

Group Meeting 30/11/2017

D. Vargas

Introduction

 $\begin{array}{l} \operatorname{Reconstructed}\\ \operatorname{neutrino}\\ \operatorname{energy}\\ {}^{E_{\mathcal{V}}^{\operatorname{rec}}} \operatorname{vs.} {\mathcal{O}}_{{}^{\operatorname{rec}}}^{2}\\ {}^{E_{\mathcal{V}}^{\operatorname{rec}}} \operatorname{vs.} {\theta}_{\mu} \end{array}$

Super Scaling Approach (SuSA)

 $E_{\prime\prime}^{rec}$ vs. ψ'

Study of the reconstructed neutrino energy

Danaisis Vargas

Institute of High Energy Physics - IFAE

dvargas@ifae.es

November 30, 2017

Group Meeting 30/11/2017

D. Vargas

Introduction

 $\begin{array}{c} \text{Reconstructed} \\ \text{neutrino} \\ \text{energy} \\ E_{\nu}^{\text{rec vs. }Q_{\text{rec}}^2} \\ E_{\nu}^{\text{rec vs. }\theta_{\mu}} \end{array}$

Super Scaling Approach (SuSA)

$$E_{
u}^{ extsf{rec}}$$
 vs. ψ'

D. Vargas

Introduction

 $\begin{array}{l} \text{Reconstructed} \\ \text{neutrino} \\ \text{energy} \\ E_{\nu}^{\text{rec}} \text{ vs. } \mathcal{Q}_{\text{rec}}^2 \\ E_{\nu}^{\text{rec}} \text{ vs. } \theta_{\mu} \end{array}$

Super Scaling Approach (SuSA)

 E_{ν}^{rec} vs. ψ'

Equation for the reconstructed neutrino energy $\overline{(E_{\nu}^{rec})}$ for CCQE

Group Meeting 30/11/2017

D. Vargas

Introduction

Reconstructed neutrino energy

 $\begin{array}{l} {}^{\scriptstyle {\rm rec}}_{\scriptstyle {\rm ν}} \, {\rm vs.} \, {\scriptstyle {\rm Q}}^{\rm 2}_{\scriptstyle {\rm rec}} \\ {\scriptstyle {\rm E}}^{\scriptstyle {\rm rec}}_{\scriptstyle {\rm ν}} \, {\rm vs.} \, {\scriptstyle {\rm θ}}_{\scriptstyle {\rm μ}} \end{array}$

Super Scaling Approach (SuSA)

 $E_{\prime\prime}^{rec}$ vs. ψ'

Reconstructed neutrino energy (E_{ν}^{rec}) : $E_{\nu}^{rec} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 + M_{\mu}^2 - 2M_nE_B + \Delta M^2)}{2(M_n - E_B - E_{\mu} + |\vec{k_{\mu}}|cos\theta_{\mu})}$ $\Delta M^2 = M_n^2 - M_p^2$ $E_{\mu} = \sqrt{|\vec{k_{\mu}}|^2 + M_{\mu}^2}$

■ *M_n* = 939.565379 MeV;

■ *M*_p = 938.272046 MeV;

■ *M*_µ = 105.6583715 MeV;

(1)

Equation for oscillation probability

Group Meeting 30/11/2017

d'Altes Energies

D. Vargas

Introduction

Reconstructed neutrino energy

Super Scaling Approach (SuSA)

$$E_{\nu}^{rec}$$
 vs. ψ'

ν_{μ} probability of disappearance:

$$P_{\mu\mu} \equiv P_{(\nu_{\mu} \to \nu_{\mu})} = 1 - sen^2 (2 \ \theta_{23}) \ sen^2 \Big(1.267 \ \frac{\Delta M_{32}^2 \ L_{far}}{F_{\mu\nu}^{true}} \Big)$$
 (2)

sen²(2
$$\theta_{23}$$
) \approx 1

$$\Delta M_{32}^2 = 2.44 \times 10^{-3} \text{ eV}^2$$

 E_{ν}^{rec} dependency with Q_{rec}^2

d'Altes Energies

Figure 1: (a) Reconstructed neutrino energy vs. transfered momentum and (b) matrix.

 E_{ν}^{rec} dependency with Q_{rec}^2

d'Altes Energies

Figure 2: (a) No. of ν_{μ} events vs. $1 - (E_{\nu}^{rec}/E_{\nu}^{true})$ for each block of the matrix and (b) appalling probability of disappearance of the ν_{μ} .

 E_{ν}^{rec} dependency with Q_{rec}^2

d'Altes Energies

Figure 3: Data of each distribution (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

Figure 4: Comparison data of each distribution appalling probability of disappearance of the ν_{μ} (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

 E_{ν}^{rec} dependency with θ_{μ}

d'Altes Energies

Introduction

Reconstructed neutrino energy $E_{\nu}^{\text{rec}} \text{ vs. } Q_{\text{rec}}^2$ $E_{\nu}^{\text{rec}} \text{ vs. } \theta_{\mu}$

Super Scaling Approach (SuSA)

Muon angle: $\theta_{\mu} = \arccos\left(\frac{\vec{P_{\nu}} * \vec{P_{\mu}}}{P_{\nu} P_{\mu}}\right) \quad (4)$ Matrix with bins of 0.5 GeV for E_{ν}^{rec} and 20° for θ_{μ} .

 E_{ν}^{rec} dependency with θ_{μ}

Institut de Física d'Altes Energies

Figure 6: (a) No. of ν_{μ} events vs. $1 - (E_{\nu}^{rec}/E_{\nu}^{true})$ for each block of the matrix and (b) appalling probability of disappearance of the ν_{μ} .

 E_{ν}^{rec} dependency with θ_{μ}

d'Altes Energies

En vs. 0 µ

Figure 7: Data of each distribution (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

Figure 8: Comparison data of each distribution appalling probability of disappearance of the ν_{μ} (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

Super Scaling Approach (SuSA)

Equation for the scaling variable $(\psi^{'})$

Scaling variable:

Meeting 30/11/2017 D. Vargas

Group

d'Altes Energies

Introduction

 $\begin{array}{c} \text{Reconstructed} \\ \text{neutrino} \\ \text{energy} \\ E_{\mathcal{V}}^{\text{rec}} \text{ vs. } \mathcal{O}_{\text{rec}}^2 \\ E_{\mathcal{V}}^{\text{rec}} \text{ vs. } \theta_{\mu} \end{array}$

Super Scaling Approach (SuSA)

$$\psi' \equiv rac{1}{\sqrt{\xi_F}} rac{\lambda' - au'}{\sqrt{(1 + \lambda') au' + \kappa \sqrt{ au'(au' + 1)}}}$$

The energy shift E_{shift} , is introduced in the theoretical description to account phenomenologically for the shift observed in the QE peak $\left(\omega = \frac{|O^2|}{2M_N}\right)$ when the cross section is plotted as a function of ω .

(5)

Super Scaling Approach (SuSA)

 ψ' dependency with θ_n

d'Altes Energies

 ψ' dependency with \sqrt{s}

d'Altes Energies

Figure 10: Scaling variable dependency with (a) the energy of the center of mass (b) the energy of the center of mass and (c).

Super Scaling Approach (SuSA)

 ψ^{\prime} dependency with Q_{rec}^2

d'Altes Energies

D. Vargas

Introduction

Reconstructed neutrino energy E_{ν}^{rec} vs. Q_{rec}^{2} E_{ν}^{rec} vs. θ_{μ}

Super Scaling Approach (SuSA)

Figure 11: Scaling variable dependency with the transfered momentum.

Transfered momentum:

$$Q_{rec}^2 = 2 \, E_{\nu}^{rec} \left(E_{\mu} - |\vec{k_{\mu}}| \cos \theta_{\mu}
ight) \ - M_{\mu}^2 \quad (8)$$

 E_{ν}^{rec} dependency with ψ'

d'Altes Energies

Figure 12: $1 - (E_{\nu}^{rec}/E_{\nu}^{true})$ vs. ψ .

 E_{ν}^{rec} dependency with ψ'

d'Altes Energies

Figure 13: (a) Reconstructed neutrino energy vs. scaling variable, (b) matrix with bins of 0.5 GeV for E_{ν}^{rec} and 0.25 for the scaling variable.

 E_{ν}^{rec} dependency with ψ'

Figure 14: (a) No. of ν_{μ} events vs. 1 – $(E_{\nu}^{rec}/E_{\nu}^{true})$ for each block of the matrix and (b) appalling probability of disappearance of the ν_{μ} .

 E_{ν}^{rec} dependency with ψ'

d'Altes Energies

Erec vs. y

Figure 15: Data of each distribution (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

Figure 16: Comparison data of each distribution appalling probability of disappearance of the ν_{μ} (a) Maximum position, (b) Mean, (c) RMS, (d) Kurtosis, (e) Skewmess.

