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• Homestake, GALLEX, SAGE,... IMB, Kamiokande, Super K, ... KEK, K2K,...

SNO, KamLAND,... Neutrinos have masses and mixings (!)















∆m2
12 ≈ 7.9× 10−5 eV2

∆m2
23 ≈ 2.5× 10−3 eV2

≈ ∆m2
13















sin2 θ12 ≈ 0.30

sin2 θ23 ≈ 0.50

sin2 θ13 ≈ 0.025

Is it yν HLνc or
1

Λν
HHLL ?

• Persistent anomalies in several experiments with neutrino beams from

particle accelerators. Excess of 3 events with an electron in the final state per

1000 νµ CC-interactions. νµ → νe oscillations unconsistent with ν-mass

parameters (2 sterile neutrinos of m ≈ 1 eV?).

LSND, KARMEN, MiniBooNE, TRIUMF, T2K, NOMAD, IceCube
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• LSND observed 3 electron events per 1000 νµ CC interactions. Interpreted

as ν̄µ → ν̄e then ν̄ep → e+n, with a 2.2 MeV photon from neutron capture.

Fluxes: DAR (left) and DIF (right) µ+ → ν̄µe
+νe ; π+ → µ+νµ
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Gninenko’s 50 MeV neutrino hypothesis to explain LSND

e−
e+

νhνµ ν

γ

n n

Ζ

• Sterile νh with |Uµh|
2 ≈ 10−3–10−2, νh → νγ with τh <∼ 10−8 s

• KARMEN did not confirm... νh would be above threshold there!
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νh would appear in up to 1% of muon and kaon decays!

µ− → e− ν̄e νh → e− ν̄e γ ν , K− → µ− ν̄h → µ− γ ν̄

• Usual searches are based on decay modes with charged particles

νh → eeν, µeν, µπν not νh → νγ

• If νh is long lived (τh > 10−9 s) but light (mh ≈ 50 MeV), |Uµh|
2 ≈ 0.003

does not change significantly the kinematics in µ and K decays.

• If it is short lived, muons and kaons have decay modes with photons

µ− → e− ν̄e νµ γ 1.4± 0.4%

K− → µ− ν̄µ γ 0.62± 0.08%

K− → µ− ν̄µ π
0 3.35± 0.03%

A recent analysis of ISTRA+ data seems to disfavor this possibility
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• Gninenko proposed that νh can also explain the MiniBooNE anomaly (see

below) if its lifetime is reduced to τh ≤ 10−9 s (versus τh ≤ 10−8 s at LSND).

• McKeen & Pospelov noticed that Gninenko’s νh is unconsistent with data on

muon capture plus photon at TRIUMF

Rγ =
ΓRMC

Γtot

∣

∣

∣

∣

Eγ>60 MeV

νh ν

n

W

p

µ

γ

|Uµh|
2 ≤ (2−8)× 10−4 for mh = 40−80 MeV and τh < 10−9 s

νh: factor of 3 excess TRIUMF data: 30% excess (again a 2.5σ dev.!)

• The cut Eγ > 60 MeV and the small size of the target volume (≈ 15 cm)

make this experiment very sensitive to the lifetime: τh ≥ 3× 10−9 s fits.
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• Our variation of Gninenko’s model: (i) keep a longer lifetime, τh ≈ 5× 10−9

s. (ii) include νh production through photon exchange. (iii) νh a Dirac fermion.
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• νh ≡ {N1, N
c
1}; N1 mixed with νµ, |Uµh|

2 ≈ 0.003; EM dipole transitions

µih
tr to describe νh production (i = µ) and decay (i = µ, τ, ...):

Leff ⊂
1

2
µih
tr

(

νh σµν (1− γ5) νi + νi σµν (1 + γ5) νh

)

∂µAν

τh = 5× 10−9 s implies
√

∑

i(µ
ih
tr )

2 = 7× 10−6 GeV−1 = 2× 10−8µB

MiniBooNE will require µµh
tr = 2× 10−9µB
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SU(2)R × U(1)B−L → U(1)Y : χ =

(

〈χ0〉

χ−

)

χc =

(

χc+

〈χc 0〉

)

E i

N j

c

E
c
j
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WR
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νµcα N1
sανµ +’ =
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3

3
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m ij
E
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(
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Left: Energy distribution of νh produced in the detector (dashes), of νh

decaying inside the detector (long dashes), of photons from νh → νiγ (dots),

and of νh events reconstructed as CC interactions (solid). Right: Energy

distribution of νh events reconstructed as CC interactions (solid), of events

from neutrino oscillations for sin2(2θ) = 0.004 and ∆m2 = 1 eV2 (long

dashes), and excess at MiniBooNE in the neutrino mode (5.58× 1020 POT)
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Antineutrino mode (11.27× 1020 POT)

• The decay length (λdec > R) and the helicity (+ for νh, − for ν̄h) imply that

the MiniBooNE excess concentrates at low energies, just as it is observed.
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If BR(νh → νµγ) ≈ 1%, is BR(νh → ντγ) ≈ 99% ?

At T2K we expect some νe,

pνµ→νe ≈ sin2 θ23 sin2 2θ13 sin2
1.27 ∆m2

23(eV
2) L(km)

Eν(GeV)

but most neutrinos are ντ ,

pνµ→ντ ≈ sin2 2θ23 sin2
1.27 ∆m2

23(eV
2) L(km)

Eν(GeV)

νh

νh

ντ,µ

ντ,µ

17 m

32 m
γ

γ
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• νµ → νe oscillations with sin2 2θ13 = 0.1: 6 events

• νµZ → νhZ : 1.1 events (75% from νh produced outside).

• νh must decay 99% of the times into another sterile neutrino!

µτh
tr < µµh

tr and BR(νh → νh′γ) = 0.99

• Initial events seem to be distributed near the point of entrance into the

detector. ντZ → νhZ events could explain that: When νh is produced outside

the detector λdec ≈ d

• The tracking system in the near detector (ND280) can distinguish electrons

from photons: we expect 3 νh events per 1000 νµ CC interactions
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• MicroBooNE (liquid Argon TPC) will investigate whether the low-energy

excess at MiniBooNE is cause by electron or by photon events,
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∆
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Delta resonance Comptonpseudo Chern−Simons

or ?

• This background may be distinguished from the νh → γνh′ hypothesis:

The event distribution inside the detector is flat for the background events,

but ∝ (1− e−z/λd) ≈ z
λd

for heavy neutrino events.
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LSND: anomaly at L ≈ 30 m for E ≈ 40 MeV

MiniBooNE: anomaly at L ≈ 500 m for E ≈ 300 MeV

ν telescopes: anomaly at L ≈ 10–100 km for E ≈ 1 TeV ??

Atmosphere

1000 g/cm

(10 m w.e.)

2

µν

π,K

Calorimeter , ice

1 TeV proton

• Atmospheric muons and neutrinos can be seen at IceCube
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• Bert, Ernie & Muon
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• Analytical meson and lepton fluxes [Z–moment method, Gaisser, Lipari]

Set of coupled differential equations that describe the evolution with the

atmospheric depth t (in g/cm2) of the fluxes of parent hadrons (φH with

H = p, n, π±,K±,KL) and of any particles that may result from their decay

or their collision with an air nucleus: [φH(E, θ, t)]

∂φH

∂t
= −

φH

λH
dec

−
φH

λH
int

+
∑

H′

SH′H

Source : SH′H =
φH′

λH′

int

ZH′H Z−factors : ZH′H =

∫ 1

0

dx xα−1FH′H

FH′H(x): distribution of the fraction of energy taken by H after a H ′–air

collision (x = EH/EH′ ). Primary all nucleon flux: ΦN ∝ E−α
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B(K+ → µ+νh) ≈ B(K+ → µ+ν)× |Uµh|
2 ρ̄h ρ̄h ≈ 1 +

m2
h

m2
µ

• Neutrino fluxes (νi + ν̄i) at sea level for θ = 0 (solid) and θ = 60o (dashes)

ΝΜΝe

Νh

100 1000 10 000 100 000
10-16

10-14

10-12

10-10

10-8

10-6

E @GeVD

E
Φ
HE
L
@H

cm
2

s
sr
L-

1
D

Z–moment method

mh = 60 MeV

|Uµh|
2 = 0.005

τh = 10−9 s

λdec = 5 km at E = 1 TeV

[PRD83(2011)091301]
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• Contained events at ANTARES and the DeepCore in IceCube. In dashes the

energy distribution of the parent neutrino.
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• 14000 νh → γν events of energy above 500 GeV per year, versus 220

standard events (νeN → eX and νµ,eN → νµ,eX)

• At energies below 100 GeV νh does not reach the telescope, above 1000

TeV its decay length becomes too large and the signal vanishes.
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• Neutrinos νh produced in the atmosphere and decaying inside IceCube

would produce an excess of contained events (similar to νe CC interactions or

inelastic NC collisions) at energies 1–1000 TeV

• This excess would only appear in downgoing or near-horizontal events (no

νh upgoing events)

• Most of these events (specially the ones from small zenith angles) would be

contaminated with muons. Excess of muons plus contained cascade
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recent data from IceCube (at IPA 2013 ...)
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• 28 events (21 showers + 7 tracks), 4 tracks consistent with muons entering

the detector (not neutrino events), spectrum ≈ E−2

• We expect 10.6 atmospheric events (1.8 showers + 8.8 tracks) with a

spectrum ≈ E−3.7

First evidence of cosmic neutrinos (!?)

• If they are cosmic (νe : νµ : ντ ) = (1 : 1 : 1), there is an excess of

showers versus tracks. Atmospheric neutrinos from charm decays

(νe : νµ : ντ ) = (1 : 1 : 0.1) could not explain this excess.

• In any case, there is an excess of events from down-going directions. The

Earth is not fully opaque (from zenith angles between 90o and 150o) to

neutrinos of energy below 100 TeV.
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... from an IceCube presentation at Exotics with neutrino telescopes 2013 ...
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SUMMARY

• Neutrino physics has progressed a great deal during the past 20 years, but

(i) basic questions are still unanswered and (ii) some persistent anomalies

should be clarified (MicroBooNE this year?)

• A 50 MeV neutrino νh mixed with the muon flavor (|Uµh|
2 ≈ 0.003) with a

lifetime cτ = 1.5 m, produced νµZ → νhZ and decaying νh → νh′γ

through electromagnetic dipole transitions could explain LSND, KARMEN,

TRIUMF, MiniBooNE.

• An excess of contained events at IceCube could be correlated with the LSND

and MiniBooNE anomalies. These events would only be downgoing and

quasi-horizontal, possibly contaminated by muons from the parent air shower.
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