

A novel monolithic HV-CMOS pixel detector prototype for the ATLAS upgrade

<u>Stefano Terzo</u>, Emanuele Cavallaro, Raimon Casanova, Fabian Förster, Sebastian Grinstein, Jörn Lange, Carles Puigdengoles

IFAE Pizza Seminar 19th July 2017

Outline

ATTE 1111

Introduction

- The way to the High Luminosity (HL)-LHC
- The new Inner Tracker (ITk) of ATLAS at HL-LHC
- A monolithic CMOS silicon sensor for the ITk

The H35 demonstrator HV-CMOS chip

The readout system developed at IFAE
The very first beam test measurements of the monolithic matrices

Conclusions and outlook

The way to High Luminosity

Run-II + Run-III will bring significant improves:

- Measure the Standard Model scalar boson properties
- Search for New Physics at higher mass scale

The way to High Luminosity

- LHC:
 - 19 Pile-up events

- HL-LHC
 - 140-200 Pile-up events
 High particle multiplicity
 - Critical radiation damage

Stefano

The ITk upgrade for HL-LHC

From 1e15 n_{eq}cm⁻²

...up to 1.7e16 n_{ea}cm⁻²

Radiation

fluence

Replace the whole ATLAS Inner Detector with a new full-silicon Inner Tracker (ITk)

- New layout with 5 pixel barrel layers & large η coverage
- Sensor technologies under investigation:
 Outer pixel layers (large area to cover)
 - <u>HR/HV-CMOS pixel detectors</u>
 - n-in-p planar silicon sensors (150 µm thick)
 - Inner pixel layers
 - Thin n-in-p planar silicon sensors (100 µm thick)
 - <u>3D silicon sensors</u> (baseline for the innermost layer)

The IFAE pixel group activities

Hybrid **3D PIXELS**

Already in IBL and AFP!!

CMOS monolithic pixel detectors

LGAD detectors for precise timing

Hybrid vs. Monolithic

CON:

- Relatively large material budget
 multiple scattering
- Complex production and assembly
 - → expensive!!

CON:

- Functionalities limited by the size of pixel and dead area at the periphery
- Signal obtained by diffusion
 - → slow!!
 - not radiation hard!!

Hybrid vs Monolithic

Monolithic

DMAPS

Depleted Monolithic

DMAPS

Depleted Monolithic Active

DMAPS

Depleted Monolithic Active Pixel Sensors

The H35 Demonstrator

AMS 350 nm High Voltage CMOS w. different p: 20–80–200–1000 Ωcm

Monolithic nMOS matrix:

- Digital pixels with in-pixel nMOS comparator
- Two flavors: with and without Time Walk compensation

Analog matrices (2 arrays):

• To be used as hybrid modules with ATLAS chips

Monolithic CMOS matrix:

 Analog pixels with off-pixel CMOS comparator

Designed by KIT, IFAE and Univ. of Liverpool

+ test structures without electronics

The H35 Demonstrator

The H35 pixel structure

- Pixel size is the same as the present ATLAS sensor in IBL:
 - 50x250 μm²
 - Electronics inside the n-well used as collecting electrode
 - p-substrate + 3 separate deep n-wells* to reduce the capacitance
 - → Less noise, better timing power consumption
 - → Dimensions depend on the in-pixel functionalities

• Bias voltage applied from the top

- Single side processing
 - Cheaper
 - ➔ Non-uniform electric field

Studies with laser

- Institut de Física d'Altes Energies
- Investigation of passive test structures with infra-red laser

Investigation of the charge collection properties of the silicon sensor (without electronics)

A team of young researchers working on it!!

The readout system

Communication with configuration register

H35Demo

Communication protocol not compatible with PC ports

FPGA

- FPGA acts a communications bridge
- Communicate with the H35Demo

Control PC

- Software with Graphical User Interface (GUI)
- Send commands and receive data from the FPGA

People involved

PCBs, firmware and software fully developed at IFAE

Monolithic matrix readout at IFAE

Same base setup also used for Medipix3 (RIS3CAT) and HV-CMOS LF (Photon counting + ATLAS)

Operations and tests

Institut de Física d'Altes Energies

Test beam setup I

Stefano

(IFAE,

Pizza

Seminar, 19/07/2017

Test beam setup II

Test beam setup III

Hit efficiency results

Irradiated detectors

20

V_{bias} [V]

Conclusions & outlook

New readout system developed at IFAE to operate the monolithic part of the H35Demo chip

- Used at IFAE for CMOS and RIS3CAT, and adopted by University of Bern
- Base system adaptable to test the future chip generations
- First characterization of monolithic device for ATLAS
 - Full efficiency measured before irradiation at test beam
 - First result of irradiated modules are promising considered the limitations of this first monolithic prototype chip (continuous readout, no masking of noisy pixels, ...)

What's next:

- Full characterization of the H35Demo prototype after neutron and proton irradiations ongoing (next test beam in September/October)
- New prototypes with more complex readout system are being designed and produced with the aim of develop a chip which fully meet the ATLAS specification (radiation hardness, timing, power consumption, ...)

It is not clear if ATLAS will adopt Depleted-CMOS for 5th pixel layer, But right now is an option that is being fully investigated

Questions?

Backup slides

HV-CMOS Depleted MAPS

Two different philosophies:

- Electronics inside the n-well
 - Large fill factor: PRO:
 - Uniform electric field
 - Short charge drift
 - → Radiation hardness!!

CON:

- Large sensor capacitance (~100 fF)
 - More noise
 - Power and speed??

- Electronics **outside** the n-well
 - Small fill factor: PRO:
 - Very small capacitance (~5 fF)
 - Low noise
 - → Low power, high speed!!

CON:

- Low electric field regions
- Long drift distance
 - Radiation hardness??

Readout and trigger

- Column drain architecture with priority encoding (same as ATLAS FE-I3 chip)
- Limitations of the H35 demonstrator chip
 - Un-triggered readout
 → trigger logic implemented in the FPGA
 _{Lor}
 - No zero suppression \rightarrow also performed at the FPGA level

Long readout time (>1 μs)

Synchronization and alignment

• Correlations between the hits in the H35 CMOS matrix and a telescope plane show the successful synchronization of the data

Consistent residual shape and width after alignment and tracking with Judith

Seminar, 19/07/2017

Power vs. rise time

- Simulation of the power consumption as a function of the rise time for analog pixels with high gain
- For low gain pixels (-p-tub +extra capacitor) the rise time can go down to 20 ns with aggressive settings