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Current MAF results on reference problem

Problem statement

Given observed data Xobs = {x(1)obs, . . . , x
(N)
obs } coming from

some true distribution freal (x) and a scientific model f (x|θ)
with parameters θ, find θ∗ such that d (freal (x) , f (x|θ)) for
some distance/divergence d is minimized.

Bayesian approach, apply Bayes theorem on priors f (θ) to get
posterior f (θ|Xobs) after observing the data:

f (θ|Xobs) ∝ L(θ)f (θ) =
∏

xobs∈Xobs

f (xobs|θ) f (θ)

Problem: sometimes f (x|θ) is not available, we can only
sample from it given a parameter θ.
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Current MAF results on reference problem

MAF: approximating densities

Masked Autoregressive Flow is a neural network (NN) with
parameters ψ that takes as an input (θ, x) and outputs a
probability qψ(x|θ).

The NN is trained by minimizing the Kullback-Leibler
divergence between the distributions f and qψ, KL(f , qψ).
This is equivalent to maximizing with respect to ψ the
log-likelihood

∑
(θ,x) log qψ(x|θ) if we sample x ∼ f (x|θ).

If the samples are weighted, the objective function has to be
simply reweighted:

∑
(θ,x,w) w · log qψ(x|θ)

If qψ approximates f well enough, it can be used in the
Bayesian approach to obtain the posterior.
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Reference Problem

Magnitudes x = {x1, x2} and a single parameter θ with density

f (x|θ) = f (x1, x2|θ) = f (x2|x1, θ) f (x1|θ) .

The random variables and the parameter are related by:

X1 = log(Y ), Y ∼ Exp(0.2); X2/X1 ∼ Gamma(6 + θ · X 2
1 ),

The total density is

f (x1, x2|θ) =

(
1

0.2
· e− exp(x1)/0.2 + x1

)
·
x
5+θ·x21
2 e−x2

Γ(6 + θ · x21 )

Our prior is θ ∈ Unif(0, 2), and we sample the observations from
θ = 0.6.
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Problems and solutions we had in MAF in reference
problem

1. Densities over all the parameter possibilities, θ ∈ [0.0, 0.1], were
too similar:

Left: θ = 0.0. Right: θ = 0.1.
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Problems we had in MAF in reference problem

New problem was defined with θ ∈ [0.0, 2.0]

Left: θ = 0.0. Right: θ = 2.0.



7

Current MAF results on reference problem

Problems and solutions we had in MAF in reference
problem

2. Nominal density to be reweighted did not cover all the space
(θ = 1.0):
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Current MAF results on reference problem

Problems and solutions we had in MAF in reference
problem

Sample from all the space (θ, x), then define nominal distribution
as a multivariate with mean and covariance of the samples:

Left: θ = 1.0. Right: Multivariate distribution.

Why did this work?
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Results

Results: Compute posterior of θ of 100 sets of 100 observations.

Compare them to exact posterior using the Kolmogorov-Smirnov
(KS) statistics (maxium between cumulative density functions,
CDF).
Three likelihood-free methodologies were applied under the same
conditions:

MAF.

Binned MarkovChain Montecarlo.

Approximate Bayesian Computation (discarded, the results
were bad).



9

Current MAF results on reference problem

Results

Results: Compute posterior of θ of 100 sets of 100 observations.
Compare them to exact posterior using the Kolmogorov-Smirnov
(KS) statistics (maxium between cumulative density functions,
CDF).

Three likelihood-free methodologies were applied under the same
conditions:

MAF.
Binned MarkovChain Montecarlo.
Approximate Bayesian Computation (discarded, the results
were bad).



9

Current MAF results on reference problem

Results

Results: Compute posterior of θ of 100 sets of 100 observations.
Compare them to exact posterior using the Kolmogorov-Smirnov
(KS) statistics (maxium between cumulative density functions,
CDF).
Three likelihood-free methodologies were applied under the same
conditions:

MAF.

Binned MarkovChain Montecarlo.

Approximate Bayesian Computation (discarded, the results
were bad).



10

Current MAF results on reference problem

Results. 1. MAF

We trained the folllowing combinations of MAF structures:

ns mades=(5 10)

architectures=(”[5]*2” ”[20]*2” ”[20]*10”)

batch sizes=(100 500 -1)

early stoppings=(100 1000 10000)

54 combinations in total.

We compute 100 KS for each of them and sort them by mean KS
score.
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Results. 2. MCMC

30x30 bins all over the same space from min to max of nominal
values to be reweighted. Poisson distribution is assumed in each
bin.
2500 samples obtained from posterior, considering 200 first as burn
in.
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Results. MAF vs MCMC

MCMC achieved mean KS of 0.1358 with
variance of 0.0181. In 17 out of 100, MCMC
binned performed better than MAF. MAF
results were still really good in these cases:

0.0257, 0.0865, 0.0635, 0.0373, 0.0835,

0.0917, 0.0961, 0.0637, 0.0618, 0.0496,

0.0342, 0.0729, 0.1093, 0.0664, 0.0401,

0.0515, 0.083

Pearson coefficient between both KS vectors
is 0.3152.


