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reducton. mags, simulations and results. We find an excess of B.mode power over the base lonsed-LCOM expectason n
the range 30<i<150, inconsistont with the null hypothesis at a sgnificance of > So. Through jJackinfo tests and simulations
based on detaled Glbraton Mmeasuromonts we show Pat systematic contaminaton is much smalier Pan the cbsorved
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2 3e and 220, respoctively. The observed B-mode powtr spectum is woll-S1 By 2 lonsed-LCOM + tensor thooretical model
With tenscriscaler taso r w 0207000, with r=0 cistavored a2 7.00. Suteracting the Dest avilable estimats for foregrousd
dust modifies the Meshood sighty so that r=0 is dsfavored at S 5o







The CMB light is polarized!

The polarization plane is defined wrt the gradients of CMB temperature
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Where do these tensor modes come from?




- it ‘iéWnately flat

- structure grew out of small, quasi scale invgriare &

- spectrum of primordial peturbations was quasi gaussian




All these facts can be explained by

INFLATION

;= period of accelerated expansion
in the very early Universe

a=scale factor of the Universe. Obeys

fp=_87G 0 _a
3 3Mp2 B a

during inflation require /{~constant

(not so easy, since @ dilutes away for ordinary matter...)




How to get some “slowly diluting”
matter?

. Y :

¢

v very early Universe filled by scalar field ¢, the inflaton, with
potential V(¢)>0

v to induce acceleration, V(¢) must be flat:

M V' Mg V"

<1 <1
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Accelerated expansion:

® counters Jeans instability and produces a large,
homogeneous and spatially flat Universe

® pulls quantum fluctuations out of vacuum (cf. Schwinger
effect): at least two forms of “particles” are created:

s
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Multipole moment, (

This is what people are
talking about now!

tensor modes (quanta of gravity)

Asgular scale
02
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Primordial gravitational waves

Let us therefore focus on
the tensor components of the metric:

ds® = a*(T) [—dTQ + (8;5 + hij (x, 7)) da* dxj}

the tensor mode has two components (=helicity 12)
SO we can decompose it, in momentum space,
into left-handed and right-handed modes

hij (k, 7) = Z ha (k, 7) € (k)
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Primordial gravitational waves (ll)

We then quantize /4, on a time-dependent background

ha(x, T) = / ( o (Pa(k, 7) ax(k) + ha(=k, 7)" ax(—k)T)

27)3/2
where /1, obeys -2
d*hy 2 da dh) ——
- — L k2 hy =0 uring inflation
dr?  a dr dr A

with solution

2 1 1 1 :
_ i —r kT
Mk T) = 3 ) ok ( kT) :

., important note:

guantization of gravity!
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Primordial gravitational waves (lll)
Observable: two point function of GWVs

(related to two point function of B-modes)

(ha(x, 7) ha(y, 7)) = / (;1;3 K [ (k1)

that for superhorizon distances [x —y| > |7

4 / |
(ha(x, T) haly, 7)) = M—]%/ h(x-y)

Scale invariant

: . . H? V
Amplitude of tensor two point function ( Vel X s
P j=




OK, but what is r?

7 =tensor-to-scalar ratio

Amplitude of tensor two point function

Amplitude of scalar two point function
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(finally) back to BICEP2

Amplitude of scalar perturbations well measured by COBE

'

r <= V during inflation

1/4
V1/4 ~ 2.95. 101 GeV (OT—Q)

—
High scale (GUT!) inflation!
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...more properties!




The Lyth bound

r related to excursion of inflaton during inflation

(in single-field inflation)

d ¢

EocV’oc\/Eoc\/;

’
A¢~Mp\/ :

'

Planckian excursions of inflaton!




It means that we “saw’’ gravitational waves

Direct test of canonical quantization of gravity (on a
time-dependent background!)

Proves inflation (all alternatives have no tensors)

new, close to GUT, scale

In simple (and not so simple) mode
planckian excursions of scalar fields




Space of inflationary models:
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Implications for model building!?




Ap > Mp

Often-heard concern:
“Graviton loops” effects generate terms
¢ n
Mp | ——
M} ( o

in V(¢), that are uncontrollz arrections for ¢p>Mp




Ad> Mp

(Quantum) gravity interacts with energy, not with ¢/

Indeed: for potential V(¢), perturbative quantum gravity effects are

O(1) VpP/M#* and  O(1) V"(9) V()MP

negligible during inflation Linde 88

V(@) breaks softly the shift symmetry ¢p—¢+const.
that protects V(¢ ) against gradients




Aé> Mp :

Perturbatively dangerous operators are those that break shift
symmetry in a hard way (e.g., sufficiently large Yukawas)

Easy solution:

Assume an exact shift symmetry (so Yukawas are forbidden)...
...then break the symmetry a bit and generate a potential




If ¢ is a phase, then shift symmetry < global U(1)
@ Theory with a spontaneously broken global U(/)
L=0,H"H—\(H?> - f?)°

@ Decompose H = (f +dH) ot/ f
where 0H is massive and ¢ is 2 massless Goldstone boson

@ The global U(l) is broken e.g. by some strong dynamics
0L =A° (H+H")+...

3
@ A potential is generated: (0V ~ A° f cos(¢/ f) &




...using 2 pNGB as an inflaton...

Freese et al 1990

Data require
f>5 Mp




Everything is fine here with respect to EFT...

...what about UV-complete theories!
(e.g., string theory)

A problem...

Banks, Dine, Fox and Gorbatov 03
Arkani-Hamed, Motl, Nicolis and Vafa 06

String Theory appears to require f<Mp

[p=angle, with periodicity determined by size of internal space>//Mp]

An example of a way out...
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(Higher rank relative of the electromagnetic field)

Enter the 4-form

S4f0rm: -

1

48

F/“/Ql F‘MVQ;L d4x

Kaloper, LS 08
Kaloper, Lawrence, LS ||

Fuvor=0[u Avoi]

tensor structure in 4d= Fui = q(X*) Euvor

equations of motion D#F ) =0 = g(x*) = constant

( trivial dynamics )
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Let us couple the 4-form to a pseudoscalar

UV AT

M

f= 1 | [LO €
Pl \v&% 2 2
R — ST e
2 i (Vo)

AR™ W27 T g g

B 1 )

Sbulk = /(141’\/5(

DiVecchia and Veneziano 1980
Quevedo and Trugenberger 1996
Dvali and Vilenkin 200

Action invariant under shift symmetry:

under = ¢ + ¢, L = L + ¢ u et Fypi/24




1 L] .
o8 ) - « ~’_
,n. L] '\:

Let us couple the 4-form to a pseudoscalar

2 = -
> > (Vo)

1F2 | ,UQ Ao
AR W0 T Dt g

B 1 )

Sbulk = /d41'\/§(

DiVecchia and Veneziano 1980
Quevedo and Trugenberger 1996
Dvali and Vilenkin 200

Action invariant under shift symmetry:

under p = ¢ +c,L —= L + ¢ u ot F /24

total derivative! (F=dA)
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Equations of motion

Variation of { Vi (F/WQ;L',M Euvol ¢):0

the action V2 +u V0 Fp1/24=0

After simple Fuvor= €uvor (q + 1 @)
manipulations
) V2-12 (¢+q/1t)=0

g = integration constant




The theory is massive while retaining the shift symmetry!

The symmetry is broken spontaneously when a solution is picked

..and by the way, wasn't ¢ an angle?

It turns out that g is quantized...
E

Silverstein, VWestphal 08
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How about high scale inflation?

In de Sitter space, with Hubble parameter H, all scalar degrees of freedom with m<H
get large quantum fluctuations

w Planck constrains to %-level non-inflaton
(isocurvature) fluctuations

w In string th, moduli better be stabilized
during inflation (decompactification!)

BICEP2= H~10'% GeV
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How about high scale inflation?

BICEP2 = H~10'% GeV
—=

Need to stabilize moduli at high scale
(above usual SUSY breaking scale 10/ GeV)




Sorowave Background (CME) polanmeter specficaly desgned
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BICEP: ./15<r<.27 @ 68%
Planck: r<.1l @ 95%

Probably this will go away with more data.
But what if...?




scalar metric perturbations tensor metric perturbations

~~ ~
Planck measures 07~C+h

(cf. BICEP2 measures B~h)
v

OT0T) ~ (¢ ¢) + (hh)

(assuming no tensor-scalar correlation)

How to disentangle the scalar and the tensor contribution!?

From their different scale dependence!




Contributions to <7T> power spectrum: from Melchiorri,Vittorio 96

Scalar Tensor

e DG KD

» 0 o

How to disentangle the scalar and the tensor contribution!?

From their different scale dependence!




How to disentangle the scalar and the tensor contribution!?

From their different scale dependence!

|- Compute spectrum of < ¢C > at small scales
where effect of <hh> is negligible

ll- Extrapolate spectrum of < {C > to small scales
[assuming k3 <C(k)C(-k)> k™I, ng=constant]

lll- Infer limits on <hh>




Change the way you extrapolate.
l.e., relax assumption of constant spectral index!

Already discussed

in Planck...

1 4 '
PUnck < WP <hghl

04

' ihighl +ICEP?

Torer 20 Scier Rve (r)
22 2] 04

0l

00

100

..and now in BICEP




Both Planck a BICEP assume constant running of n:
dng

g = = constant

- dlogk

Best fit:

/ r=—-.0)2

mvery large wrt prediction from inflation a,=0(.001)

m-an overkill: change the spectrum at all scales 7/ </<3000
to explain phenomenon at [</00
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Assume step in primordial spectrum

2 (C(k) C(—k)) = Bs Ak™

pbs=1, k> k,
Bs <1, k<k,




Assume step in primordial spectrum

DD S STt Data like this!

| \ Planck+WP+BICEP2

AN, x* Ax* r

|\ ACDM + tensor
| ' ACDM + tensor + a,
| Suppression

- 985483 - 0.16
+1 9850.14 -4.69 0.17
+2 9840.51 -14.32 0.20

PO T S04 S0 S0l
[ )




Assume step in primordial spectrum

k2 (C(k) ¢

(—k)) = Bs Ak
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Assume step in primordial spectrum
And there are models that can do it...

H? V4
X
EMI% erJ

Amplitude of scalar two point function (

’

change in slope of V can change amplitude of scalar perts
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Planck measures 0T~C+h can have both signs!

Rigorously (0T 0T) ~ () + (hh) +2(Ch)

v

Can use scalar-tensor (anti) correlation
to suppress TT fluctuations




2

hij carries indices=break rotational invariance

hi; affects only small ./=unbroken scale invariance

+ hints of breaking of SO(3) in WMAP, Planck




Joncelusions

If BICEP2 results hold true (and we will know within
months!) this is a huge result: (new) evidence for GWs, for
quantization of gravity, for inflation, for a new scale in physics

No real problem with large inflaton excursions...

...provided one does not forget about (approximate) shift
symmetries

Some intriguing discrepancies - do they point to something
special that happened during inflation?




