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What is B-mode polarization?

CMB=picture of the Universe  
at age  ~380.000 years:

a hot Universe with small inhomogeneities



The CMB light is polarized!
The polarization plane is defined wrt the gradients of  CMB temperature

“E modes”: !
parallel/orthogonal !
to such direction!

(curl-free)

“B modes”: !
at 45o!

to such direction!
(divergence-free)

associated to !
temperature gradients!
(Thomson scattering)

cannot be associated !
to any scalar quantity!

in the CMB!
⇓!

TENSORS

What is B-mode polarization?



Maps from BICEP2…



…and the <BB> power spectrum

BICEP points

Theoretical curve

l





Where do these tensor modes come from?



- it is approximately flat

- in first approximation it is homogeneous and isotropic

5 INTERESTING FACTS ABOUT THE UNIVERSE

- it is old and very large

- structure grew out of small, quasi scale invariant perturbations

- spectrum of primordial perturbations was quasi gaussian



INFLATION
:= period of accelerated expansion!

in the very early Universe

All these facts can be explained by

a
a

.

H≡

a=scale factor of the Universe. Obeys

H2=           ρ≡8πG
3MP2
ρ

3

during inflation require H∼constant

(not so easy, since ρ dilutes away for ordinary matter...)



✓ very early Universe filled by scalar field φ, the inflaton, with 
potential V(φ)>0

✓ to induce acceleration,  V(φ) must be flat:

V(φ)

φ

How to get some “slowly diluting”!
matter?
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Accelerated expansion:

•  counters Jeans instability and produces a large, 
homogeneous and spatially flat Universe!

• pulls quantum fluctuations out of vacuum (cf. Schwinger 
effect): at least two forms of “particles” are created: 

scalar modes (quanta of inflaton) Observed, studied in detail

tensor modes (quanta of gravity) This is what people are 
talking about now!



Primordial gravitational waves

Let us therefore focus on !
the tensor components of the metric:

X

ij

�ij hij =
X

i

⇥i hij = 0

the tensor mode has two components (=helicity ±2) 
so we can decompose it, in momentum space, !

into left-handed and right-handed modes

ds

2 = a

2(⌧)
⇥
�d⌧

2 + (�ij + hij (x, ⌧)) dx
i
dx

j
⇤

hij (k, ⌧) =
X

�=±
h� (k, ⌧) ✏

�
ij (k)



Primordial gravitational waves (II)

We then quantize hλ on a time-dependent background

ĥ�(x, ⌧) =

Z
d3k

(2⇡)3/2
eikx

�
h�(k, ⌧) â�(k) + h�(�k, ⌧)⇤ â�(�k)†

�

d2 h�

d⌧2
+

2

a

d a

d⌧

d h�

d⌧
+ k2 h� = 0

where hλ obeys
a(⌧) ' � 1

H ⌧
⌧ < 0

during inflation

with solution

h�(k, ⌧) =
2

MP

1

a(⌧)

1p
2 k

✓
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k ⌧

◆
e�i k ⌧

important note: !
quantization of gravity!



Primordial gravitational waves (III)
Observable: two point function of GWs !

(related to two point function of B-modes)

hh�(x, ⌧)h�(y, ⌧)i =
Z

d3k

(2⇡)3
eik(x�y) |h�(k, ⌧)|2

hh�(x, ⌧)h�(y, ⌧)i =
4

M2
P

Z
d3k

(2⇡)3
H2

2 k3
eik(x�y)

that for superhorizon distances |x� y| � |⌧ |

Scale invariant

Amplitude of tensor two point function



OK, but what is r?

r =tensor-to-scalar ratio

Amplitude of tensor two point function

Amplitude of scalar two point function

✏ ⌘ M2
P V 02

2V 2
⌧ 1



(finally) back to BICEP2

Amplitude of scalar perturbations well measured by COBE

r ⟺ V during inflation

2

Sitter inflationary expansion (namely that P

t

⇠ V/M

4

p

,

where P
t

is the tensor power spectrum, V 1/4 is the energy
scale of inflation, and M

p

' 2.4⇥1018 GeV is the reduced
Planck mass) - it allows us, for the first time, to determine
the energy scale of inflation. From the parametrization
r ⌘ P

t

/P

s

, and from the measured value of the scalar
power spectrum, P

s

' 2.45 ⇥ 10�9, one obtains the well
known relation

V

1/4 ' 2.25 · 1016 GeV
⇣

r

0.2

⌘
1/4

. (1)

Therefore, if the B-mode signal observed by BICEP2 is
due to inflationary vacuum modes, we have now learnt
that inflation took place at the GUT scale.

Taken at face value, the BICEP2 value is in strong
tension with the 2� limit r < 0.11 obtained by the
Planck inflation analysis [2]. Such a limit however re-
lies on the scaling of the temperature anisotropy data
(supplemented by the WMAP large-scale polarization
likelihood), and not on the direct measurement of the
B-mode polarization. The r < 0.11 limit appears ro-
bust under the inclusion of several datasets (such as the
ACT+SPT temperature data, BAO, and the Planck lens-
ing [2]). However, it crucially relies in the assumption of
a constant spectral tilt n

s

.
Specifically, it is obtained from the

Planck+ACT+SPT temperature data (with the Planck
data supplemented by the WMAP large-scale polar-
ization likelihood), under the assumption of constant
spectral tilt n

s

= 0.960 ± 0.007 [2]. As discussed in [2],
a more relaxed limit is obtained if n

s

is allowed to vary
with scale k. Specifically, it is customary to parametrize
the scalar power spectrum as

P

⇣

(k) ⌘ P (k
0

)

✓
k

k

0

◆
ns�1+

1
2↵s ln

k
k0

(2)

where k

0

= 0.05 Mpc�1, is the a chosen pivot scale (this
is the scale at which also r is defined) and the parameter
↵

s

denotes the running of the scalar spectral tilt [3] with
↵

s

= d ns
d ln k

.
If ↵

s

6= 0, the r < 0.11 limit is relaxed to r

<⇠ 0.25.
From Figure 5 of [2] we infer that a value ↵

s

⇠ �0.02 is
required to reconcile the temperature data with r = 0.2.
Such a large value of |↵

s

| is not a generic prediction of
slow roll inflationary models. Indeed, in terms of the slow
roll parameters
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(3)
where V denotes the potential of the inflaton � and
comma denotes a derivative, we have the well known slow
roll relations

r = 16 ✏ , n

s

� 1 = 2⌘ � 6✏ ,

↵

s

= �2⇠2 +
r

2
(n

s

� 1) +
3

32
r

2 ' �2⇠2 � 0.00025 ,

(4)

where n

s

= 0.96, r = 0.2 has been used in the final
numerical estimate. This is typically much smaller than
the required value, since, as evident in (4), the running
is generically of second order in slow roll.
In principle, models can be constructed in which the

third derivative term ⇠

2 is “anomalously large”. How-
ever, besides being hard to motivate, it is di�cult to
maintain a large third derivative, while the first two
derivatives are small, for a su�ciently long duration of in-
flation, [4, 5], so that the models in which a large running
is achieved have potentials with some bump-like feature
or superimposed oscillations [4, 6–9], or possess some pe-
culiar aspects beyond standard scenarios [10–14].
In summary, it appears that r = 0.2 can be recon-

ciled with the limits from the temperature anisotropies
through a negative running, which is however of substan-
tially larger magnitude than the generic slow roll predic-
tion. It is possible that the value of r from the polariza-
tion will shift towards r ⇠ 0.1, in which case the tension
with the temperature data can be relaxed (or disappear
altogether). This can happen factoring in both the sta-
tistical uncertainty in the BICEP2 r = 0.2+0.07

�0.05

result,
and the decrease of r that appears in most of the model-
dependent dust corrections [1].
Remarkably, r close to 0.15 appears as a prediction of

the simplest models of inflation, such as chaotic infla-
tion [15] and natural inflation [16]. Even if UV complete
theories typically leads to a lower inflationary scale, it
is possible to construct models that can evade the fun-
damental constraints which typically make high-scale in-
flation di�cult to realize [17–20] and still display such
simple potentials.
However, from a theoretical point of view, it is inter-

esting to understand the implications that a large mea-
sured value for r from polarization would have for infla-
tionary model building. In this work we do not explore
the possibility of a large running besides the comment
that we have already made. We rather discuss two other
(admittedly, more speculative) possible ways to suppress
the large scale temperature signal in presence of a large
r ' 0.2.
The first mechanism relies on the presence of a

large scale suppression in the scalar power, that we
parametrize with a step function. A similar idea was
already explored in [21], in order to address the sup-
pressed power of the temperature anisotropies at the
largest scales. The best fit to the first year WMAP
data was obtained if the power drops to zero at scales
k

<⇠ 5⇥ 10�4 Mpc�1 [22]. Such a strong suppression can
for example occur if the universe is closed, with a cur-
vature radius comparable to the horizon at the onset of
inflation [23], or if the inflaton was in fast roll at the be-
ginning of the last ⇠ 60 e-folds of inflation [21]. In this
case, one also expects a suppression of the tensor signal
at large scales, although this suppression is milder than
that of the scalar power [24]. Here, for simplicity, we
only consider a simple model for suppression in order to
explore the viability of such a model in explaining the

High scale (GUT!) inflation!

…more properties?



The Lyth bound
r related to excursion of inflaton during inflation

(in single-field inflation)

d�

dt
/ V 0 /

p
✏ /

p
r

�� ⇠ MP

r
r

0.01

Planckian excursions of inflaton!



To sum up, if BICEP2 result is true:

• It means that we “saw” gravitational waves!

• Direct test of canonical quantization of gravity (on a 
time-dependent background!)!

• Proves inflation (all alternatives have no tensors)!

• Strongly supports existence of nontrivial physics at a 
new, close to GUT, scale!

• In simple (and not so simple) models proves 
planckian excursions of scalar fields



BICEP2

Space of inflationary models:



Implications for model building?



Often-heard concern:

“Graviton loops” effects generate terms 

/ M4
P

✓
�

MP

◆n

in V(φ), that are uncontrollable corrections for φ>MP

�� & MP



(Quantum) gravity interacts with energy, not with φ!

Smolin 80

Indeed: for potential V(φ),  perturbative quantum gravity effects are

O(1) V(φ)2/MP4     and    O(1) V’’(φ) V(φ)/MP2 

negligible during inflation

V(φ) breaks softly the shift symmetry φ→φ+const.$
that protects V(φ) against gradients

Linde 88

�� & MP



Perturbatively dangerous operators are those that break shift 
symmetry in a hard way (e.g., sufficiently large Yukawas)

Easy solution:

Assume an exact shift symmetry (so Yukawas are forbidden)…!
…then break the symmetry a bit and generate a potential 

�� & MP



An (important) example
If φ is a phase, then shift symmetry ⇔ global U(1)

The global U(1) is broken e.g. by some strong dynamics

�L = ⇤3 (H +H⇤) + . . .

Theory with a spontaneously broken global U(1)

L = @µH
⇤@µH � �

�
|H|2 � f2

�2

Decompose 
where δH is massive and φ is a massless Goldstone boson

H = (f + �H) ei�/f

A potential is generated:
Pseudo-N

ambu-G
oldstone boson  

PNGb

�V ⇠ ⇤

3 f cos(�/f)



V(φ)=µ4 [ cos(φ/f)+1]

 V(φ)

π0

2µ4

φ/f

Freese et al 1990Natural inflation
...using a pNGB as an inflaton...

Data require!
f>5 MP



Everything is fine here with respect to EFT…

…what about UV-complete theories?
(e.g., string theory)

An example of a way out…

String Theory appears to require f<MP

Banks, Dine, Fox and Gorbatov 03

A problem…

Arkani-Hamed, Motl, Nicolis and Vafa 06

[φ=angle, with periodicity determined by size of internal space>1/MP]



Fμνρλ=∂[μ Aνρλ]S4form= -            Fμνρλ Fμνρλ  d4x∫1
48

tensor structure in 4d⇒ Fμνρλ = q(xα) εμνρλ 

equations of motion  DμFμνρλ =0 ⇒ q(xα) = constant

trivial dynamics ( )

(Higher rank relative of the electromagnetic field)
Kaloper, LS 08!

Kaloper, Lawrence, LS 11

Enter the 4-form



Action invariant under shift symmetry:

under φ → φ + c, L → L + c μ εμνρλ Fμνρλ/24

Di Vecchia and Veneziano 1980!
Quevedo and Trugenberger 1996!

Dvali and Vilenkin 2001

Let us couple the 4-form to a pseudoscalar



Action invariant under shift symmetry:

under φ → φ + c, L → L + c μ εμνρλ Fμνρλ/24

total derivative! (F=dA)

Let us couple the 4-form to a pseudoscalar

Di Vecchia and Veneziano 1980!
Quevedo and Trugenberger 1996!

Dvali and Vilenkin 2001



Variation of 
the action { ∇μ  (Fμνρλ-μ εμνρλ φ)=0

∇2φ+μ εμνρλ Fμνρλ/24=0

After simple 
manipulations { ∇2φ-μ2 (φ+q/μ)=0

Fμνρλ= εμνρλ (q + μ φ)

q = integration constant

Equations of motion



...and by the way, wasn’t φ an angle?

The theory is massive while retaining the shift symmetry!

The symmetry is broken spontaneously when a solution is picked

MONODROMY
2

φ

E

n = 0
n = −1

n = 1

n = −2

µe /

Figure 1: A map of the possible energies as a function of φ, for the potential
V = 1

2(µφ+q)2. The picture repeats itself (except for the labeling of the lines)
each time one shifts φ→ φ+ |e|/m ≡ φ+ fφ.

At leading order in 1/N and at strong ’t Hooft coupling λ = g2YMN , Witten has shown
that h(x) = Ax2, which leads to precisely the scenario discussed above. If we promote the
theta angle to a propagating field, θ = φ/fφ, this is another realization of axion monodromy
inflation.7

As it has been pointed out in [25, 29], the four-form theory can be used as the effec-
tive action for the coupled axion-gauge theory dynamics. The Chern-Simons 3-form C ∝
tr
(

AdA− 2
3A

3
)

behaves as a massless 3-form field, with field strength F = dC = trG ∧ G.
The physics above is reproduced by the Lagrangian L = θF + K(F ) where K is some un-
known function. The strong coupling result in [15] is consistent with a simple kinetic term
K(F ) = F 2, thus realizing our original model (2).

2.2 Membrane nucleation and level crossing

For monodromy inflation to work, transitions between branches of Fig. 1 should be sup-
pressed. Monodromy inflation will be safe if the lifetime for such transitions is long compared
to the time scale of inflation. That is also necessary in order to avoid too large density per-
turbations, which could be ∼ O(1) if the bubble nucleation rate is high. Since the nucleation
processes are exponentially suppressed, we think that this is not too difficult to achieve. We
will discuss some of the issues here, leaving a detailed analysis for future work.

Consider bubble nucleation in the flat space limit (valid if bubbles are smaller that H−1

in size). In the thin wall limit, the lifetime is proportional to [30–32]:

P = λ exp

(

−27π2

2

σ4

(∆V )3

)

, (8)

where σ is the domain wall tension, ∆V is the energy difference between the energy densities
of the vacua separated by the bubble wall, and λ is some scale arising from the fluctuation

7One still needs to check if the theory in [15] will work for high-scale inflation. E.g., this is a dimensionally
reduced 5d theory with a Kaluza-Klein scale of order the dynamical scale of the 4d gauge theory.

5

Silverstein, Westphal 08 

It turns out that q is quantized…



Bottom line…
From an Effective Field Theory approach 
Planckian excursions are not a problem

Even in more constrained setups,  
like string theory, there are ways out



How about high scale inflation?
In de Sitter space, with Hubble parameter H, all scalar degrees of freedom with m<H 

get large quantum fluctuations

BICEP2⇒  H~1014 GeV

� Planck constrains to %-level non-inflaton !
(isocurvature) fluctuations

� In string th, moduli better be stabilized 
during inflation (decompactification!)



How about high scale inflation?

BICEP2 ⇒  H~1014 GeV

Need to stabilize moduli at high scale!
(above usual SUSY breaking scale 1011 GeV)





An interesting discrepancy

BICEP:  .15<r<.27 @ 68% 

Planck:  r<.11 @ 95% 

Probably this will go away with more data.!
But what if…?



How does Planck measure r?

Planck measures δT~ζ+h

(cf. BICEP2 measures B~h)

scalar metric perturbations tensor metric perturbations

h�T �T i ⇠ h⇣ ⇣i+ hhhi
(assuming no tensor-scalar correlation)

How to disentangle the scalar and the tensor contribution?

From their different scale dependence!



How does Planck measure r?

How to disentangle the scalar and the tensor contribution?

From their different scale dependence!

from Melchiorri, Vittorio 96Contributions to <TT> power spectrum:



How does Planck measure r?
How to disentangle the scalar and the tensor contribution?

From their different scale dependence!

1- Compute spectrum of < ζζ > at  small scales !
where effect of <hh> is negligible

III- Infer limits on <hh>

II- Extrapolate spectrum of < ζζ > to small scales 
[assuming k3 <ζ(k)ζ(-k)>∝kn -1, ns=constant]s



Obvious solution
Change the way you extrapolate. !

I.e., relax assumption of constant spectral index!

Already discussed!
in Planck…

…and now in BICEP



Obvious solution

Both Planck a BICEP assume constant running of ns:

↵s ⌘
dns

d log k
= constant

Best fit: !
!

αs≃-.02

�very large wrt prediction from inflation αs≃O(.001)
�an overkill: change the spectrum at all scales 1<l<3000 !

     to explain phenomenon at l<100



Two more options

Assume step in primordial spectrum

Contaldi, Peloso, LS 14

k3h⇣(k) ⇣(�k)i = �s Akns�1

�s = 1 , k > k⇤
�s < 1 , k < k⇤

k3h⇣(k) ⇣(�k)i

k

!



Assume step in primordial spectrum
Data like this!

!

Two more options



Assume step in primordial spectrum

k3h⇣(k) ⇣(�k)i = �s Akns�1

�s = 1 , k > k⇤
�s < 1 , k < k⇤

!

Two more options



Assume step in primordial spectrum
And there are models that can do it…

Amplitude of scalar two point function

change in slope of  V can change amplitude of scalar perts

!

Two more options



Planck measures δT~ζ+h

Rigorously h�T �T i ⇠ h⇣ ⇣i+ hhhi+ 2 h⇣ hi

can have both signs!

Can use scalar-tensor (anti) correlation !
to suppress TT fluctuations

"

Two more options



hij carries indices⇒break rotational invariance#

$ hij affects only small l⇒unbroken scale invariance

➕ hints of breaking of SO(3) in WMAP, Planck

"

Two more options



• If BICEP2 results hold true (and we will know within 
months!) this is a huge result: (new) evidence for GWs, for 
quantization of gravity, for inflation, for a new scale in physics !

• No real problem with large inflaton excursions…!

• …provided one does not forget about (approximate) shift 
symmetries!

• Some intriguing discrepancies - do they point to something 
special that happened during inflation?

Conclusions


