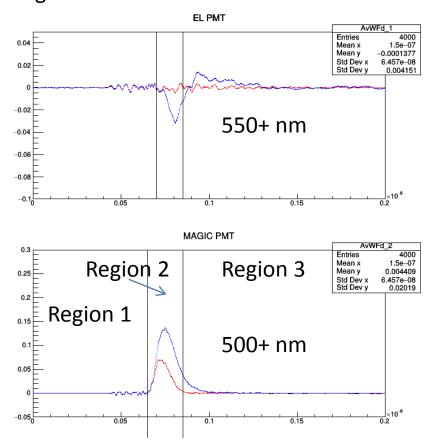
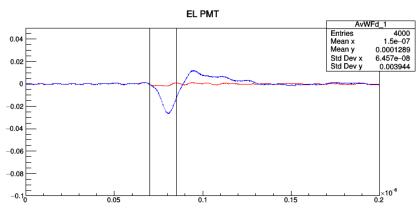
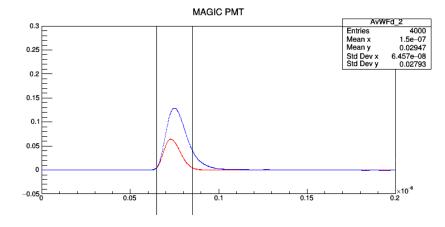

DNA Setup

Visit 11.07.2017

- Marc and Ruta passed by for other series of test
- Improved setup compared to previous test (much lower noise, everything more compact)
- Various samples (1 mL): pure DNA, pure water, pure scintillator, several DNA + small fraction of scintillator
- Goals:
 - Some electronics test (no signal filter vs 100 MHz filter)
 - Minimum fraction of scintillator detectable (commercial device DNA + 1/2000 addition of scintillator)


Setup


DNA+1/10000 vs DNA


Red: pure DNA Blue: DNA + 1/10000 scintillator Left: No filter Right: 100 MHz digital filter Average waveforms over 5000 events each

Still simple integral analysis Clear difference visible in both PMTs:

- signal above 550 nm with scinitllator
- signal longer with MAGIC PMT

DNA+1/10000 vs DNA

No Filter

100 MHz Filter

- 550+ nm (EL PMT):
- Ratio region 1 (Signal to background): 1.00341
- Region 2: 13.5768
- Region 3: -21.9035 (problematic due to overshoot)
- 500+ nm (MAGIC PMT):
- Region 1: 1.78613 (both integrals close to 0)
- Region 2: 2.28086
- Region 3: 27.5077

Ratio of both PMT signals defined as: R= (Int2_MAGIC+Int3_MAGIC)/(Int2_EL)

Pure DNA: 44.4 DNA + 1/10000 scintillator: 8.2 550+ nm (EL PMT):

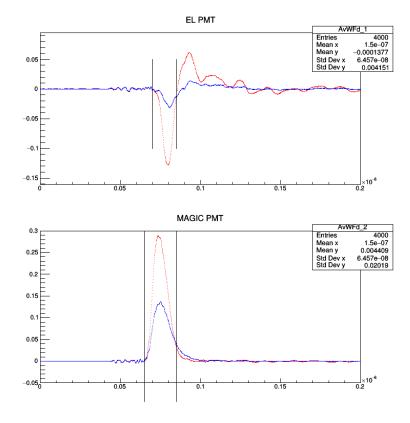
- Region 1: 1.05805
- Region 2: 14.2617
- Region 3: -27.3453

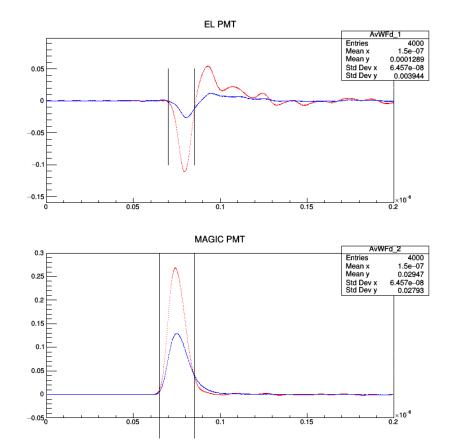
500+ nm (MAGIC PMT):

- Region 1: 0.89875
- Region 2: 2.31177
- Region 3: 19.5243

Ratio of both PMT signals:

Pure DNA: 47.3 DNA + 1/10000 scintillator: 8.8


Scintillator vs DNA+1/10000


Red: pure scintillator Blue: DNA+1/10000 Scintillator

Overall more light with pure scintillator

But more light in region 3 for dilution

Can be observed with both PMTs with and without filter

Scintillator vs DNA+1/10000

No Filter

550+ nm (EL PMT):

- Ratio region 1 (Signal to background): 1.23835
- Region 2: 0.242027
- Region 3: 0.235367 (problematic due to overshoot)

500+ nm (MAGIC PMT):

- Region 1: 1.28463 (both integrals close to 0)
- Region 2: 0.527026
- Region 3: 2.749470

Ratio of both PMT signals:

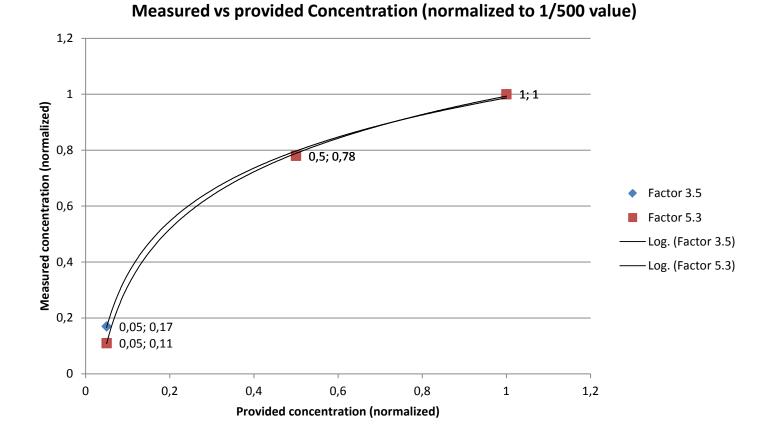
DNA+1/10000: 8.2 Pure scintillator: 3.45

550+ nm (EL PMT):

- Region 1: 10.6996
- Region 2: 0.246137
- Region 3: 0.255705

500+ nm (MAGIC PMT):

- Region 1: 0.530792
- Region 2: 0.53307
- Region 3: 2.29346


Ratio of both PMT signals:

DNA+1/10000: 8.8 Pure scintillator: 3.6

100 MHz Filter

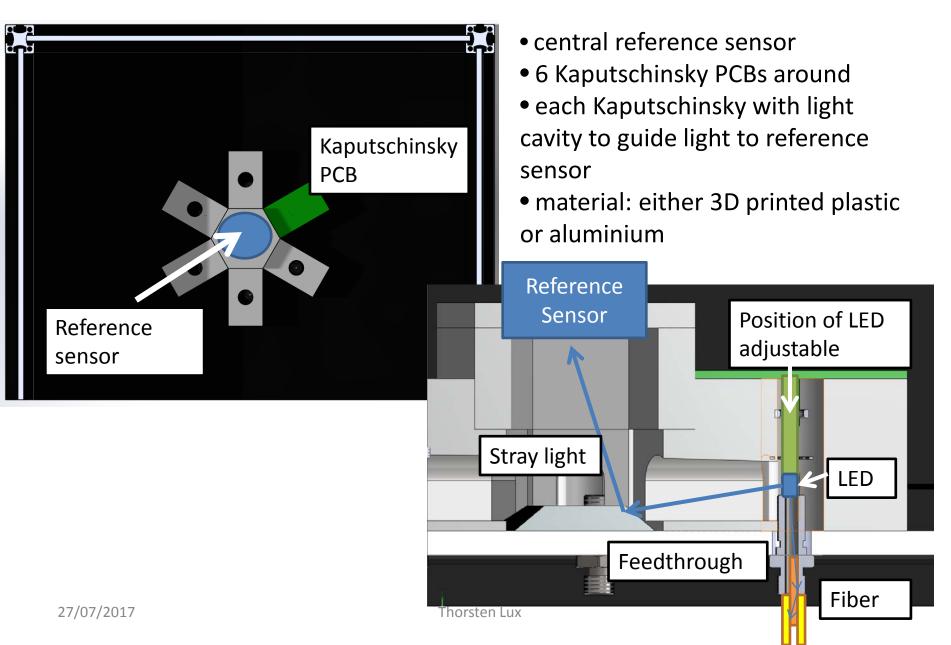
Concentration Extrapolation

- DNA+1/10000 extrapolated with factor from previous slide to DNA+1/1000 and DNA+1/500 data
- Result is obviously not linear at all
- more points would be necessary to find equation describing curve
- trendline for the moment is logarithmic (without physics motivation)

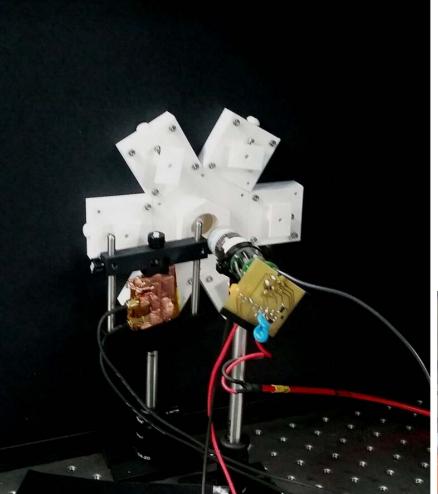
Status

- Analysis still primitive but results strong indication that 1/10000 can be easily detected => plans for August
- Light yield not linear with concentration
- Digital filter helps the eye but does not bring improvement, more likely is worsening the ratio result in the 3rd region
- Open question afterwards was: What is the background? Pure DNA or pure scintillator? => None of these as I learned since then but

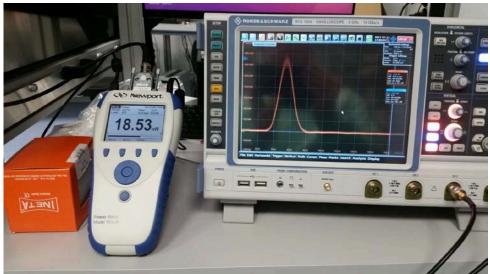
	Sample 1	Sample 2	
	DNA+1/10000	1/10000	
DNA, mL	0,2	0	
Scintillator, mL	0,0001	0,0001	
Buffer, mL	0,7999	0,9999	
Total volume, mL	1	1	

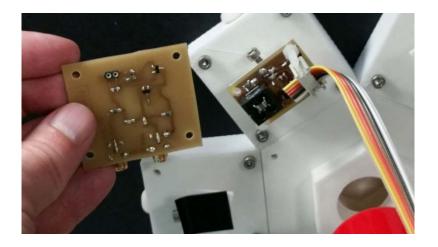

- We need to understand better the sample preparation procedure, especially for the real case => crash course in September (already learned not broken DNA but free DNA and increase compared to normal levels is relevant)
- More tests in autumn with full set of samples => will need to buy cube from Thorlabs

WA105 Light Calibration

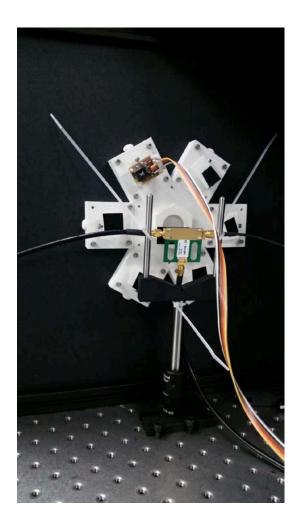

What happened until now?

- Black box has arrived
- Light cavity printed and cleaned from rests at workshop
- New Kaputschinsky PCB designed, tested and production of 20 PCBs ordered
- "Full" setup tested with powermeter and SiPM/PMT

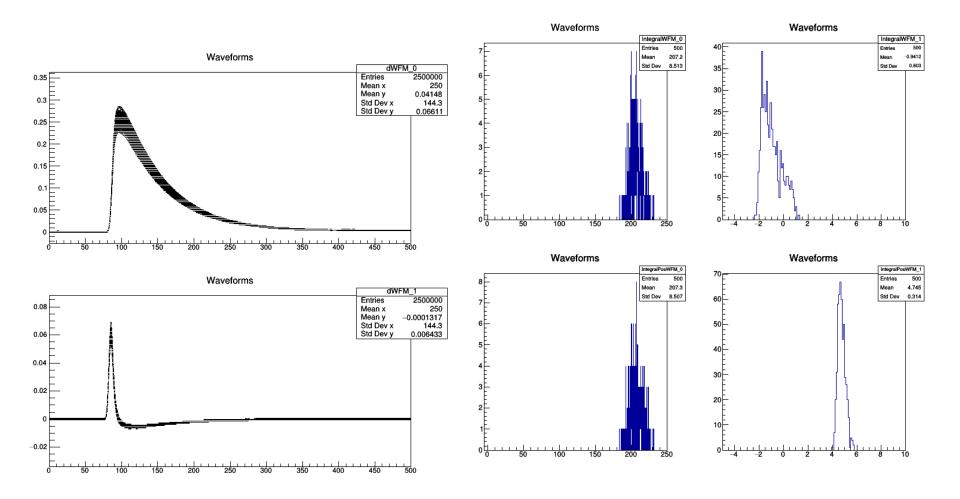

Implementation (Conceptual)

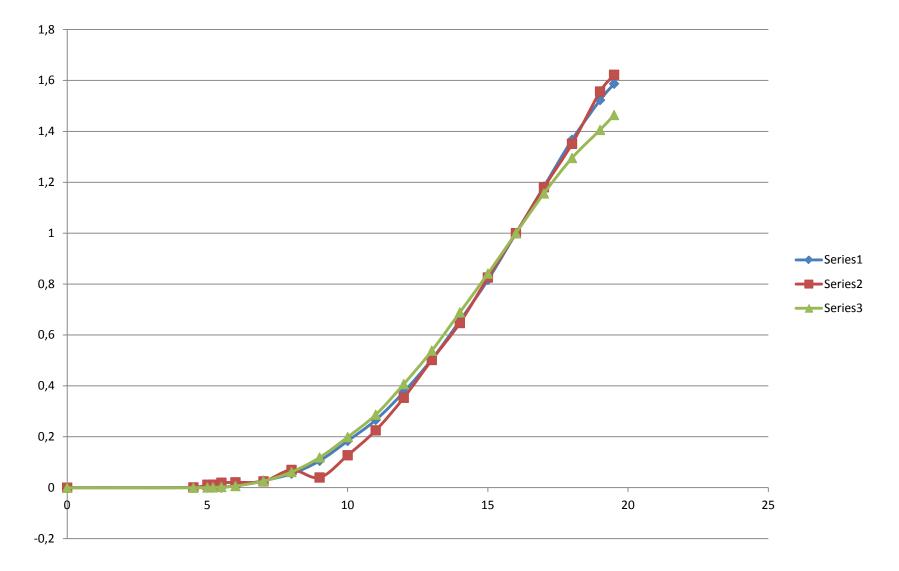

Now Reality

- first tests with old Kaputschinsky
 + MAGIC PMT
- worked perfectly with large PMT signal and large output power


More Detailed Characterization

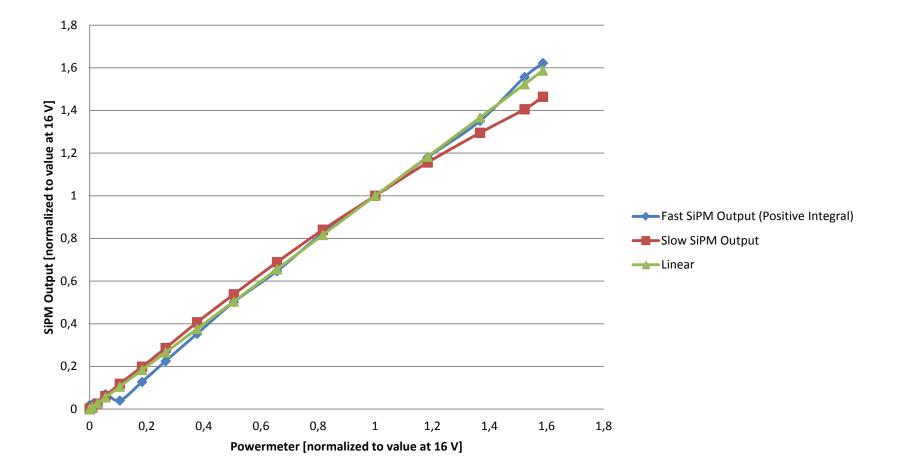
 new Kaputschinsky PCB prototype used => smaller, less power (1/3), bit narrower pulse, larger noise ripple with PMT, some saturation at high LED bias voltage Sensle SiPM instead of PMT => no noise ripple, 2 outputs: fast and slow, powered by standard LV power supply


Measuring All Positions


- tested Kaputschinsky in all 6 positions and measured power entering fiber with powermeter
- large variations from position to position: ~2 factor
- Tested same position several times: roughly the same

=> Sensitive to placing of Kaputschinsky PCB but might be better with final PCBs and long LEDs (by mistake legs of these was cut)

Results



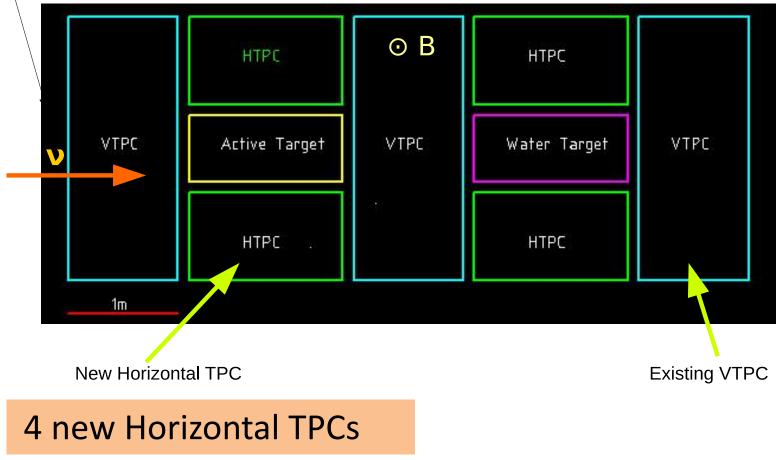
Results

Results

Powermeter vs SiPM Output

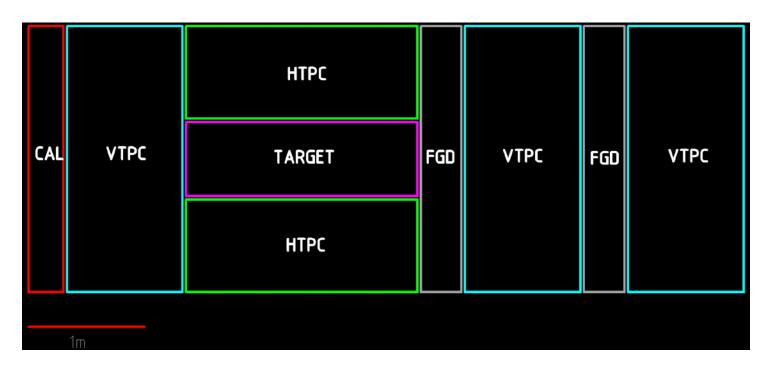
Status

- Light cavity works in all positions
- New Kaputschinsky PCBs ordered (although not so good as mine XD)
- Lot of light for reference sensor (in fact too much almost for SiPM/PMT but not enough for powermeter)
- Some non-linearities in the system
- Each Kaputschinsky will have to be characterized in-sitiu during the installation process
- Next steps: BeagleBoard to control Kaputs + readout ADC, central PCB design to distribute voltages + SiPM, simple DAQ


T2K TPC Upgrade: Mechanics

What happened?

- Got in contact with Emilio Radicioni (Bari) to evaluate collaboration in field cage design of new TPC prototype
- Bari, Padua and IFAE
- Kick-off meeting in Padua 13.07.2017


The baseline design for the upgraded ND280

All this inside the EM calorimeter and the UA1 magnet

* Design still under optimization

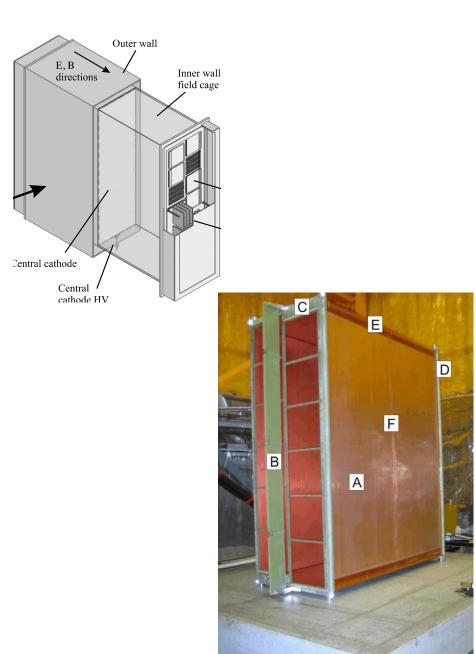
A possible alternate configuration

Provide ~4t of instrumented target with excellent acceptance both for forward/backward and high angle tracks.

Minimize reshuffling of detectors. Concentrate on upstream part. Keep most of the current ND280 tracker untouched.

HTPC

Parameter	Value	Comment	
Overall dimensions	2 (x) x 0.8 (y) x 1.3 (z) m**3	4 identical TPC	
Volume	2.1 m**3	Each	
Drift Length	90 cm	Cathode in the middle	
Pad area	~1 cm**2		
Sensitive area tot	7.3 m**2	Tot 4 TPC	
NMM	~ 66	Tot 4 TPC with MM ~35x35 cm**2 each	
N channels	7.3 10**4	Tot 4 TPC	


* From Marco Zito

"old" T2K field-cages

- create panels from rohacell + Cu-clad G10 foils and G10 bars
- cut field-shaping strips by milling the Cu surface
 - only 1 strip layer →
 larger volume wasted
 because of distorted
 field
 - ... but easy construction

- dual gas volumes
 - outer: CO_2 for insulation
 - inner: active
 - inner field-cage panels must not
 - degrade the E field
 - provide gas tighness
 - stand overpressure

"new" field-cages

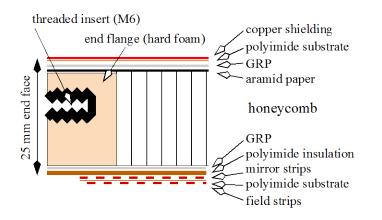
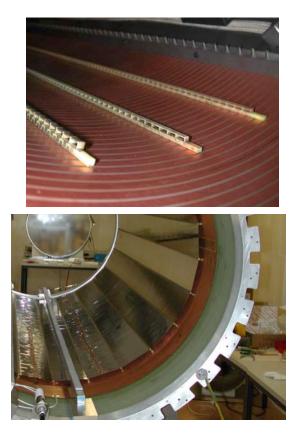
- no outer volume
 - Electrostatic insulation
 - gas tightness
 - overpressure
- minimal wasted volume
 - thin
 - light
 - multiple strip layers
- light + thin + overpressure + own weight → panel deformation → E-field dis-uniformity

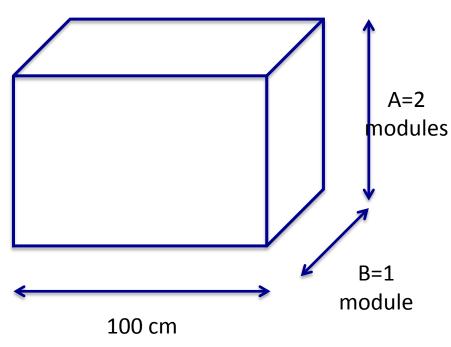
Aleph / ILC scheme:

Strip layers glued / embedded in the mechanical structure (typically: composite

vmaterials)						
utri 🌀 🤇	comm	20160112	New Tab	🛱 Prefer	m Scienc	🛑 Paris .
pg=PT109&	lpg=PT109	9&dq=aleph+tp	c+fiel C	् aleph tpc f	ield cage	→ ☆
lisant ces derniers, vous acceptez l'utilisation des cookies. En savoir plus OK						
			C	k -		

sulator from a thin Mylar foil winded around many times using a higly resistive glue


Figure 7: Cross section of the Large Prototype field cage wall.

HARP scheme:

One strip layer is glued to the mechanical structure, additional layers as mylar strips stretched on light supports

First stage? TO BE DISCUSSED

- AxBx100cm
- Can host 2 MM chambers
- Realistic drift length
- Integration tests @ CERN (?)

- Prototype with final technical choices
- Smaller size but large enough to fit 2 readout modules
- To be used as verification of the construction technique
- And also useful for integration tests
- Timeline: 10/2018

IFAE Contribution (amont other)

- Panel deformation
 - perform calculations for gravity- and overpressure-induced deformations
 - top and bottom TPCs not symmetrical w.r.t. gravity deformations
 - do initial calculations for ILC-style structure
 - carbon fiber is attractive for the possibility of orienting fibers in a favorable way but difficult to evaluate by end of July
 - pre-compressed panels?
 - Regarding carbon fiber: ask to simulate in G4 what is the advantage of thinner (but more dense) panels VS thicker (honeycomb-like) ones.
 - 2 options: 5 and 10 mbar overpressure, for the moment. Not clear if more will be needed or if – on the contrary – is irrelevant.

Juli started to work on this: first results beginning of October!

3. COMPOSITES SIMULATION PLAN

- IFAE CAE SIMULATION EXPERTISE IN: SOLIDWORKS & PATRAN/NASTRAN
- PATRAN/NASTRAN is a more reliable software for structural analysis.
- Supports composite material modeling to perform a variety of analyses.
- An advanced training course in PATRAN/NASTRAN composites is scheduled for September'17 at IFAE.
- First simulations are planned by early October'17.

COURSE PAID BY SO MONEY!

SOLIDWORKS

Since Padua Meeting

• Juli provided cost estimation for Italian call (40 kEuro) <u>ROUGH COST ESTIMATION FOR TPC PROTOTYPE MANUFACTURING (2017/07/25; Version N)</u>

System	Category	Rough cost	Comments
	Raw material	9.900,00€	Composites plates + Honeycomb (TBD)
STRUCTURE	Tools	1.500,00€	Manufacturing tools + consumables
	Material testing	3.600,00€	Composite plate bending + characterization
FIELD CAGE	Raw material	5.400,00€	Insulation plate + copper stripes
OUTSOURCING SERVICES 6.0		6.000,00€	Assembly + Gluing of Structure & Field cage
LOGISTICS		720,00€	
TOTAL 27.120,00 €		27.120,00€	

• Meeting in September (at CERN) with MM and end cap guys to ensure integration for prototype

Status

- Finally starting to move and with good momentum
- Agreed on basic concept for FC structure
- Strong preferences for HARP FC if possible
- IFAE contribution:
 - Juli: mechanical simulations
 - Possible tests at APPLUS of samples
 - Silvestro probably going to join the efforts from the simulation point of view
 - If double sided copper coated Kapton is needed for FC, Joan might help the design (asked already LabCircuit if they could produce these)
 - Participate in part production in first half of 2018
- Design should be ready end 2017/beginning 2018 latest
- Prototype: Mid 2018

Other Stuff

Rest

- WA105: stayed 4 days at CIEMAT for R&D projects (another time) + PMT handling
- WA105: 1st PMT for testing arrives today at CERN => Fits it in coating device with cable?
- DUNE: IFAE signed up for Photo Detection
 System of DP Far Detector => have to propose
 Consortium leader until Monday