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Many data points, with a large number of variables available
to make complex models are available, which escalate too fast
for classical statistics.

Since its beginning, machine learning has been around high
energy physics (HEP), proving to be a very useful tool for
classification of daata.
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Motivation

Many data points, with a large number of variables available
to make complex models are available, which escalate too fast
for classical statistics.

Since its beginning, machine learning has been around high
energy physics (HEP), proving to be a very useful tool for
classification of daata.

The computational power is now here to obtain our own
algorithms through a personal computer, opening new
opportunities for experimenting and expanding these
algorithms for a specific interest.
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What is machine learning?

Machine learning is the science of getting computers to act
without being explicitly programmed.

Machine learning algorithms can be classified into three groups:

Supervised learning: The algorithm is presented with example
inputs and their desired outputs, with the goal set to learn a
general rule that maps inputs to outputs.

Unsupervised learning: No labels are given to the learning
algorithm, leaving it on its own to find structure in its input.

Reinforcement learning: Learns how to take actions in an
environment so as to maximize some notion of cumulative
reward.
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Is a branch of machine learning, training a model Θ for
making a prediction y given an observation x ∈ Rd ,
Θ(x) = ŷ .
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Supervised learning

Is a branch of machine learning, training a model Θ for
making a prediction y given an observation x ∈ Rd ,
Θ(x) = ŷ .

For this purpose, a training set of data points (xi , yi ),
i = 1, . . . ,N is given, hence the model learns from examples.

The observations x are called features, while the prediction
variable y is called the target. The target is usually one
dimensional.

If y is discrete, the problem is a classification, with a binary
classification being the most common case. If y is continuous,
the problem is a regression.
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Supervised learning

Is a branch of machine learning, training a model Θ for
making a prediction y given an observation x ∈ Rd ,
Θ(x) = ŷ .

The model has a set of parameters θ, which are adjusted
through the algorithm to make the prediction ŷ as close as
possible to y using the training set, Θ(x ; θ) = ŷ .

The simplest example is the linear regression.
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Trees and GBT

Trees

Consists in a sequence of conditions which, typically, cut our
feature space of observed events into disjoint partitions of it.

Example of binary classification tree. zi is a particular feature,
zi ∈ {x1, . . . , xd}.
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Constructing Trees

The probability of an observation landing on each of the nodes is
given by P(t) = Nt/N, t ∈ {0, L,R}, where N0 is the number of
samples in the parent node, NL/R is the one of left/right subsets
after splitting.
In a binary classification tree, we say that a node is pure when it
only contains data from a single class. When growing a tree, we
try to obtain pure nodes. However, if the probability of that node
P(t) is too low, we are likely overfitting the data.

Probability is not a good measure for deciding splits directly! But
it still will be helpful.
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Constructing Trees

Node impurity:

i(t) = φ(P(A|t),P(B|t)),

where φ(p, q) is bounded to 0 ≤ φ(p, q) ≤ 1/2. It has to be
symmetric, and satisfy that φ(1/2, 1/2) = 1/2 (maximum impurity
when both classes are equally likely) while φ(1, 0) = φ(0, 1) = 0
(minimum when the node is pure).

An example of function φ is the binary cross-entropy

φ(p, q) = −p log2 p + q log2 q

2
.
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Constructing Trees

Scaled node impurity:

I (t) = P(t)i(t).

Maximizing the impurity gain,

∆I = I (t0)− I (tR)− I (tL),

will be the criteria of splitting.
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Constructing Trees

Stopping criteria:

The node is pure.

Maximum depth, which, when reached, stops the tree from
splitting.

Maximum number of leaves acquired.

Maximum possible impurity gain is below some threshold.

Size of node is less than allowed.

Additionally, one can prune the tree, which consists in getting rid
of the branches of a node and substitute it for its parents node as
a leaf. It is a form of regularization in order to penalize the tree for
being too complex.
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Trees and GBT

General principle

Obj(Θ, θ) = L(θ) + Ω(Θ),

where L is the training loss function and Ω is the regularization
term.
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Trees and GBT

Ensemble of trees

Example: Consider the above decision trees and a new data point
x = {1.5,−0.7, 2.5, 4.1}. The prediction for the first tree is 1.8,
while for the second, it is 4.6. The total prediction of the ensemble
is 1.8 + 4.6 = 6.4.
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Trees and GBT

Ensemble of trees

An ensemble model is written as

ŷ
(t)
i =

t∑
k=1

fk(xi ), fk ∈ F ,

where t is the number of trees, xi the i−th observation and F is
the functional space of all possible decision trees for regression.
The objective function for t trees becomes

Obj(θ)(t) =
N∑
i

l(yi , ŷ
(t)
i ) +

t∑
k=1

Ω(fk),

where l is the loss function for an individual sample (L =
∑

i l).
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Trees and GBT

Gradient Boosting Trees

Boosting: To optimize the objective function we cannot
apply directly a gradient method as in standard optimization.
Instead we will consider t − 1 trees learned, and see how we
can build the t−th tree to optimize the objective function
from there, i.e., we see how to add one tree at a time
optimally.

Gradient: To find the optimal weights of the tree’s leaves,
the gradient of the objective function is used.
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Neural Networks

McCulloch and Pitts neuronal model

ŷ = σ(z), z =
m∑
i=1

xiwi ,

where σ is the activation function and wi are the weights of the
network.
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Neural Networks

Perceptron

zj =
m∑
i=0

wjixi = wj0 +
m∑
i=1

wjixi = bj +
m∑
i=1

wjixi ,

where bj is the bias term.
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Neural Networks

Deep Neural Network

alj = σ(z lj ) = σ

(∑
i

w l
jia

l−1
i + blj

)
,

or in matrix notation,

al = σ(z l) = σ(w lal−1 + bl).



23

Machine Learning Techniques applied to High Energy Physics

Neural Networks and Generative Adversarial Networks

Neural Networks

Backpropagation

Consider the cost (loss) function C . Instead of

∂C

∂θi
' C (θi + ε)− C (θi )

ε
,

we use the backpropagation method,

δL = ∇aLC � σ′(zL), (1)

δl =

((
w l+1

)T
δl+1

)
� σ′(z l), (2)

∂C

∂blj
= δlj , (3)

∂C

∂w l
jk

= δlja
l−1
k . (4)
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Neural Networks

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an example of how to
update the weights using backpropagation. M random samples of
the training data are selected and used:

w l → w l − η

M

M∑
m=1

δm,l
(
am,l−1

)T
,

bl → bl − η

M

M∑
m=1

δm,l ,

where η is the learning parameter. There are other optimizers,
being Adam the most popular one.
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Generative Adversarial Networks

GANs are a kind of generative models.
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Generative Adversarial Networks

GANs are a kind of generative models.
We will consider them to be any model that, from a training set
sampled from a distribution pdata, learns to produce an estimation
of such distribution in any form of it. The resulting estimation will
be denoted as pmodel. This estimation can be an explicit form of
the distribution. It might also be a mechanism only able to sample
new data from it. It might be both.
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Generative Adversarial Networks

GANs are a kind of generative models.

Training and sampling from generative models shows how we
can represent and manipulate high-dimensional probability
distributions, such as pictures and videos.

They can be integrated in reinforcement learning, creating
new realistic final goals for the algorithm.

Train with missing data and make prediction on missing ones.

Multi-modal outputs are enabled for machine learning, e.g.,
for predicting the next frame in a video.

Generate realistic samples for some distribution. This is
required for many tasks, including single image
super-resolution, interactive art creation, image-to-image
translation, etc.
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Generative Adversarial Networks

GANs have recently been also applied to physical problem, such as
the reconstruction of three-dimensional porous media , simulating
3D High Energy Particle Showers in Multi-Layer Electromagnetic
Calorimeters and creating Virtual Universes. In all three cases, the
need of a large amount of complex simulations drives to resort to
GANs for a faster emulation algorithm, to obtain new data.
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Generative Adversarial Networks

GAN framework

The idea behind GANs is a game (in a mathematical sense)
between two players: a generator (a function G , representing the
first NN) and a discriminator (a function D, representing the
second NN). The first one learns to produce samples imitating the
distribution of the training data set. The later one learns to
distinguish real data, from the training set, from fake one,
produced by the generator. Hence the game consists in the
discriminator classifying data into real or fake one, while the
generator has to try to trick the discriminator by generating more
realistic data. It is an adversarial situation.

Z
G−→ X

D−→ {0, 1}.
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Generative Adversarial Networks

GAN framework

The networks have each a cost function C that depend on the
parameters of the networks. The discriminator wishes to minimize
C (D)

(
θ(D), θ(G)

)
while only controlling θ(D). On the other hand,

the generator wishes to minimize its own cost function
C (G)

(
θ(D), θ(G)

)
while only controlling θ(G).

The solution to a game is a Nash equilibrium, which in our case is
a tuple

(
θ(D), θ(G)

)
which is a local minimum of C (D) with respect

to θ(D) and a local minimum of C (G) with respect to θ(G).
If we rewrite it as a zero-sum game, the optimal parameters for the
generator are

θ(G)∗ = arg min
θ(G)

max
θ(D)

V
(
θ(D), θ(G)

)
.
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GAN applied to HEP

The data was provided by F. Sanchez, and contains the
energy E and momentum px , py and pz produced in a
neutrino event in the T2K experiment.

From 10 million data points, we select randomly 10 thousand,
a 0.1% of the data, and try to learn its distribution via a GAN.

This will be later contrasted with a different sample of 500
thousand points.

The data was scaled into the interval [-1,1].
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GAN applied to HEP

Generator:

The initial input dimension of z is 20 to ensure capturing the
whole pdata space. Each dimension of z follows a standard
normal distribution.

The last activation function of the generator network was the
hyperbolic tangent function, mapping the output into the
interval [-1,1]. The last layer has dimension 4, as we want the
output to be in the same space as the training data.

We have 4 hidden layers in the network of dimension the same
as the input, 20. The layers are connected in a dense way,
meaning that all neurons of one layer are connected to all
neurons of the next layer.

The activation of the hidden layers is the leaky ReLU function.
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GAN applied to HEP

Discriminator:

The input dimension is 4, since we have 4 variables.

The output has dimension 1, and indicates the probability of
being a sample drawn from the pdata distribution. The last
activation function is hence a sigmoid to map it to the
interval [0,1].

The network has 3 hidden layers, of dimension 4 · 6. They are
all also connected in a dense way.

As for the generator, the activations for the hidden layers is
the leaky ReLU function.
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GAN applied to HEP

ROC auc score for a classifier trying to distinguish real from
simulated data. It was computed every 50 iterations.
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GAN applied to HEP

The ROC auc score for pmodel vs pdata is 0.5284.

The ROC auc score for pmodel vs ptotal is 0.6014.

The ROC auc score for pdata vs ptotal is 0.5034.

Why? Let us take a look at the individual densities of the
variables.
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GAN applied to HEP

Individual densities:
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