NEUTRINO GROUP MEETING

PROGRESS OF THE PROJECTS

DANAISIS VARGAS OLIVA

dvargas@ifae.es

Institute of High Energy Physics - IFAE

Autonomous University of Barcelona - UAB

Tokai to Kamioka - T2K

OCTOBER 18, 2018

Universitat Autònoma de Barcelona

KAPUSTINSKY

TIME RESPONSE

Figure 1: Signals for different voltages for each Kapustinsky.

TIME RESPONSE

Founding for each of the 5000 pulses for an specific voltage:

$$t_{1_i} = \frac{\sum x_{1_i}}{k}$$
 and $t_{2_i} = \frac{\sum x_{2_i}}{j}$

we have:

$$t_{rise} = t_{max} - t_1$$

 $t_{fall} = t_2 - t_{max}$
 $t_{total} = t_2 - t_1$

where

$$t_1 = \frac{\Sigma t_{1_i}}{5000}, t_2 = \frac{\Sigma t_{2_i}}{5000} \text{ and } t_{max} = \frac{\Sigma t_{max_i}}{5000}$$

11

TIME RESPONSE

Figure 2: Time response for different voltages for each of the 10 Kapustinsky working fine.

TPC CALIBRATION

Run No.	Beam (GeV/c)	Trigger	No. Events	Root
434	-0.8	р	17687	proton0.8GeVc
396+403+404	0.5	e	149020	electron_0.5GeVc
397+405+406+407+408	0.5	р	154935	proton_0.5GeVc
341+343+381+384+388	0.8	e	271285	electron_0.8GeVc
344+345+386	0.8	р	203226	proton_0.8GeVc
409	1	е	100561	electron_1GeVc
414	1	р	72114	proton_1GeVc
448	2	е	87136	electron_2GeVc

Table 1: Runs used for the study

dE/dx Calibration

To distinguish between *e* and μ a good *dE/dx* resolution is required, that way you can determine the ν_e contamination of the beam.

Figure 3: dedx fit for electron 0.8GeV/c.

dE/dx Calibration

Figure 4: dedx fit for proton -0.8GeV/c.

dE/dx CALIBRATION

Figure 5: dedx resolution for electron 0.5GeV/c, 0.8GeV/c, 1GeV/c and 2GeV/c (top) and for proton -0.8GeV/c, 0.5GeV/c, 0.8GeV/c and 1GeV/c (bottom).

dE/dx Calibration

If *n* is the number of columns used each time we can fit the dE/dx resolution to:

$$\frac{\sigma(dE/dx)}{(dE/dx)} = a \, n^b$$

Root	а	σ_{a}	b	σ_b
proton0.8GeVc	95.8196	32.0744	-0.0421626	0.122499
electron_0.5GeVc	12.6706	0.176498	-0.0449464	0.00508825
proton_0.5GeVc	20.893	10.2773	-0.244829	0.195386
electron_0.8GeVc	14.3614	0.162924	-0.033886	0.00412741
proton_0.8GeVc	18.032	0.166074	-0.0259404	0.00334314
electron_1GeVc	12.3911	0.16461	-0.0449964	0.00485225
proton_1GeVc	13.2747	0.186926	-0.0436221	0.00514208
electron_2GeVc	20.7673	0.623325	-0.0625893	0.0110567

Table 2: Values of a and b for deferents runs

INTER CALIBRATION

The inter-calibration factor is because of the gain variations between the different electronics channels.

$$r = \frac{Q_{hit,pad}^{av}}{Q_{hit,all}^{av}}$$

with *r* is the inter-calibration factor, $Q_{hit,pad}^{av}$ is the average charge per hit per pad divided and $Q_{hit,all}^{av}$ the average charge per hit over all pads.

INTER CALIBRATION

Figure 7: Sum of the charge, Average charge, the inter-calibration factor (r) and after applied r for electron 1 GeV/c (top), 0.8 GeV/c (middle) and 0.5 GeV/c (bottom).

INTER CALIBRATION

Figure 8: Sum of the charge, Average charge, the inter-calibration factor (r) and after applied r for proton $1 \frac{GeV}{c}$ (top), $0.8 \frac{GeV}{c}$ (middle) and $0.5 \frac{GeV}{c}$ (bottom).

THANK YOU!

TO BE CONTINUE ...