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Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters θ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|θ). The
prevalence and significance of this problem has motivated
an active research effort in so-called likelihood-free infer-
ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all differentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters θ is often
of more interest than the latent variables z.

In this note, we develop a likelihood-free inference algo-
rithm for non-differentiable, implicit generative models.
We adapt the adversarial training procedure of gener-
ative adversarial networks [8] by replacing the implicit
generative network with a domain-based scientific simu-
lator, and solve the resulting non-differentiable minimax
problem by minimizing variational upper bounds [10, 11]
of the adversarial objectives. The objective of both algo-
rithms is to match marginal distribution of the generated
data to the empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|θ)
defined implicitly through the simulation of a stochas-
tic generative process, where x ∈ Rd is the data and θ
are the parameters of interest. The simulation may in-
volve some complicated latent process where z ∈ Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on θ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.

We assume that the stochastic generative process that
defines p(x|θ) is specified through a non-differentiable
deterministic function g(·;θ) : Z → Rd. Operationally,

x ∼ p(x|θ) ≡ z ∼ p(z|θ),x = g(z;θ) (1)

such that the density p(x|θ) can be written as

p(x|θ) =

∫
{z:g(z;θ)=x}

p(z|θ)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters θ∗ that minimize the divergence
between pr(x) and the implicit model p(x|θ). That is,

θ∗ = arg min
θ
ρ(pr(x), p(x|θ)), (3)

where ρ is some distance or divergence.

III. BACKGROUND

A. Generative adversarial networks

Generative adversarial networks (GANs) were first
proposed by [8] as a way to build an implicit genera-
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tive model capable of producing samples from random
noise z. More specifically, a generative model g(·;θ) is
pit against an adversarial classifier d(·;φ) : Rd → [0, 1]
with parameters φ and whose antagonistic objective is
to recognize real data x from generated data x̃ = g(z;θ).
Both models g and d are trained simultaneously, in such
a way that g learns to fool its adversary d (which hap-
pens when g produces samples comparable to the ob-
served data), while d continuously adapts to changes in
g. When d is trained to optimality before each parameter
update of the generator, it can be shown that the original
adversarial learning procedure [8] amounts to minimizing
the Jensen-Shannon divergence JSD(pr(x) ‖ p(x|θ)) be-
tween pr(x) and p(x|θ).

As thoroughly explored in [12], GANs remain remark-
ably difficult to train because of vanishing gradients as
d saturates, or because of unreliable updates when the
training procedure is relaxed. As a remedy, Wasserstein
GANs [13] reformulate the adversarial setup in order to
minimize the Wasserstein-1 distance W (pr(x), p(x|θ)) by
replacing the adversarial classifier with a 1-Lipschitz ad-
versarial critic d(·;φ) : Rd → R, with

W (pr(x), p(x|θ))

= sup
φ

Ex̃∼p(x|θ)[d(x̃;φ)]− Ex∼pr(x)[d(x;φ)]

≡ sup
φ
LW . (4)

Under the WGAN-GP formulation of [14] for stabilizing
the optimization procedure, training d and g results in
alternating gradient updates on φ and θ in order to re-
spectively minimize

Ld =LW + λEx̂∼p(x̂)[(||∇x̂d(x̂;φ)||2 − 1)2] (5)

Lg = − LW (6)

where x̂ := εx + (1− ε)x̃, for ε ∼ U [0, 1], x ∼ pr(x) and
x̃ ∼ p(x|θ).

B. Variational optimization

Variational optimization [11, 15] and evolution strate-
gies [10] are general optimization techniques that can be
used to form a differentiable bound on the optima of a
non-differentiable function. Given a function f to mini-
mize, these techniques are based on the simple fact that

min
θ
f(θ) ≤ Eθ∼q(θ|ψ)[f(θ)] = U(ψ), (7)

where q(θ|ψ) is a proposal distribution with parameters
ψ over input values θ. That is, the minimum of a set
of function values is always less than or equal to any of
their average. Provided that the proposal distribution
is flexible enough, the parameters ψ can be updated to
place its mass arbitrarily tight around the optimum θ∗ =
minθ∈Θ f(θ).

Under mild restrictions outlined in [11], the bound
U(ψ) is differentiable with respect to ψ, and using the
log-likelihood trick its gradient can be rewritten as:

∇ψU(ψ) = ∇ψEθ∼q(θ|ψ)[f(θ)]

= Eθ∼q(θ|ψ)[f(θ)∇ψ log q(θ|ψ)] (8)

Effectively, this means that provided that the score func-
tion ∇ψ log q(θ|ψ) of the proposal is known and that one
can evaluate f(θ) for any θ, then one can construct em-
pirical estimates of Eqn. 8, which can in turn be used
to minimize U(ψ) with stochastic gradient descent (or a
variant thereof, robust to noise and parameter scaling).

IV. ADVERSARIAL VARIATIONAL
OPTIMIZATION

A. Algorithm

The alternating stochastic gradient descent on Ld and
Lg in GANs (Section III A) inherently assumes that the
generator g is a differentiable function. In the setting
where we are interested in estimating the parameters of
a fixed non-differentiable simulator (Section II), rather
than in learning the generative model itself, gradients
∇θg either do not exist or are inaccessible. As a result,
gradients ∇θLg cannot be constructed and the optimiza-
tion procedure cannot be carried out.

In this work, we propose to rely on variational opti-
mization to minimize Ld and Lg, thereby bypassing the
non-differentiability of g. More specifically, we consider
a proposal distribution q(θ|ψ) over the parameters of g
and alternately minimize the variational upper bounds

Ud = Eθ∼q(θ|ψ)[Ld] (9)

Ug = Eθ∼q(θ|ψ)[Lg] (10)

respectively over φ and ψ. When updating φ, unbiased
estimates of∇φUd can be obtained by directly evaluating
the gradient of Ud over mini-batches of real and generated
data, as is ordinarily done in stochastic gradient descent.
When updating ψ, ∇ψUg can be estimated as described
in the previous section. That is,

∇ψUg = Eθ∼q(θ|ψ),
x̃∼p(x|θ)

[−d(x̃;φ)∇ψ log q(θ|ψ)], (11)

which we can approximate with mini-batches of gener-
ated data

∇ψUg ≈
1

M

M∑
m=1

−d(g(zm;θm);φ)∇ψ log q(θm|ψ) (12)

for θm ∼ q(θ|ψ) and zm ∼ p(z|θm). For complete-
ness, Algorithm 1 outlines the proposed adversarial vari-
ational optimization (AVO) procedure, as built on top of
WGAN-GP.
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Algorithm 1 Adversarial variational optimization (AVO).

Inputs: observed data {xi ∼ pr(x)}Ni=1, simulator g.
Outputs: proposal distribution q(θ|ψ), such that q(x|ψ) ≈ pr(x).
Hyper-parameters: The number ncritic of training iterations of d; the size M of a mini-batch; the gradient penalty coefficient
λ; the entropy penalty coefficient γ.

1: q(θ|ψ)← prior on θ (with differentiable and known density)
2: while ψ has not converged do
3: for i = 1 to ncritic do . Update d
4: Sample a mini-batch {xm ∼ pr(x),θm ∼ q(θ|ψ), zm ∼ p(z|θm), εm ∼ U [0, 1]}Mm=1.
5: for m = 1 to M do
6: x̃m ← g(zm;θm)
7: x̂m ← εmxm + (1− εm)x̃m

8: U
(m)
d ← d(x̃m;φ)− d(xm;φ) + λ(||∇x̂md(x̂m;φ)||2 − 1)2

9: end for
10: φ← Adam(∇φ 1

M

∑M
m=1 U

(m)
d )

11: end for
12: Sample a mini-batch {θm ∼ q(θ|ψ), zm ∼ p(z|θm)}Mm=1. . Update q(θ|ψ)

13: ∇ψUg ← 1
M

∑M
m=1−d(g(zm;θm))∇ψ log qψ(θm)

14: ∇ψH(qψ)← 1
M

∑M
m=1∇ψqψ(θm) log qψ(θm)

15: ψ ← Adam(∇ψUg + γ∇ψH(qψ))
16: end while

Algorithm 1 represents the simplest version of AVO;
however, the variance of the noisy estimator of the gra-
dients may be too large to be useful in many problems.
We use Adam [16], but note the opportunity use instead
the Natural Evolution Strategy algorithm [10] or vari-
ance reduction techniques such as Rao-Blackwellization,
Control Variates, or quasi-Monte Carlo [17, 18].

B. Point Estimates through Marginal Likelihood

The variational objectives 9-10 have the effect of re-
placing the modeled data distribution of Eqn. 1 with the
parametrized marginal distribution of the generated data

q(x|ψ) =

∫
p(x|θ)q(θ|ψ)dθ. (13)

We can think of q(x|ψ) as a variational program as de-
scribed in [19], though more complicated than a sim-
ple reparametrization of normally distributed noise z
through a differentiable function. In our case, the varia-
tional program is a marginalized, non-differentiable sim-
ulator. Its density is intractable; nevertheless, it can gen-
erate samples for x whose expectations are differentiable
with respect to ψ. Operationally, we sample from this
marginal model via

x ∼ q(x|ψ) ≡ θ ∼ q(θ|ψ), z ∼ p(z|θ),x = g(z;θ). (14)

We can view the optimization of the marginal like-
lihood q(x|ψ) with respect to ψ through the lens of
empirical Bayes, where the data are used to optimize
a prior within the family q(θ|ψ). If ρ is the KL dis-
tance, ψ∗ would correspond to the maximum marginal

likelihood estimator advocated by Rubin [20]. When ρ
is the Wasserstein distance, ψ∗ is referred to as the min-
imum Wasserstein estimator (MWE). When the model
is well specified, the MWE coincides with the true data-
generating parameter; however, if the model is misspec-
ified, the MWE is typically different from the maximum
likelihood estimator (MLE). Thus, if the simulator p(x|θ)
is misspecified, q(θ|ψ) will attempt to smear it so that
the marginal model q(x|ψ) is closer to pr(x). However,
if the simulator is well specified, then q(θ|ψ) will concen-
trate its mass around the true data-generating parame-
ter.

In order to more effectively target point estimates θ∗,
we augment Eqn. 10 with a regularization term corre-
sponding to the differential entropy H of the proposal
distribution q(θ|ψ). That is,

Ug = Eθ∼q(θ|ψ)[Lg] + γH(q(θ|ψ)) (15)

where γ ∈ R+ is a hyper-parameter controlling the trade-
off between the generator objective and the tightness of
the proposal distribution.

For small values of γ, proposal distributions with large
entropy are not penalized, which results in learning a
smeared variation of the original simulator corresponding
to the marginal or prior predictive model. On the other
hand, for large values of γ, the procedure is encouraged
to fit a proposal distribution with low entropy, which has
the effect of concentrating its density tightly around one
or a few θ values.

Finally, we note that very large penalties may eventu-
ally make the optimization unstable, as the variance of
∇ψ log q(θm|ψ) typically increases as the entropy of the
proposal decreases.
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FIG. 1. Discrete Poisson model with unknown mean. (Top
left) Proposal distributions q(θ|ψ) after adversarial varia-
tional optimization. For both γ = 0 and γ = 5, the dis-
tributions correctly concentrate their density around the true
value log(λ∗). Penalizing the entropy of the proposal distri-
bution (γ = 5) results in a tighter density. (Top right) Model
distributions q(x|ψ) after training. This plot shows that the
resulting parametrizations of the simulator closely reproduce
the true distribution. (Bottom) Empirical estimates of the
variational upper bound Ud as optimization progresses.

V. EXPERIMENTS

A. Univariate discrete data

As a first illustrative experiment, we evaluate inference
for a discrete Poisson distribution with unknown mean λ.
We artificially consider the distribution as a parametrized
simulator, from which we can only generate data.

The observed data is sampled from a Poisson with
mean λ∗ = 7. Algorithm 1 is run for 300 epochs with
mini-batches of size M = 64 and the following configu-
ration. For the critic d, we use a 3-layer MLP with 10
hidden nodes per layer and ReLU activations. At each
epoch, Adam is run for ncritic = 100 iterations with a step
size α = 0.01, decay rates β1 = β2 = 0.5 and its inner first
and second moment vectors reset at each outer epoch in
order to avoid building momentum in staled directions.
For estimating λ∗, we parametrize θ as log(λ) and use a
univariate Gaussian proposal distribution q(θ|ψ) initial-
ized with a mean at log(5) and unit variance. At each
epoch, parameters ψ are updated by taking one Adam
step, with α = 0.01 and β1 = β2 = 0.5. The gradient
penalty coefficient is set to λ = 0.025, and the entropy
penalty is evaluated at both γ = 0 and γ = 5.

The top left plot in Figure 1 illustrates the resulting
proposal distributions q(θ|ψ) after AVO. For both γ = 0
and γ = 5, the proposal distributions correctly con-
centrate their density around the true parameter value
log(λ∗) = 1.94. Under the effect of the positive en-
tropy penalty H(q(θ|ψ)), the proposal distribution for
γ = 5 concentrates its mass more tightly, yielding in
this case a more precise inference. The top right plot
compares the model distributions to the true distribu-
tion. As theoretically expected from adversarial train-
ing, we see that the resulting distributions closely match
the true distribution, with in this case visually slightly
better results for the penalized model. The bottom plot
of Figure 1 shows empirical estimates of −Ud with re-
spect to the epoch number. For both γ = 0 and γ = 5,
the curves quickly fall towards 0, which indicates that
Ex̃∼p(x|θ)[d(x̃;φ)] ≈ Ex∼pr(x)[d(x;φ)] and that the critic
cannot distinguish between true and model data. This
confirms that adversarial variational optimization works
despite the discreteness of the data and lack of access to
the density p(x|θ) or its gradient.

B. Multidimensional continuous data

As a second toy example, we consider a generator pro-
ducing 5-dimensional continuous data, as originally spec-
ified in Section 4.2. of [6]. More specifically, we consider
the following generative process:

• z = (z0, z1, z2, z3, z4), such that
z0 ∼ N (µ = α, σ = 1), z1 ∼ N (µ = β, σ = 3),
z2 ∼ Mixture[ 1

2 N (µ = −2, σ = 1),
1
2 N (µ = 2, σ = 0.5)], z3 ∼ Exponential(λ = 3),
and z4 ∼ Exponential(λ = 0.5);

• x = Rz, where R is a fixed semi-positive definite
5 × 5 matrix defining a fixed projection of z into
the observed space.

Again, the AVO algorithm does not have access to the
density or its gradient, only samples from the genera-
tive model. We consider observed data generated at the
nominal values θ∗ = (α∗ = 1, β∗ = −1). The simula-
tor parameters are modeled with a factored (mean field)
Gaussian proposal distribution q(θ|ψ) = q(α|ψ)q(β|ψ),
where each component was initialized with zero mean
and unit variance. Hyper-parameters are set to M = 64,
ncritic = 100, λ = 0.025, γ = 10 and Adam configured
with α = 0.01, β1 = 0.9 and β2 = 0.999. The architec-
ture of the critic is the same as in the previous example.

Starting with a proposal distribution q(θ|ψ) largely
spread over the parameter space, as illustrated in the left
plot of Figure 2, AVO quickly converges towards a vari-
ational distribution whose density concentrates around
the nominal values θ∗, as shown in the right plot of Fig-
ure 2. Overall, this example further illustrates and con-
firms the ability of adversarial variational optimization
for inference with multiple parameters and multidimen-
sional data, where reliable approximations of p(x|θ) in a
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FIG. 2. Multidimensional continuous data. (Left) Density
q(θ|ψ) at the beginning of the procedure, for a proposal distri-
bution initialized with zero mean and unit variance. Contours
correspond to parameters θ within 1-2-3 Mahalanobis dis-
tance units from the mean of q(θ|ψ). (Right) Density q(θ|ψ)
after adversarial variational optimization (γ = 10). The pro-
posal density correctly converges towards a distribution whose
density concentrates around θ∗ = (1,−1).

traditional MLE setting would otherwise be difficult to
construct.

C. Electron–positron annihilation

As a more realistic example, we now consider a (simpli-
fied) simulator from particle physics for electron–positron
collisions resulting in muon–antimuon pairs (e+e− →
µ+µ−). The simulator approximates the distribution of
observed measurements x = cos(A) ∈ [−1, 1], where A is
the polar angle of the outgoing muon with respect to the
originally incoming electron. Neglecting measurement
uncertainty induced from the particle detectors, this ran-
dom variable is approximately distributed as

p(x|Ebeam, Gf ) =
1

Z

[
(1 + x2) + c(Ebeam, Gf )x

]
(16)

where Z is a known normalization constant and c is an
asymmetry coefficient function. Due to the linear term
in the expression, the density p(x|Ebeam, Gf ) exhibits a
so-called forward-backward asymmetry. Its size depends
on the values of the parameters Ebeam (the beam energy)
and Gf (the Fermi constant) through the coefficient func-
tion c.

A typical physics simulator for this process includes
a more precise treatment of the quantum mechanical
e+e− → µ+µ− scattering using MadGraph [21], ioniza-
tion of matter in the detector due to the passage of the
out-going µ+µ− particles using GEANT4 [22], electronic
noise and other details of the sensors that measure the
ionization signal, and the deterministic algorithms that
estimate the polar angle A based on the sensor readouts.
The simulation of this process is highly non-trivial as is
the space of latent variables Z.

In this example, we consider observed data generated
with the simplified generator of Eqn. 16 using θ∗ =
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FIG. 3. Electron–positron annihilation. (Top left) Proposal
distributions q(θ|ψ) after adversarial variational optimiza-
tion. Contours correspond to parameters θ within 1-2-3 Ma-
halanobis distance units from the mean of q(θ|ψ). The den-
sity of the penalized distribution (γ = 5) is highly concen-
trated, resulting in the green mass near θ∗. (Top right) Model
distributions q(x|ψ) after training. Despite the differences be-
tween their proposal distributions, both models closely match
the observed data. (Bottom) Empirical estimates of the vari-
ational upper bound Ud as optimization progresses.

(E∗beam = 42, G∗f = 0.9). The simulator parameters are

modeled with a factored (mean field) Gaussian proposal
distribution q(θ|ψ) = q(Ebeam|ψ)q(Gf |ψ), where each
component is respectively initialized with mean 45 and
1 and variance 1 and 0.01. Hyper-parameters are set to
M = 64, ncritic = 100, λ = 0.0025 and Adam configured
with α = 0.01, β1 = 0.9 and β2 = 0.999. As with the
first example, we compare entropy penalties γ = 0 and
γ = 5.

The top left plot in Figure 3 illustrates the resulting
proposal distributions q(θ|ψ) for γ = 0 and γ = 5 after
AVO. We see that the distributions both arrive in the
neighborhood of θ∗, with a density more highly concen-
trated for γ = 5 than for γ = 0. Despite these differences
and the relative distance with θ∗, both models closely
match the observed data, as shown in the top right plot
of Figure 3, with again slightly better results for the en-
tropy penalized model. This suggests either a relatively
flat landscape around θ∗ or that the observed data can
in this case also be reproduced with the predictive dis-
tribution q(x|ψ). Finally, the bottom plot of Figure 3
shows that for both γ = 0 and γ = 5 the variational
upper bound −Ud quickly fall towards 0, which indicates
convergence towards a distribution that the critic cannot
distinguish from the true distribution.
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VI. RELATED WORK

This work sits at the intersection of several lines of re-
search related to likelihood-free inference, approximate
Bayesian computation (ABC), implicit generative net-
works, and variational inference. Viewed from the liter-
ature around implicit generative models based on neu-
ral networks, the proposed method can be considered
as a direct adaptation of generative adversarial net-
works [8, 12, 13] to non-differentiable simulators using
variational optimization [11, 15].

From the point of view of likelihood-free inference,
where non-differentiable simulators are the norm, our
contributions are threefold. First is the process of lift-
ing the expectation with respect to the non-differentiable
simulator Ex̃∼p(x|θ) to a differentiable expectation with
respect to the variational program Ex̃∼q(x|ψ). Secondly,
is the introduction of a novel form of variational inference
that works in a likelihood-free setting. Thirdly, the AVO
algorithm can be viewed as a form of empirical Bayes
where the prior is optimized based on the data.

Perhaps the closest to our work is [23], which uses
the Wasserstein distance both to find point estimates
θ∗ and as a part of a rejection sampler in an ABC-like
setup (as opposed to variational inference). They empha-
size that this approach allows one to eliminate the sum-
mary statistics typically used in ABC and calculate the
Wasserstein distance explicitly, without making use of
the Kantorovich-Rubinstein duality and of a critic d. For
high-dimensional data, they note that this is computa-
tionally expensive and introduce an approximation based
on projection of the data onto Hilbert space-filling curves.
Their Remark 5.1 points out that [24] proposed an ap-
proximation of the gradient of an entropy-regularized
Wasserstein distance, which uses a similar duality. They
note that “unfortunately, it is not applicable in the set-
ting of purely generative models, as it involves point-wise
evaluations of the derivative of the log-likelihood.” Thus,
our contribution is to provide gradients of an approxi-
mate MWE by taking expectations with the variational
program q(x|ψ). This paired with the critic Kantorovich-
Rubinstein dual formulation of the Wasserstein distance
allows us to work in high dimensions without summary
statistics and to optimize ψ with stochastic gradient de-
scent. Additionally, our procedure avoids the inefficien-
cies of their Wasserstein rejection sampler incurred from
using the ABC-likelihood. In the case of smallN , we note
however that fast algorithms for calculating the exact
(entropically regularized) Wasserstein distance on empir-
ical distributions [24–26] are alternatives to adversarial
learning that are worth considering.

More generally, likelihood-free inference is intimately
tied to a class of algorithms that can be framed as density
estimation-by-comparison, as reviewed in [9]. In most
cases, these inference algorithms are formulated as an
iterative two-step process where the model distribution
is first compared to the true data distribution and then
updated to make it more comparable to the latter. Rel-

evant work in this direction includes those that rely on
a classifier to estimate the discrepancy between the ob-
served data and the model distributions [6, 27–31]. Also
of direct relevance in the likelihood-free setup, Hamil-
tonian ABC [32] estimate gradients with respect to θ
through finite differences from multiple forward passes of
the simulator with variance reduction strategies based on
controlling the source of randomness used for the latent
variable z.

Likewise, AVO closely relates to recent extensions of
GANs, such as Adversarial Learned Inference (ALI) [33],
Bidirectional GANs (BiGANs) [34], α-GAN [31], Adver-
sarial Variational Bayes (AVB) [35], and the PC-Adv al-
gorithm of [36], which add an inference network to the
generative model. Each of these assume a tractable den-
sity p(x|θ) that is differentiable with respect to θ, which
is not satisfied in the likelihood-free setting. Our lifting of
the non-differentiable simulator p(x|θ) to the variational
program q(x|ψ) provides the ability to differentiate ex-
pectations with respect to ψ as in Eqn 8; however, the
density q(x|ψ) is still intractable. Moreover, we do not
attempt to define a recognition model q(z,θ|ψ) as the
latent space Z of many real-world simulators is compli-
cated and not amenable to neural a recognition model.

This work has also many connections to work on vari-
ational inference, in which the goal is to optimize the
recognition model q(z,θ|ψ) so that it is close to the true
posterior p(z,θ|x). There have been efforts to extend
variational inference to intractable likelihoods; however,
they require restrictive assumptions. In [18], the authors
consider Variational Bayes with an Intractable Likeli-
hood (VBIL). In that approach “the only requirement
is that the intractable likelihood can be estimated unbi-
asedly.” In the case of simulators, they propose to use the
ABC-likelihood with an ε-kernel. The ABC likelihood is
only unbiased as ε → 0, thus this method inherits the
drawbacks of the ABC-likelihood including the choice of
summary statistics and the inefficiency in evaluating the
ABC likelihood for high-dimensional data and small ε.

Lastly, we make a connection to Operator Variational
Inference (OPVI) [19], which is a generalization of varia-
tional inference formulated as the following optimization
problem:

λ∗ = inf
λ

sup
φ

Ez∼q(z|λ)[(O
p,qfφ)] . (17)

In traditional VI with the KL distance, this corresponds
to (Op,qf)(z) = log q(z)− log p(z|x)∀f ∈ F . AVO can be
cast into a similar form with expectations over x instead
of z and

ψ∗ = inf
ψ

sup
φ

Ex∼q(x|ψ)[(O
pr,qψdφ)] (18)

= inf
ψ

sup
φ

Ex∼pr(x)[d(x;φ)]− Ex∼q(x|ψ)[d(x;φ)] .

Rewriting Eqn. 18 as above is possible through impor-
tance sampling, corresponding to an implicit form of the
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operator

(Opr,qψdφ)(x) =

(
pr(x)

q(x|ψ)
− 1

)
d(x;φ) , (19)

which reinforces the link to density ratio estimation and
inference with implicit models.

VII. SUMMARY

In this note, we develop a likelihood-free inference al-
gorithm for non-differentiable, implicit generative mod-
els. The algorithm combines adversarial training with
variational optimization to minimize variational upper
bounds on the otherwise non-differentiable adversarial
objectives. The AVO algorithm enables empirical Bayes
through variational inference in the likelihood-free set-
ting. This approach does not incur the inefficiencies of
an ABC-like rejection sampler. When the model is well-
specified, the AVO algorithm provides point estimates for
the generative model, which asymptotically corresponds
to the data generating parameters. The algorithm works
on continuous or discrete data.

Preliminary results on toy problems with discrete and
continuous data validate the proposed method. While
the obtained results are encouraging, the complete vali-
dation of the method remains to be carried out in real

conditions on a full fledged scientific simulator – which we
plan to achieve for a next version of this work. In terms of
method, several components need further investigation.
First, we need to better study the interplay between the
entropy penalty and the adversarial objectives. Second,
we should better understand the dynamics of the opti-
mization procedure, in particular when combined with
momentum-based optimizers like Adam. Third, we need
to consider whether less noisy estimates of the gradients
∇ψUg can be computed.
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mon Tavaré. Markov chain monte carlo without likeli-
hoods. Proceedings of the National Academy of Sciences,
100(26):15324–15328, 2003.

[3] Scott A Sisson, Yanan Fan, and Mark M Tanaka. Sequen-
tial monte carlo without likelihoods. Proceedings of the
National Academy of Sciences, 104(6):1760–1765, 2007.

[4] Scott A Sisson and Yanan Fan. Likelihood-free MCMC.
Chapman & Hall/CRC, New York.[839], 2011.

[5] Jean-Michel Marin, Pierre Pudlo, Christian P Robert,
and Robin J Ryder. Approximate bayesian computa-
tional methods. Statistics and Computing, pages 1–14,
2012.

[6] Kyle Cranmer, Juan Pavez, and Gilles Louppe. Ap-
proximating likelihood ratios with calibrated discrimina-
tive classifiers. arXiv preprint arXiv:1506.02169, 2015,
1506.02169.

[7] Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes. CoRR, abs/1312.6114, 2013.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in Neural Information Processing Systems, pages
2672–2680, 2014.

[9] S. Mohamed and B. Lakshminarayanan. Learning in Im-
plicit Generative Models. ArXiv e-prints, October 2016,

1610.03483.
[10] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, and

J. Schmidhuber. Natural Evolution Strategies. ArXiv
e-prints, June 2011, 1106.4487.

[11] J. Staines and D. Barber. Variational Optimization.
ArXiv e-prints, December 2012, 1212.4507.

[12] M. Arjovsky and L. Bottou. Towards Principled Methods
for Training Generative Adversarial Networks. ArXiv e-
prints, January 2017, 1701.04862.

[13] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
GAN. ArXiv e-prints, January 2017, 1701.07875.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved Training of Wasserstein GANs.
ArXiv e-prints, March 2017, 1704.00028.

[15] J Staines and D Barber. Optimization by variational
bounding. In ESANN 2013 proceedings, 21st Euro-
pean Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning, pages 473–
478, 2013.

[16] D. P. Kingma and J. Ba. Adam: A Method for
Stochastic Optimization. ArXiv e-prints, December 2014,
1412.6980.

[17] Rajesh Ranganath, Sean Gerrish, and David Blei. Black
box variational inference. In Artificial Intelligence and
Statistics, pages 814–822, 2014.

[18] Minh-Ngoc Tran, David J Nott, and Robert Kohn. Vari-
ational bayes with intractable likelihood. Journal of
Computational and Graphical Statistics, (just-accepted),
2017, 1503.08621.



8

[19] R. Ranganath, J. Altosaar, D. Tran, and D. M. Blei.
Operator Variational Inference. ArXiv e-prints, October
2016, 1610.09033.

[20] Donald B. Rubin. Bayesianly justifiable and relevant fre-
quency calculations for the applied statistician. Ann.
Statist., 12(4):1151–1172, 12 1984.

[21] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier
Mattelaer, and Tim Stelzer. MadGraph 5 : Going Be-
yond. JHEP, 06:128, 2011, 1106.0522.

[22] S. Agostinelli et al. GEANT4: A Simulation toolkit.
Nucl. Instrum. Meth., A506:250–303, 2003.

[23] Espen Bernton, Pierre E Jacob, Mathieu Gerber, and
Christian P Robert. Inference in generative mod-
els using the wasserstein distance. arXiv preprint
arXiv:1701.05146, 2017.
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