
1

Adversarial Variational Optimization of Non-Differentiable Simulators

Adversarial Variational Optimization of
Non-Differentiable Simulators

Sebastian Pina Otey

Grupo AIA/IFAE

21 December 2017

2

Adversarial Variational Optimization of Non-Differentiable Simulators

Outline

1 Problem statement

2 Neural Networks and Generative Adversarial Networks
Neural Networks
Generative Adversarial Networks

3 Variational optimization

3

Adversarial Variational Optimization of Non-Differentiable Simulators

Problem statement

Contents

1 Problem statement

2 Neural Networks and Generative Adversarial Networks

3 Variational optimization

4

Adversarial Variational Optimization of Non-Differentiable Simulators

Problem statement

Problem statement

In many fields, complex data generation processes are used to
relate observations ~x to parameters ~θ of an underlying theory or
mechanistic problem. This is,

~x ∼ p(~x |~θ).

The problem at hand is to find the parameters ~θ∗ which fits the
observed data the best.
But the likelihood functions are usually intractable!!

5

Adversarial Variational Optimization of Non-Differentiable Simulators

Problem statement

Problem statement

Consider a family of parametrized densities p(~x |~θ), where ~x ∈ Rd

is the data and ~θ the parameters. Consider some complicated
latent process where ~z ∈ Z when running the simulation that adds
randomness to the generation. Then, the stochastic generative
process of p(~x |~θ) is specified through g(·; ~θ) : Z → Rd , which
means,

x ∼ p(~x |~θ) is the same as ~z ∼ p(~z |~θ), ~x = g(~z ; ~θ),

such that

p(~x |~θ) =

∫
{~z:g(~z;~θ=~x}

p(~z |~θ)µ(d~z).

6

Adversarial Variational Optimization of Non-Differentiable Simulators

Problem statement

Problem statement

Given some observed data {~xi}i=1,...,N from the true distribution

pr (~x), we want to find the parameters ~θ∗ that minimize the
divergence/distance ρ between pr (~x) and the implicit model
p(~x |~θ):

~θ∗ = argmin
~θ

ρ(pr (~x), p(~x |~θ)).

7

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Contents

1 Problem statement

2 Neural Networks and Generative Adversarial Networks

3 Variational optimization

8

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Neural Networks

McCulloch and Pitts neuronal model

ŷ = σ(z), z =
m∑
i=1

xiwi ,

where σ is the activation function and wi are the weights of the
network.

9

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Neural Networks

Perceptron

zj =
m∑
i=0

wjixi = wj0 +
m∑
i=1

wjixi = bj +
m∑
i=1

wjixi ,

where bj is the bias term.

10

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Neural Networks

Deep Neural Network

alj = σ(z lj) = σ

(∑
i

w l
jia

l−1
i + blj

)
,

or in matrix notation,

al = σ(z l) = σ(w lal−1 + bl).

11

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Neural Networks

Backpropagation

Consider the cost (loss) function C . Instead of

∂C

∂θi
' C (θi + ε)− C (θi)

ε
,

we use the backpropagation method,

δL = ∇aLC � σ′(zL), (1)

δl =

((
w l+1

)T
δl+1

)
� σ′(z l), (2)

∂C

∂blj
= δlj , (3)

∂C

∂w l
jk

= δlja
l−1
k . (4)

12

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Neural Networks

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an example of how to
update the weights using backpropagation. M random samples of
the training data are selected and used:

w l → w l − η

M

M∑
m=1

δm,l
(
am,l−1

)T
,

bl → bl − η

M

M∑
m=1

δm,l ,

where η is the learning parameter. There are other optimizers,
being Adam the most popular one.

13

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

Generative Adversarial Networks

GANs are a kind of generative models.

13

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

Generative Adversarial Networks

GANs are a kind of generative models.
We will consider them to be any model that, from a training set
sampled from a distribution pr (~x), learns to produce an estimation
of such distribution in any form of it. The resulting estimation will
be denoted as p(~x). This estimation can be an explicit form of the
distribution. It might also be a mechanism only able to sample
new data from it. It might be both.

14

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

GAN framework

The idea behind GANs is a game (in a mathematical sense)
between two players: a generator (a function G , representing the
first NN) and a discriminator (a function D, representing the
second NN). The first one learns to produce samples imitating the
distribution of the training data set. The later one learns to
distinguish real data, from the training set, from fake one,
produced by the generator. Hence the game consists in the
discriminator classifying data into real or fake one, while the
generator has to try to trick the discriminator by generating more
realistic data. It is an adversarial situation.

Z
G−→ X

D−→ {0, 1}.

15

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

GAN framework

The networks have each a cost function C that depend on the
parameters of the networks. The discriminator wishes to minimize
C (D) (φ, θ) while only controlling φ. On the other hand, the
generator wishes to minimize its own cost function C (G) (φ, θ)
while only controlling θ.

The solution to a game is a Nash equilibrium, which in our case is
a tuple (φ, θ) which is a local minimum of C (D) with respect to φ
and a local minimum of C (G) with respect to θ.
If we rewrite it as a zero-sum game, the optimal parameters for the
generator are

θ∗ = arg min
θ

max
φ

V (φ, θ) .

15

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

GAN framework

The networks have each a cost function C that depend on the
parameters of the networks. The discriminator wishes to minimize
C (D) (φ, θ) while only controlling φ. On the other hand, the
generator wishes to minimize its own cost function C (G) (φ, θ)
while only controlling θ.
The solution to a game is a Nash equilibrium, which in our case is
a tuple (φ, θ) which is a local minimum of C (D) with respect to φ
and a local minimum of C (G) with respect to θ.

If we rewrite it as a zero-sum game, the optimal parameters for the
generator are

θ∗ = arg min
θ

max
φ

V (φ, θ) .

15

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

GAN framework

The networks have each a cost function C that depend on the
parameters of the networks. The discriminator wishes to minimize
C (D) (φ, θ) while only controlling φ. On the other hand, the
generator wishes to minimize its own cost function C (G) (φ, θ)
while only controlling θ.
The solution to a game is a Nash equilibrium, which in our case is
a tuple (φ, θ) which is a local minimum of C (D) with respect to φ
and a local minimum of C (G) with respect to θ.
If we rewrite it as a zero-sum game, the optimal parameters for the
generator are

θ∗ = arg min
θ

max
φ

V (φ, θ) .

16

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

Wasserstein GANs

WGANs are a reformulation where the adversarial setup is to
minimize the Wasserstein-1 distance W (pr (x), p(x |θ) by replacing
the adversarial classifier with a 1-Lipschitz adversarial critic
d(·;φ) : Rd → R, with

W (pr (x), p(x |θ)

= sup
φ

[
Ex̃∼p(x |θ)[d(x̃ ;φ)]− Ex∼pr (x)[d(x ;φ)]

]
≡ sup

φ
LW .

16

Adversarial Variational Optimization of Non-Differentiable Simulators

Neural Networks and Generative Adversarial Networks

Generative Adversarial Networks

Wasserstein GANs

W (pr (x), p(x |θ)

= sup
φ

[
Ex̃∼p(x |θ)[d(x̃ ;φ)]− Ex∼pr (x)[d(x ;φ)]

]
≡ sup

φ
LW .

WGAN-GP introduce the concept of gradient penalty to stabilize
the process. Here, φ and θ are updated to respectively minimize

Ld = LW + λEx̂∼p(x̂)[(‖∇x̂d(x̂ ;φ)‖2 − 1)2],

Lg = −LW ,

where x̂ := εx + (1− ε)x̃ , for ε ∼ U[0, 1], x ∼ pr (x) and
x̃ ∼ p(x |θ).

17

Adversarial Variational Optimization of Non-Differentiable Simulators

Variational optimization

Contents

1 Problem statement

2 Neural Networks and Generative Adversarial Networks

3 Variational optimization

18

Adversarial Variational Optimization of Non-Differentiable Simulators

Variational optimization

Variational optimization

Assume we want to minimize a non-differentiable function f . We
know that

min
θ

f (θ) ≤ Eθ∼q(θ|ψ)[f (θ)] = U(ψ),

where q(θ, ψ) is a proposal distribution with parameters ψ over the
input values θ. The problem then translate to update the
parameters ψ so that the proposal distribution is arbitrarily close to
the optimum θ∗.

19

Adversarial Variational Optimization of Non-Differentiable Simulators

Variational optimization

Variational optimization

Under restrictions, the bound U(ψ) is differentiable with respect to
ψ, and its gradient can be written as

∇ψU(ψ) = Eθ∼q(θ|ψ)[f (θ)∇ψ log q(θ|ψ)],

which can be used to use any kind of gradient optimization
method to find the best ψ.

20

Adversarial Variational Optimization of Non-Differentiable Simulators

Adversarial Variational Optimization

Contents

1 Problem statement

2 Neural Networks and Generative Adversarial Networks

3 Variational optimization

21

Adversarial Variational Optimization of Non-Differentiable Simulators

Adversarial Variational Optimization

Adversarial Variational Optimization

The idea of the AVO is to use the simulator that has a model with
meaningful parameters θ as the generator instead of training a
neural network. If we would apply this directly to the WGAN-GP
model, we would encounter the problem that the generator in most
of the cases is non-differentiable. But we have just learned how to
deal with this by using variational optimization. This means that
we can define a proposal distribution q(θ|ψ) for the parameters
and can define the bounds

Ud = Eθ∼q(θ|ψ)[Ld], (5)

Ug = Eθ∼q(θ|ψ)[Lg]. (6)

and use the method described before to compute the gradient to
optimize the parameters.

	Problem statement
	Neural Networks and Generative Adversarial Networks
	Neural Networks
	Generative Adversarial Networks

	Variational optimization

