

Summary of the PMT measurements at CIEMAT

CIEMAT-IFAE Meeting (12-01-2018)

Ana Gallego on behalf of CIEMAT group

Outline

- * Introduction
- * Experimental setup at CIEMAT
- * Results at room temperature
- * Results at cryogenic temperature
- * Gain change due to temperature
- * Interaction with Hamamatsu
- * Summary and next steps
- * Paper about PMTs characterization

Introduction

ProtoDUNE dual phase

6x6x6 m³ (fid.) DLAr TPC under construction @ CERN

TDR: arXiv:1409.4405

BASIC CONFIGURATION OF THE LIGHT DETECTION SYSTEM

- * 36 8" cryogenic photomultipliers
- * Wavelength-shifter: TPB coating on PMT
- * Voltage divider base + single HV-signal cable + splitter (external)
- * Light calibration system
- * DAQ system (external)

Introduction

PMT testing @ CIEMAT

- * Validation of PMT base
- * Detailed characterization of 40 PMTs at warm and cold
- * <u>Measurements:</u>
 - Gain vs. HV: to determine the optimum operating high voltage (40 PMTs)
 - Dark current rate vs. HV: to reject noisy PMTs (40 PMTs)
 - Waveforms: at 10⁷ gain (40 PMTs)
 - Light linearity: to define the dynamic range for a linear response
 - Light frequency linearity: to avoid PMT saturation

Experimental setup at CIEMAT

Characterization of PMTs at

- Room temperature (RT)
- Cryogenic temperature (CT)
 - Dedicated setup to test
 PMTs immersed in liquid
 nitrogen
 - At least 3 days for thermalisation
 - Configurable amount of light
 - Possibility of testing up to 10 PMTs at once

A) Dark current @ RT

- * PMTs in darkness for at least 2 days before measurements
- * DC measured at several HVs and at the corresponding HV for a 10^9 gain (nominal HV)
- * CIEMAT threshold: 1/2 SPE amplitude at 10⁷ gain (trigger over noise at any PMT gain)

Results are similar to those given by Hamamatsu

B) Gain @ RT

- * Good correlation between our results and Hamamatsu
- * The discrepancy obtained was expected by the positive base design
- The splitter sends to the PMT base a voltage that is a 6% lower than the one read on the power supply itself

CIEMAT voltages for a 10⁹ gain (nominal HV) are ~84 V (~5%) above the values provided by Hamamatsu, on average

C) Light linearity @ RT

* **Preliminary results!** More measurements and analysis will be done

The linearity is not the same with laser and LED because their temporal profiles are different (internal PMT saturation)

D) Light frequency linearity @ RT

A) Dark current @ CT

* The causes at CT are different from the causes at RT
* Not all the DC sources are completely understood yet

The DC rate is higher at cold for the same gain

B) Gain @ CT

C) Light linearity @ CT

D) Light frequency linearity @ CT

- At CT, measurements at high frequency cause that PMT gain falls —> <u>gain recovery can take days</u>
- * Measurements at CT are done without waiting for gain recovery before changing the frequency!

The saturation curve is the same @ RT and CT, as expected (base saturation)

Overlinearity effect is smaller @ CT

Gain change due to temperature

- * PMTs characterization at CIEMAT has been done using LN2 at 0 bar (T ~77 K)
- * In the detector, the PMTs will be immersed in LAr (T ~87 K)
- * Characterization of 5 PMTs in LN2 at 1 bar (T ~83 K) has been done in order to have an idea of the variation with respect to the HV obtained in the characterization (for G=10⁷) due to the operation at a higher temperature

Interaction with Hamamatsu

- * During the characterization process, **seven PMTs** were returned to Japan:
 - PMTs FA0118 and FA0108 had no signal and very high DC rate, respectively. These two PMTs were <u>replaced by new ones</u>: FC0004 and FC0005

- Five PMTs were inspected and measured by Hamamatsu people: FA0104, FA0120, FA0112, FA0105 and FA0107. Their DC rates measured at CIEMAT were very high, but the report from Hamamatsu says that they have normal DC rates. These five PMTs have been <u>characterized again</u> (after being resent to CIEMAT) and they seem to work fine.

Summary and next steps

- * The characterization of 40 PMTs for ProtoDUNE-DP (36 + 4 spare) is finished:
 - 40 gain vs. HV curves at RT and CT obtained
 - 40 SPE waveforms at 10⁷ gain measured
 - Dark current rates vs. HV at RT and CT measured
- * Additional measurements of linearity (to the amount of light and to the light frequency) have been done for several PMTs
- * A paper for submission to JINST is being prepared
- * PMTs shipment to CERN is expected by April-May 2018 (to be decided)
- * PMTs installation and testing in the detector are expected by Autumn 2018
- * Complete some light linearity measurements for publication
- * Update database: introduce all the results of interest for the 40 PMTs

To-do

Paper about PMTs characterization

- * A paper about the characterization of the PMTs in cryogenic conditions is being prepared for submission to JINST
- * Goal: to present the characterization of the 40 PMTs emphasizing the **original aspects** with respect to other papers

Most interesting points

- * Comparison of different PMT bases (gain, DC rate)
- * Study of the time for gain recovery after frequency measurements at CT
- Detailed linearity measurements to the amount of light and to the light frequency: laser vs. LED, different PMT bases, RT vs. CT...

* TPB coating

Not included

* Light calibration system

Everyone who wants to participate is welcome!

Cryogenic R5912-20Mod Photomultiplier Tubes Characterization for the ProtoDUNE-DP Experiment

