LIGHT CALIBRATION SYSTEM CIEMAT

Enrique Calvo, Clara Cuesta, Ana Gallego, Sergio Jiménez and the CIEMAT group

> IFAE-CIEMAT meeting Barcelona, January 2018

Light calibration system overview

Status of inner system

All components available and tested at CIEMAT:

[x2] CR40 flanges with 3 SMA feedthroughs (Allectra) + O-rings

[x7] Fibers (Thorlabs): [x8] Vacuum
 FT800UMT, Ø 800µm, compatible
 L 22.5m, SMA connectors matting sleeves

[x7] 1-to-7 fiber bundles
 (Thorlabs): FT200UMT,
 Ø 200µm, L 3m, SMA connectors

Fibers characterization

22.5m-Fiber SMA (410 nm) (410 nm) Fibers inside a or a dewar fille

$P_{LED} = 36 \ \mu W$	RT	СТ
Fiber #	Ρ (μW)	Ρ (μW)
1	4,28	3.35
2	5,27	4.59
3	5,15	4.29
4	5,10	4.30
5	4,75	4.09
6	4,82	4.04
7	4,77	4.02
Mean	4,88	4.10
RMS	0,33	0.38

The power output @ RT is recovered once the LN2 has evaporated (next day) Power meter (PM)

Fibers inside an empty dewar (RT) or a dewar filled with LN_2 (CT)

$P_{LED} = 36 \ \mu W$	RT	СТ
Fiber	Power (µW)	Power (µW)
1 m	6.12	5.91

 $<P_{fiber}>/P_{LED} = 17\%$ $S_{fiber}/S_{SMA} = 6.05\%$ $(0.39 \text{ NA} \rightarrow 23^\circ)$

All fibers tested 👍

- Light transmission loss from 1 m to 22.5 m @ RT: 20% (0.97 dB) Expected at 410 nm 60 dB/km → 26% (from Thorlabs)
- Light transmission loss from RT to CT: 16% (0.76 dB)

Bundles characterization

$P_{LED} = 36 \ \mu W$	RT	СТ
Bundle #	P (nW)	P (nW)
1	387	243
2	425	276
3	400	246
4	396	293
5	375	220
6	375	236
7	392	269
Mean	393	255
RMS	17	25

The power output @ RT is recovered once the LN2 has evaporated (next day)

$P_{LED} = 41 \ \mu W$	RT	СТ
Bundle	P (nW)	P (nW)
1 m	375	345

 $<P_{fiber}>/P_{LED} = 0.91\%$ $S_{fiber}/S_{SMA} = 0.37\%$

All bundles tested 👍

- Light transmission loss from 1 m to 3 m @ RT: negligible (*) Expected at 410 nm 60 dB/km → 3% (0.18 dB) from Thorlabs)
- Light transmission loss from RT to CT: 35% (1.87 dB)

(*) Measurements repeated 3 times, systematic error is 6%

[Fiber+bundle] characterization

Fibers	Mating sleeve	Mean P/fiber (nW)	RMS (nW)
RT	RT	(P _{LED} = 39 µW) 286	16
СТ	Outside the dewar @ RT	(P _{LED} = 37 μW) 150	12
СТ	Inside the dewar @ CT	(P _{LED} = 39 µW) 139	8

- 22.5m-Fiber #3 3m-Bundle #2
- Light transmission loss per matting sleeve with SMA connection: 20% (0.97 dB) measured with laser Expected <1.5 dB → <29% (from Thorlabs)
- Matting sleeve light transmission loss from RT to CT: 12% (0.56 dB)
- Fiber + Matting sleeve + bundle light transmission loss from RT to CT: 51% (2.92 dB)

Inner fibers: expected light transmission at 410 nm

 $A_{CT} = A_{MS(Flange)} + A_{22.5m+MS+bundle} = 0.56 \text{ dB} + 2.92 \text{ dB} = 3.48 \text{ dB} (45\% \text{ light transmission})$

Total estimated attenuation at CT $A_T = A_{RT} + A_{CT} = 14.91 \text{ dB} + 3.48 \text{ dB} = 18.39 \text{ dB}$ (1.45% light transmission)

Measurements with fibers and PMTs @ CT

Inner fibers (inside dewar at CT):

- Set 5 —> 1m-fiber + 1m-bundle
- Set R1 —> 22.5m-fiber + 1m-bundle
- Set R2 -> 22.5m-fiber + 3m-bundle

Different sets of PMTs and configurations of fibers!

 SPE spectrum does not show anomalous events

Measurements with fibers and PMTs @ CT

Light source and external fibers (outside dewar at RT):

Designed to vary the amount of incident light form SPE to a higher amount avoiding PMT saturation.

- Kaputschinsky LED at different voltages
- Laser and different filters

Results

Measured at CT

	NPE at PMTs / NPh at flange	Light transmission (*)	Attenuation
Kapu	0,10%	1.42%	18.5 dB
Laser	0.08%	1.14%	19.4 dB

(*) PMT quantum efficiency at CT: 7% <u>PoS(PhotoDet2015)019</u>

Expected attenuation from Thorlabs at RT + from RT to CT

- $A_{Kapu} = A_{MS(Flange)} + A_{22.5m(*)} + A_{MS} + A_{Geo} + A_{3m} + A_{CT(LED)} =$ = 1.5 dB +1.13 dB + 1.5 dB + 12 dB + 0.15 dB +3.48 dB = **19.8 dB (1.05% LT)**
- $A_{laser} = A_{MS(Flange)} + A_{22.5m(*)} + A_{MS} + A_{Geo} + A_{3m} + A_{CT(LED)} =$ = 1.5 dB +1.58 dB + 1.5 dB + 12 dB + 0.21 dB +3.48 dB = **20.3 dB (0.93% LT)**

Measured attenuation by PMTs and PM is consistent with the expected attenuation (upper value) 👍

Flange tightness verification

Vacuum test

- 1. Vacuum of the system after 30 min pumping:
 - Blank flange: 4.3 x10⁻⁷ mbar
 - Feedthrough (3 OF):
 5.5 x10⁻⁷ mbar
- 2. Close the valve and turn off the pump:
 - Blank flange:
 1.5 mbar after 5 d
 - Feedthrough (3 OF): 1.12 mbar after 3 d 2.09 mbar after 7 d

Allectra specification for the feedthrough: HV: 1 x10⁻⁸ mbar to ambient pressure

Pressure test

- Vacuum of the system with the FT (3 OF): 9 x10⁻⁶ mbar after 5 min pumping
- Leak Detector: No leaks found on the feedthrough (~10⁻⁸ mbar x I / s)
- 3. Remove leak detector, vacuum of the system, close valve, and turn off pump.
- Open the Ar injection valve up to 2 bar a and close valve → 2 bar after 7 days

- No appreciable vacuum differences between FT (3 OF) or blank flange
- No significant pressure leaks up to 2 bar

Feedthrough is sufficiently hermetic

Conclusions

All components available and tested at CIEMAT 🖕

Expected and measured light attenuation of the inner system ~20 dB (~1% light transmission)

To discuss

Testing the full light calibration system with IFAE (February).

Paper about the LCS (report about CIEMAT work available)