

T2K Near Detector Upgrade Thorsten Lux

T2K

- Long baseline neutrino oscillation experiment
- 2 detectors:
 - Near Detector: measure before oscillation
 - Far Detector: measure after oscillation

Far detector

Near detector

J-PARC proton accelerator

Far Detector: SuperKamiokande

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

- Water Cherenkov detector
- 4π sensitivity
- CC events
- Relatively high threshold for particle detection => mainly detection of charged lepton

- NC events
- background in SK

- FGD: target, TPC: tracker
- CC events
- signal in SK

- not 4π detector
- optimized for forward direction
- high angle has problems:
 - FGD dense material
 - short track in TPC => bad for p and dE/dx measurement => bad for PID
- backward: without time information difficult to identify correctly backward going lepton

- selection efficiency high in forward direction
- originally only forward direction
- for current detector already achieved some efficiency for high angle and backward
- Alfonso Garcia (IFAE) thesis
- still very low efficiency for high angle and backward direction

=> Significant systematic error for SK results

What we want

How to achieve this?

- Get rid of POD and replace it by something more useful!
 - Scintillator tracker as target
 - 2 vertical TPCs as tracker
 - TOF panels surrounding all other detectors

Scintillator Tracker

- Scintillator with WLS fiber read out by MPPC/SiPM
- 2 variations under consideration: 2D and 3D (SuperFGD)
- > 2D FGD well known technology
- 3D would provide 4π sensitivity
- > 3D needs factor 2-3 more readout channels
- Target mass: ~2 ton

Scintillator Tracker

- Current baseline choice: SuperFGD
 - 1 cm³ cubes, optically isolated, each with 3 WLS fibers
 - Fibers read out by ~60.000 MPPCs
 - Total detector: 2.000.000 cubes
- Simulations indicate that SuperFGD in 2D performs better than classical 2D FGD

Efficiency IsoTarget Muons True CosTheta

Time of Flight

 TOF will provide:
 PID with p from track curvature

$$m_{ToF} = p \times \sqrt{\frac{c^2 (\Delta t_{reco})^2}{L^2} - 1}$$

- Identify direction of particle
- Crucial time resolution: scintillator, electronics, ...

Time of Flight

Baseline choice:

gth (keV)

Energy deposit

muon-electron

0.1

- Cast plastic scintillator: EJ-200
- 6 or 12 SiPM (6x6 mm2) directly coupled to scintillator
- readout from both sides
- tested already in CERN testbeam
- ~70 ps time resolution for 1.5 m bars achieved
- electronics could increase this to 150 to 600 ps

itron-proton

10

2000

1800

1600

1200 E

1000

800 600

400

200

TPC Principle Field cage: inside HV on copper strips, outside ground plane Anode: Anode Noble gas + segmented Cathode: in pads quencher gas -20 - 100 kV at ambient pressure + up to 10 mbar E, B field Ampflification up to 2.5 m stage

TPC Principle

TPC Principle

momentum from track reconstruction
dE/dx from deposited charge along track

=> Particle identification (PID)

$$p = p_{\perp} / \sin \theta = p_{\perp} \sqrt{1 + \cot^2 \theta}$$

New vertical TPCs

Parameter	Value for 1 TPC				
Dimension	1.8(x) x 0.8(y) x 2.0(z) m ³				
Volume	2.9 m ³				
Drift Length	90 cm				
Pad area	~1 cm ² (~2 cm ² resistive MM)				
Sensitive area	3.2 m ⁴				
# MM	16 (50x50 cm ² each MM)				
# channels	3.2x10 ⁴				

Walls have to ensure:

- Gas tightness
- Passing of low momentum particles => light materials
- Electric insulation of tens of kV for years
- Minimal deformations due to overpressure and gravity

Already done for ALEPH/DELPHI/... but these were cylindrical TPCs while we have rectangular TPCs!

New vertical TPCs

Challenging requirements/tolerances:

- > Flatness of the cathode 100 μ m
- Flatness of anode 200 μm
- Anode and cathode parallel within 200 μm
- Electric field homogeneity $<= 10^{-4}$ (199.98 < E < 200.02 V/cm)
- Sensitive volume starts 1.5 cm from wall surface
- Withstand at least 30 kV
- Oxygen levels ≤ 10 ppm (21% \Rightarrow 0.001%)

• • • •

And all this with a tight time schedule of course!

=> Many design choices to be taken soon!

Field Cage Wall Material

Flat surface suffering gravity and overpressure \Rightarrow What is the right choice for the wall material? \Rightarrow Composite materials but which?

First iteration based on choice of other experiments (for cylindrical TPCs):

	Thickness	Ex	Ey	vx	Gxy	d	-	
WALL LAYERS	[mm]	[N/mm ²]	[N/mm ²]	-	[N/mm ²]	[Ton/mm ³]	threaded insert (M6)	_ copper shielding
Copper shielding	0,010	110	000	0,34	41045	7,76E-09	end hange (hard toam)	polyimide substrate
Polyimide substrate	0,050	25	00	0,34	933	1,42E-09		aramid paper
outer GRP	0,300	280	000	0,15	12174	1,80E-09		honeycomh
Honeycomb	23,500	1	1	0,3	56	4,00E-11		noneycomo
inner GRP	0,300	280	000	0,15	12174	1,80E-09	2	GRP polyimide insulatio
Polyimide insulation	0,125	25	2500 0,34 933 1,42E-09		*	mirror strips		
Mirror strips	0,280	110	000	0,34	41045	7,76E-09		polyimide substrate
Polyimide substrate	0,050	25	00	0,34	933	1,42E-09	-	in sups
Field copper strips	0,280	110	000	0,34	41045	7,76E-09]	

Field Cage Wall Material

Rad. Length: 2.4%

Adding 2 mm of carbon fiber helps a lot!

More options under study and iterations required. Also thermal expansion will be studied.

Field Forming Structure

Aim: continuous degradation of potential between anode and cathode Practice: Do it in small steps! Parallel copper strips on the walls connected by resistors.

Sounds simple but many options how to realize it:

Double sided copper strips on Kapton: more expensive

Mirror strips inside the gas: cheaper but more space lost

Electric Field Simulations

Micromegas Readout

- T2K was first full size TPCs with MPGD readout
 Good performance for T2K but further development ongoing
 Aim: use resistive foil in readout to spread charge
- over several padsT2K will have first TPCs with resistive MM readout

Time Schedule

- 2 phases:
- TPC Prototype (funds available):
 - Currently design phase
 - Production of pieces in spring/early summer
 - Assemblying of field cage: June/July 2018 at INFN Padua
 - Full integration: July/August 2018 at CERN
 - Testbeam: September 2018
 - ⇒Test resistive foil MMs and production process of TPC construction

Time Schedule

- Final TPCs:
 - Optimize design
 - Production 2019/20
 - Commissioning with cosmics
 - 2021 installation at JPARC

T2K TPC Collaboration

Istituto Nazionale di Fisica Nucleare

Bari and Padova

IFAE Contribution to Upgrade

F. Sanchez:

Testbeam working group convener

T. Lux:

- Overall integration working group convener
- TPC field cage design

J. Mundet:

- TPC field cage design
- J. Boix:
 - Optimization of electronics readout

PhD student (candidate there but funding to be ensured):

- Geant 4 simulations related to TPC
- TPC prototype construction, commissioning, testbeam and data analysis

Conclusions

- IFAE Neutrino group: Back to the roots!
- Participating in the upgrade of T2K ND
- Focussing on TPC where our expertise lays
- Number of important positions in management organization
- Challenging year with design, production and testing of TPC prototype lays ahead
- Final TPCs have to be delivered in 2021 to Japan

Current horizontal TPCs

- dual gas volume design
- outer volume filled with CO2
- inner/sensitive volume with Ar:iC4H10:CF4 gas
- Pros:
 - electric insulation by CO2 gas => undestrutable
 - practivally no pressure difference between inner and outer volume => no deformation of inner walls
 - additional layer of gas purity protection
- Cons:
 - 2 volumes to be produced
 - large dead volume between subdetectors: ~10 cm

New TPC Geometry

