DNA Setup: Further Progress 16th to 20th of June

Testing the Filters

- Open question: Why we have a direct signal from the LED with short- (SP) and longpass (LP) filter between LED and PMT?
- Naively a shortpass filter of 475 nm combined with longpass filter of 500 nm should block "all" light

Test Setups

- Direct: 800 uW
- SP 475 nm: 536 uW •
- SP 475 nm + LP 500 nm: 0.14 uW
- SP 475 nm + LP 500 nm + LP 550 nm: 0.22 uW
- SP 475 nm + LP 500 nm + LP 550 nm + SP 500 nm: 0.04 uW
- => Filter reduce light by factor 4000-20000

SP Filter: 500 nm

LP Filter: 550 nm LP Filter: 500 nm SP Filter: 475 nm

Results

- Which wavelength has the light which passes?
- Answer by eye: probably red! (=> > 600 nm)

2 questions now:

- 1. What is the source of the red light when we use a blue LED?
- 2. Why is the red light not filtered out?

Source of the red light

Emission spectrum of LED
tiny emission at about 625 nm following official data sheet

Why is the red light not filtered out?

- Curve from slide 16 misleading since ends at 570 nm
- Plot below: SP filter works only from edge wavelength + 100 nm
- Transpartent for higher wavelength
- \Rightarrow SP 475 nm (and even SP 500) highly transparent to 625 nm

Signal-to-Noise Improvements

- Problem during previous measurements:
 - Noise ripple has amplitude of some 10s of mV
 - Single photon amplitude about 1 meV
- Tried Solutions:
 - Using in addition another PMT: more gain => single photon amplitude about 7 mV
 - Understanding better origin of noise ripple and reduce it to minimum => successfully done: 1) old PMT now: +/-4 mV 2) new PMT: +/-2 mV
- Noise ripple reduced to 2 mV (amplitude)
- \Rightarrow Single photons can be detected

Kaputschinsky induced single photon (same amplitude as DC signal but overlaid by noise ripple)

New Tests

Setup Motivation

- 2 short pass filter behind each other to reduce light around 625 nm
- Testing old and new PMT in parallel
- 500 nm long pass filter provides probably more signal but also possibly more background
- 550 nm long pass filter better signal to background separation
- Seeing spectrum of Mitori Green probably 525 nm long pass filter would have the best choice but not available at IFAE

Measurements

- 3 different modes:
 - Completely empty, not even the sample holder
 - The sample holder but no sample
 - With small sample

Sample used for the current tests

Roughly such a sample was used in the previous tests from slide 10

LED voltage: 19.5 V like in

Results

- S/N ratio from amplitude: ~2 (LP 500 nm), 2.5-3 (LP 550 nm)
- In previous tests was ~3
- BUT: sample now much smaller

 \Rightarrow System much improved and works with less minimum light compared to previous tests

Statistical analysis ongoing

Conclusions

- New PMT detects more background light than old => due to 500 nm versus 550 nm long pass filter? => for systematic study one could swap both to verify this hypothesis
- Impression is that new PMT better in respect of gain but worse from timing (positive overshot after signal)
- In general background light strongly reduced compared to previous tests with single short pass filter at light entrance
- S/N ratio significantly improved accordingly
- Operating PMTs in parallel causes interference
- Asked for new round of measurements

Possible future Improvements

- Optimized light sensor:
 - Midori Gel Green emission peaks at about 540 nm (bottom plot)
 - Currently used PMTs have low quantum efficiency above 500 nm (left plot) => find sensor with high quantum efficiency plateau between 500-600 nm
- Optimized long pass filter: further S/N improvement by using long pass filter between 500 and 550 nm

Noise

• from one to the next day noise in EL PMT disappeared and increased slightly in the old MAGIC PMT (could reduce it again to the previous values)

