ cm⁻²s⁻¹

HE-LHC

Doubling the energy will require new magnets e.g. Nb3Sn to reach ~15 T

The LHC: Only ~1% of the total so far

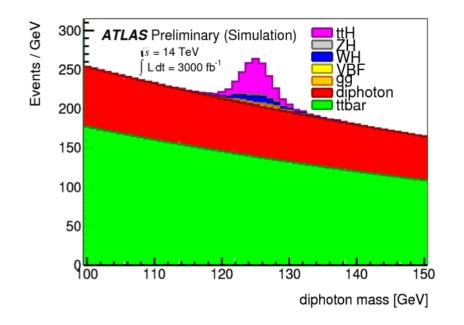


HL-LHC Beam Parameters

 $\mathcal{L} = \frac{N_p^2 k_b f_{rev} \gamma}{4\pi \beta^* \epsilon_n} F$

Two HL-LHC scenarii

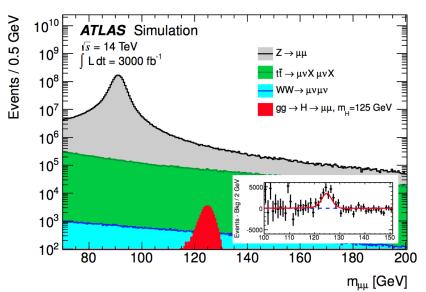
Parameter	2016	Nominal	HL-LHC (25 ns)	HL-LHC (50 ns)
C.O.M Energy	13 TeV	13-14 TeV	14 TeV	14 TeV
N _p	1.2 10 ¹¹	1.15 10 ¹¹	2.0 10 ¹¹	3.3 10 ¹¹
Bunch spacing / k	25ns /2300	25 ns /2808	25 ns /2808	50ns /1404
ε (mm rad)	2.6	3.75	2.5	3.0
β* (m)	0.4	0.55	0.15	0.15
L (cm ⁻² s ⁻¹)	1.5x10 ³⁴	10 ³⁴	7.4 10 ³⁴	8.4 10 ³⁴
Pile up	~30	~20	~140	~260



How non-linear are the PU effects?

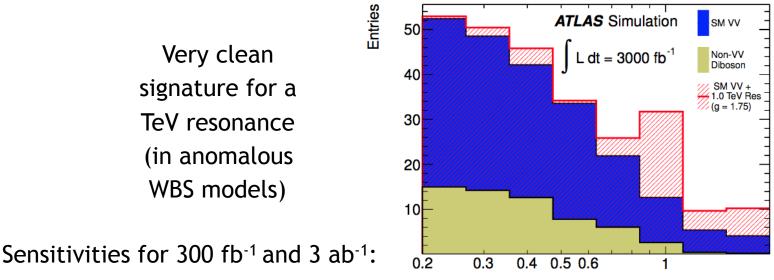
CMS event with 78 reconstructed vertices

Reaching ttH Production in (robust) rare modes


Analyses not relying on more intricate decay channels (bb, tt and WW)

μμ decay mode should reach more than 5 standard deviation

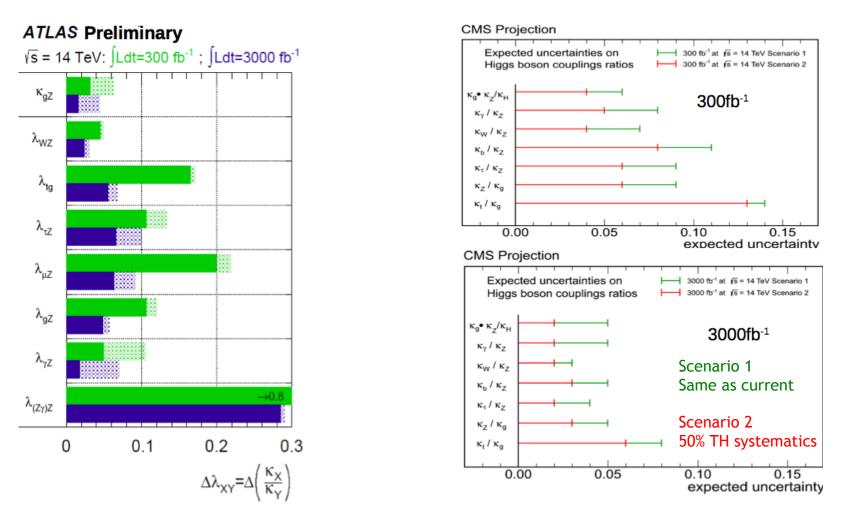
- γγ channel: more than 100 Events
 expected with s/b~1/5
- μμ channel: approximately 30
 Events expected with s/b~1


Analyses (rather) robust to PU

Completing the Picture WBS Weak Boson Scattering

Of course with a Higgs boson the case is thinner!

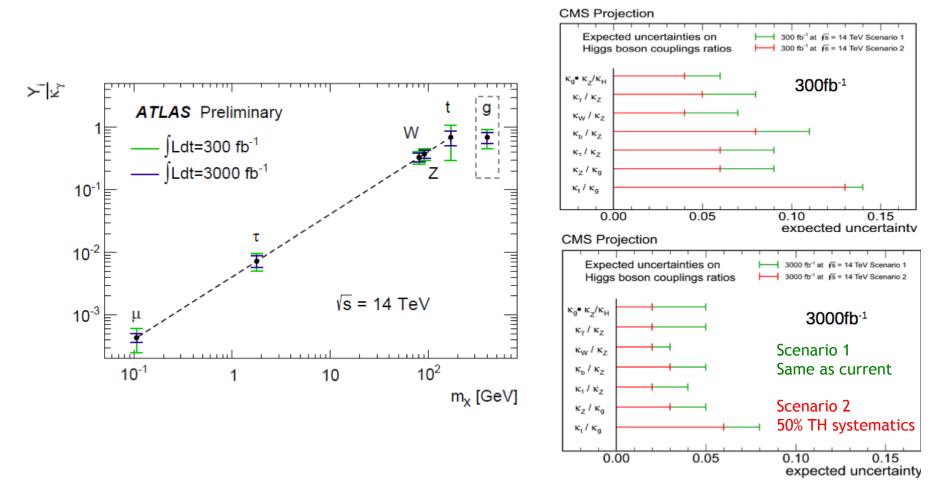
Only taking into account the cleanest signals : ZZjj in the 4 leptons final state



m₄₁ [TeV]

Model (anomalous WBS)	300 fb ⁻¹	3 ab ⁻¹
500 GeV and g=1	2.4 σ	7.5 σ
1 TeV and g=1.75	1.7 σ	5.5 σ
1 TeV and g=2.5	3.0 σ	9.4 σ

LHC Higgs Physics Program: Main Couplings


Couplings Projections recently reappraised with a sample of analyses

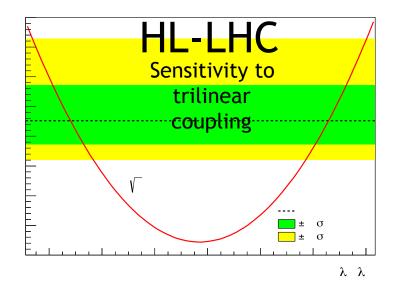
Only indirect (however not negligible) constraint on the total width Necessary to use assumptions or measure ratios: Precision down to ~5% level

LHC Higgs Physics Program: Main Couplings

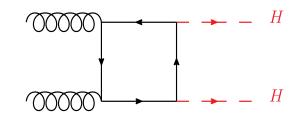
Couplings Projections recently reappraised with a sample of analyses

Only indirect (however not negligible) constraint on the total width Necessary to use assumptions or measure ratios: Precision down to ~5% level

Di-Higgs Production Self Couplings


ATL-PHYS-PUB-2014-019

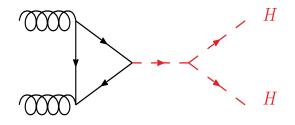
At HL-LHC sensitivity to SM HH


1.3 σ

Extremely challenging!

Similarities with Off-Shell Couplings measurements

Associated production of two Higgs bosons

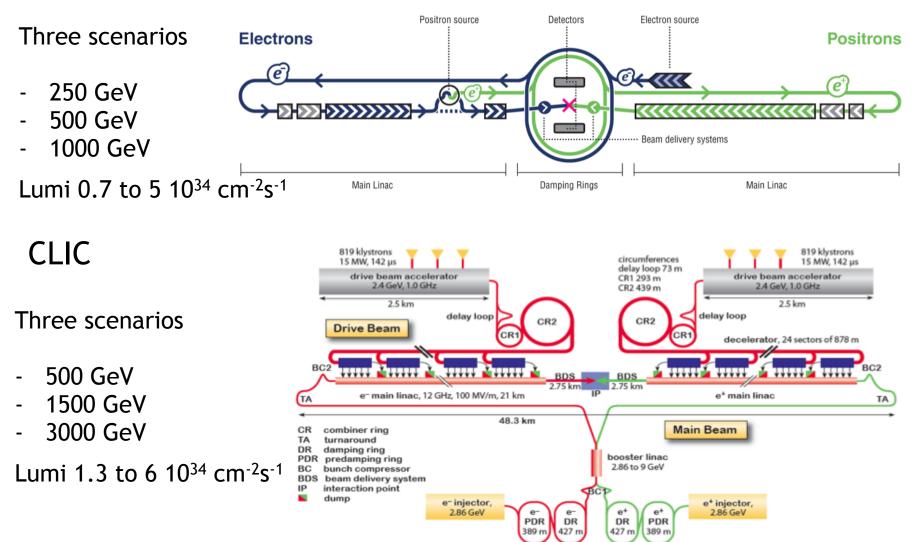

Various channels searched for (bbyy)

Limit on non resonant cross section times branching:

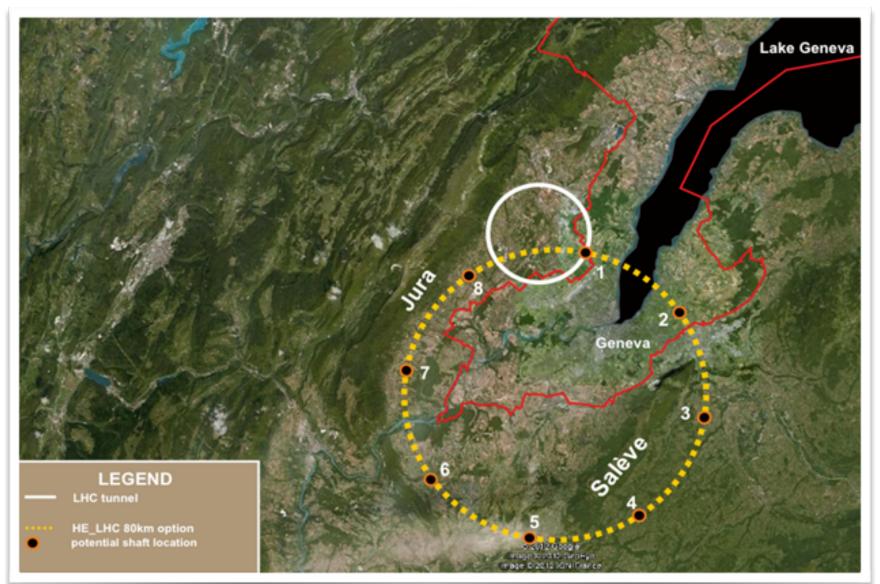
 $\sigma_{\rm HH}~{\rm Br}_{\rm bb,~\gamma\gamma}{\rm <}$ O(2) pb

Background to ...

Tri-linear coupling production

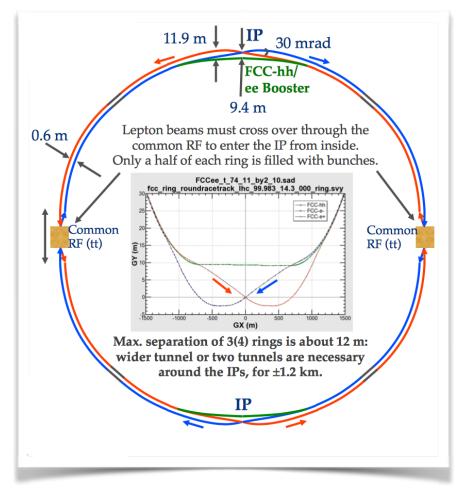


 λ_3 : Extremely difficult on of the main challenges for the HL-LHC


 λ_4 : Incredibly difficult

Beyond LHC Programs e⁺e⁻ colliders

ILC



Beyond LHC Programs Future circular collider, the FCC project

Beyond LHC Programs

Future circular collider, the FCC-ee, -eh, and -hh project

From M. Benedikt

Precision physics at FCC-ee:

- >mH+mZ for precise Higgs measurements
- mZ for Tera Z and extreme precision EW measurements
- 2xmW for precision W measurements
- 2xmt for precise top measurements

Options: 240 GeV and 350 GeV (with respectively 10 and 2.6 ab-1) and 2 or 4 IPs.

Other important options: ILC, CepC

Beyond LHC Programs

Higgs physics at e⁺e⁻ colliders

Facility		ILC		ILC(LumiUp)	TLEP	9 (4 IP)		CLIC	
\sqrt{s} (GeV)	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L}dt \ (fb^{-1})$	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	_	5.9%	<5.9%
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	_	11%	5.6%
κ_{τ}	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	_	14%	3.2%	2.0%	_	13%	_	4.5%	$<\!\!4.5\%$
BR_{inv}	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%			

- Reaching few permil to percent level precision on the couplings
- Direct measurement of branching fractions

Beyond LHC Programs Future circular collider, the FCC project

parameter	FCC-hh		HE-LHC*	_{ive} (HL) LHC
collision energy cms [TeV]	100		>25	14
dipole field [T]	16		16	8.3
circumference [km]		100	27	27
# IP	2	2 main & 2	2 & 2	2 & 2
beam current [A]		0.5	1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25	25
beta* [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	>25	(5) 1
events/bunch crossing	170	<1020 (204)	850	(135) 27
stored energy/beam [GJ]	8.4		1.2	(0.7) 0.36
synchrotr. rad. [W/m/beam]	30		3.6	(0.35) 0.18

From M. Benedikt

Beyond LHC Programs

Higgs Couplings at FCC

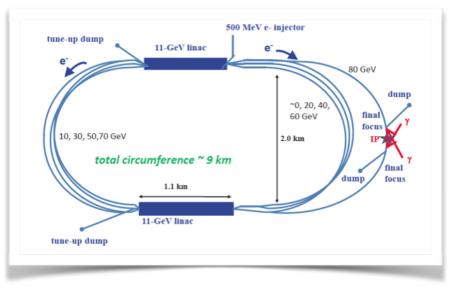
ਉ нхү	ee [240+350 (4IP)]	pp [100 TeV] 20ab ⁻¹	ep [60GeV/50TeV], 1ab ⁻¹
ZZ	0.15%		
WW	0.19%		
bb	0.42%		0.2%
СС	0.71%		1.8%
gg	0.80%		
TT	0.54%		
μμ	6.2%	<1%	FCC-ep based on
YY	1.5%	<0.5%	LHeC type design
Ζγ		<1%	with ERL (Energy
tt	~13%	1%	Recovery Linacs)
HH	~30%	3.5%	,, ,
uu,dd	H->ργ, under study		
SS	H->φγ, under study		
BRinv	< 0.45%	< 0.1%	
Γ _{tot}	1%		

From M. Mangano

Beyond LHC Programs

Further Programs

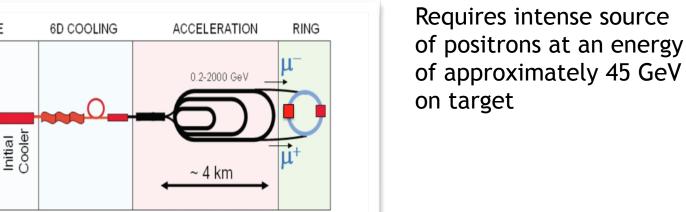
γγ Collider


FRONT END MUON SOURCE

arget

Proton Source

Decay


Bunch & Reduce ∆E

Higgs factory μμ Collider

With a new exciting idea of muon production at threshold through

 $\sqrt{(s)} = \sqrt{2m_e E_{e^+}}$

Disclaimer

Important points that could not be covered in this lecture:

- Searches for exotic decays of the Higgs boson
- Searches for new phenomena using the Higgs boson
- Constraining parameters of the Higgs sector difficult to access such as charm Yukawa or the trilinear coupling using the differential cross sections.
- Status of a general EFT approach to parametrise possible BSM effects

Summary and Conclusions

- The discovery of the Higgs boson compatible with the SM Higgs boson has sealed the immense success of the Standard Model.
- The until then unknown parameter (Higgs boson mass) is now one of the most precisely measured parameters at the LHC (1 permit level).
- The Higgs physics program has blossomed and the boundaries of what is possible in Higgs properties measurements have been impressively expanded.
- The existence of the Higgs boson poses the key question of naturality of the Standard Model.
- Measuring the trilinear coupling to further understand the scalar potential with implication on EW phase transition and cosmology.
- Key developments in Higgs physics to address main fundamental questions:
 - Precise measurement of its properties.
 - Investigate how minimal the Higgs sector really is (extended EWSB sector, additional Higgs bosons).
 - Use the Higgs boson as a tool for discovery.