

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of the $^{
u}\mu$

Conclusions

Reconstructed neurtino energy

Danaisis Vargas

Institute of High Energy Physics - IFAE

dvargas@ifae.es

October 26, 2017

Introduction T2K and NEUT

First Presentation

D. Vargas

Introduction

Theoretical Model

Results

Reconstructed neutrino energy Probability of disappearance of th ν_{μ}

Theoretical Model Equations for CCQE

First Presentation

D. Vargas

Introduction

Theoretical Model

Results

Reconstructed neutrino energy Probability of disappearance of the $u \mu$

Conclusions

Reconstructed neutrino energy (E_{ν}^{rec}):

$$E_{\nu}^{rec} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 + M_{\mu}^2 - 2M_n E_B + \Delta M^2)}{2(M_n - E_B - E_{\mu} + |\vec{k_{\mu}}|cos\theta_{\mu})}$$
(1)
$$\Delta M^2 = M_n^2 - M_p^2$$
$$E_{\mu} = \sqrt{|\vec{k_{\mu}}|^2 + M_{\mu}^2}$$

Transfered momentum (Q_{rec}^2) :

$$Q^2_{
m rec}=$$
 2 $E^{
m rec}_
u$ $(E_\mu-ert ec{k_\mu}ert cos heta_\mu)-M^2_\mu$ $m -$

(2)

■ *M*_n = 939.565379 MeV;

■ *M*_p = 938.272046 MeV;

■ *M*_µ = 105.6583715 MeV;

Theoretical Model

Equations for oscillation probability

First Presentation

D. Vargas

Introduction

Theoretical Model

Results

Reconstructed neutrino energy Probability of disappearance of the $u \mu$

Conclusions

Probability of disappearance of the ν_{μ} :

$$P_{(
u_{\mu}
ightarrow
u_{\mu})} = 1 - sen^{2} heta_{23} sen^{2} \left(1.267 \; rac{\Delta M_{32}^{2} \; L_{far}}{E_{l}^{rec}}
ight)$$

•
$$sen^2(2\theta_{13}) = 0.14;$$

• $sen^2\theta_{23} = 0.514;$
• $\Delta M_{32}^2 = 2.51 \times 10^{-3} \text{ eV}^2.$

(3)

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of the ν_{μ}

Conclusions

Figure 1: Reconstructed neutrino energy vs. muon angle cosine.

- D. Vargas
- Introduction
- Theoretica Model
- Results
- Reconstructed neutrino energy Probability of disappearance of th ν_{μ}
- Conclusions

Figure 2: Reconstructed neutrino energy vs. transferred moment.

- D. Vargas
- Introduction
- Theoretical Model
- Results
- $\begin{array}{l} {\rm Reconstructed} \\ {\rm neutrino\ energy} \end{array} \\ {\rm Probability\ of} \\ {\rm disappearance\ of\ th} \\ {}^{\nu}\mu \end{array}$
- Conclusions

Figure 3: Reconstructed neutrino energy vs. transferred moment matrix with bins of 0.5 GeV for E_{ν}^{rec} and 0.5 GeV² for Q_{rec}^2 .

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of th ν_{IL}

Figure 4: No. of ν_{mu} events vs. $E_{\nu}^{true} - E_{\nu}^{rec}$ for each block of the matrix.

- D. Vargas
- Introduction
- Theoretica Model
- Results
- Reconstructed neutrino energy Probability of disappearance of th ν_{μ}
- Conclusions

Figure 5: Reconstructed neutrino energy vs. muon angle.

- D. Vargas
- Introduction
- Theoretica Model
- Results
- $\begin{array}{l} {\rm Reconstructed} \\ {\rm neutrino\ energy} \\ {\rm Probability\ of} \\ {\rm disappearance\ of\ the} \\ {}^{\nu}\mu \end{array}$
- Conclusions

Figure 6: Reconstructed neutrino energy vs. muon angle matrix with bins of 0.5 GeV for E_{ν}^{rec} and 20° for θ_{μ} .

Figure 7: No. of ν_{mu} events vs. $E_{\nu}^{true} - E_{\nu}^{rec}$ for each block of the matrix.

Figure 8: No. of ν_{mu} events vs. $E_{\nu}^{true} - E_{\nu}^{rec}$ for each block of the matrix.

Results Reconstructed neutrino energy

First Presentation

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of th ν_{II}

Conclusions

Figure 9: .

Results Reconstructed neutrino energy

First Presentation

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of th ν_{μ}

Figure 10: Bla bla bla.

Results Reconstructed neutrino energy

First Presentation

D. Vargas

Introduction

Theoretica Model

Results

Reconstructed neutrino energy Probability of disappearance of th ν_{μ}

Figure 11: Bla bla bla.

Results 23 Institut de Física d'Altes Energies

 ν_{μ} disappearance probability

First Presentation

- D. Vargas

- Probability of disappearance of the

Figure 12: ν_{μ} disappearance probability for different μ angles.

First

D. Vargas

Conclusions

Presentation Knowledge Science Science is organized Knowledge