Matter under extreme conditions

Stefano Carignano

IFAE, February 2019

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Today's menu

- Matter at finite baryon density
- Matter at finite isospin density
- Matter with a chiral imbalance

(*matter = boring standard model stuff)

Setting the stage

(the theory)

Quantum Electrodynamics (QED)

Describes charged fermions interacting with photons

coupling constant is typically small: $\alpha_{\rm EM} \sim 10^{-2}$

Quantum Electrodynamics (QED)

Describes charged fermions interacting with photons

coupling constant is typically small: $\alpha_{\rm EM} \sim 10^{-2}$

perturbation theory viable!

Quantum Electrodynamics (QED)

Describes charged fermions interacting with photons

coupling constant is typically small: $\alpha_{\rm EM} \sim 10^{-2}$

perturbation theory viable!

Quantum Chromodynamics (QCD)

Describes quarks interacting with gluons...

... and gluons interacting with gluons...

QCD Running coupling

Up to intermediate energies, the QCD coupling is large!

Dynamical development of a characteristic scale

 $\Lambda_{QCD} \sim 200 \mathrm{MeV}$

At high energies, coupling becomes small: asymptotic freedom

QCD Running coupling

Up to intermediate energies, the QCD coupling is large!

Dynamical development of a characteristic scale

 $\Lambda_{QCD} \sim 200 \mathrm{MeV}$

At high energies, coupling becomes small: asymptotic freedom

QCD Running coupling

Up to intermediate energies, the QCD coupling is large!

Dynamical development of a characteristic scale

 $\Lambda_{QCD} \sim 200 \mathrm{MeV}$

At high energies, coupling becomes small: asymptotic freedom

QCD at low energies

Consequences of a large coupling for the QCD vacuum:

- Confinement
- Spontaneous chiral symmetry breaking
- "Non-perturbative" effects

cannot be described using perturbation theory

Confinement

Try pulling apart two quarks (or a quark-antiquark)...

Hadrons break up into other hadrons: mesons $(\bar{q}q)$ and baryons (qqq)

-> No free quarks observed

Need to think carefully about the relevant degrees of freedom!

Chiral symmetry

- For massless quarks, it's a symmetry of \mathcal{L}_{QCD}
- Formally (2f): $SU(2)_V \times SU(2)_A \equiv SU(2)_L \times SU_2(R)$

$$SU(2)_V: \qquad \psi \to e^{i\tau_a \theta^a} \psi$$
$$SU(2)_A: \qquad \psi \to e^{i\gamma^5 \tau_a \theta^a} \psi$$

Is it a good symmetry?

Chiral symmetry

- For massless quarks, it's a symmetry of \mathcal{L}_{QCD}
- Formally (2f): $SU(2)_V \times SU(2)_A \equiv SU(2)_L \times SU_2(R)$

$$SU(2)_V: \qquad \psi \to e^{i\tau_a \theta^a} \psi$$
$$SU(2)_A: \qquad \psi \to e^{i\gamma^5 \tau_a \theta^a} \psi$$

- Spontaneously broken by the QCD vacuum!
- Non-degenerate chiral partners (sigma-pion, rho-a1..)
- Goldstone modes: pions

Dynamical mass generation

 Spontaneous breaking of chiral symmetry related to dynamical mass generation

 $\delta \mathcal{L}_{\chi SB} \sim M \bar{\psi}_L \psi_R$

- Generation of a chiral condensate $\langle \bar\psi\psi\rangle$ in the QCD vacuum
- Interpretation: Strong interactions ``dress" particles and the interaction energy generates constituent masses

Extreme conditions

(=crank up the temperature/density)

temperature

"strongly coupled" confined chirally broken

temperature

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Is that all ?

Color superconductivity

 High density and low temperature: Fermi sphere of quarks

Color superconductivity

 High density and low temperature: Fermi sphere of quarks

• Weak coupling: attractive channel in 1-gluon exchange

Color superconductivity

 High density and low temperature: Fermi sphere of quarks

• Weak coupling: attractive channel in 1-gluon exchange

Cooper instability: $\langle qq \rangle \neq 0$

 Cold quark matter at (very) high density is a color superconductor!

40something years later...

(some) Open questions

- Location of the phase transition(s?)
- Order of phase transition(s?)

- (How) are the chiral symmetry and (de)confinement transitions related ?
- Does color-superconductivity reach all the way down to intermediate densities?
- Can some exotic phase appear at finite density?

Studying dense matter could be relevant for

Physics of compact stars

and heavy-ion collisions!

Intermediate densities

- From the theory side: no lattice QCD no perturbative expansions
- From the experimental side: no heavy-ion collisions there (yet!) no clear astrophysical signatures

Intermediate densities

- From the theory side: no lattice QCD no perturbative expansions
- From the experimental side: no heavy-ion collisions there (yet!) no clear astrophysical signatures

-> Physics in that region could be

Quite boring: first-order phase transition separating hadrons/QGP and that's it

Intermediate densities

- From the theory side: no lattice QCD no perturbative expansions
- From the experimental side: no heavy-ion collisions there (yet!) no clear astrophysical signatures

-> Physics in that region could be

OR

Quite boring: first-order phase transition separating hadrons/QGP and that's it

More exciting! exotic phases, several phase transitions..
Unlikely?

Who knows, think for example of water

Unlikely?

Who knows, think for example of water

The picture I usually have in my head

Unlikely?

Who knows, think for example of water

Quarkyonic matter

- Very speculative/qualitative scenario for dense matter
- Perturbative physics in the bulk, nonperturbative excitations at the Fermi surface
- Large Nc limit, dimensional reduction at the Fermi surface
- Effective theory: QCD(1+1D): favored ground state for low T is a crystal! ("chiral spirals")

How to tackle QCD at finite density?

(some) Theoretical methods for QCD at finite density

• Functional methods:

Dyson-Schwinger equations

Functional renormalization group

• Effective quark (and quark-hadron) models

NJL, Quark-meson ..

• Effective field theories

Chiral perturbation theory

(some) Theoretical methods for QCD at finite density

• Functional methods:

Dyson-Schwinger equations

Functional renormalization group

Effective quark (and quark-hadron) models

NJL, Quark-meson ..

• Effective field theories

Chiral perturbation theory

Advantages of effective models

- Built around symmetries of the full theory
- Relatively easy computations
- (Typically) Few parameters (typically) fitted to experimental data in vacuum
- Qualitatively reasonable results

Nambu—Jona-Lasinio (NJL) model

Complicated quark-gluon interaction replaced by effective four-fermion vertex with fixed coupling constant G

Simplest version: 2 flavor, scalar-pseudoscalar interaction

$$\mathcal{L}_{NJL} = \bar{\psi}i\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + G[(\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma^{5}\tau^{a}\psi)^{2}]$$

Mean-field approximation

- Typical assumption: mean-field approximation $(\bar{\psi}\psi)pprox \langle \bar{\psi}\psi
 angle$
- A constant mean-field chiral condensate acts as constituent quark mass:

$$M_q = m - 2G\langle \bar{\psi}\psi \rangle$$

 Neglecting fluctuations, it is possible to obtain the free energy of the system as a trace over the inverse quark propagator:

$$\Omega \sim \frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}(M_q)}{T} \right)$$

Chiral condensate

- Optimization problem: minimize the free energy wrt. M_q to find the ground state of the system

Chiral condensate

- Optimization problem: minimize the free energy wrt. M_q to find the ground state of the system

 As density increases, higher energy cost to form particle-antiparticle pairs -> chiral restoration

NJL phase diagram

Two-flavor, chiral transition only

Crystalline phases

- What happens if we relax the approximation of spatially constant condensates?
 -> Inhomogeneous phases
- Not a new idea: density waves in nuclear matter (1960s), p-wave pion condensation (1970s) ...
 More recently: quarkyonic chiral spirals, hints from 1+1D models (Gross-Neveu, NJL_2 ...)
- For QCD at finite density?

Inhomogeneous colorsuperconductivity

- In presence of isospin imbalance, Fermi surfaces for u,d quarks are unequal
- Favored to create Cooper pairs with nonzero total momentum
- Crystalline diquark condensate!

Inhomogeneous chiral condensates

Instead of the standard particle-antiparticle condensate...

Inhomogeneous chiral condensates

...particle-hole pairing at the Fermi surface ("density waves")

• Can occur at finite density: could be relevant at intermediate densities, close to the chiral phase transition

NJL phase diagram

 Allowing for inhomogeneous phases, we go from this...

NJL phase diagram

Allowing for inhomogeneous phases, we go ...to this

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

 $\mu \sim 315 \mathrm{MeV}$

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

- If the chiral condensate is spatially modulated, the density of the system becomes inhomogeneous as well
- For the real kink crystal

Model extensions and inhomogeneous phases

- Polyakov loop (PNJL)
- Magnetic fields
- Vector interactions
- Finite current masses
- Strange quarks

SC, D,Nickel and M.Buballa, Phys.Rev. D82 (2010) 054009

- SC, E.Ferrer, V.Incera and L.Paulucci, Phys.Rev. D92 (2015) no.10, 105018
- SC, M. Schramm and M.Buballa, Phys.Rev. D98 (2018) 014033
- M. Buballa and SC, arXiv:1809.10066
- SC and M.Buballa, WIP

• Could inhomogeneous phases be a NJL model feature - artifact ?!

 Could inhomogeneous phases be a NJL model feature - artifact ?! Unlikely, they also appear in Quark-meson model and DSE studies!

- Could inhomogeneous phases be a NJL model feature artifact ?! Unlikely, they also appear in Quark-meson model and DSE studies!
- So far: mean-field results. Fluctuations might play an important role, especially for lower-dimensional modulations!!

-> Work in progress!

- Could inhomogeneous phases be a NJL model feature artifact ?! Unlikely, they also appear in Quark-meson model and DSE studies!
- So far: mean-field results. Fluctuations might play an important role, especially for lower-dimensional modulations!!

-> Work in progress!

• Phenomenological relevance ?

-> For compact stars: SC, E.F

SC, E.Ferrer, V.Incera and L.Paulucci, Phys.Rev. D92 (2015) M.Buballa and SC, Eur.Phys.J. A52 (2016)

-> For heavy-ion collisions: SC, D.Nickel and M.Buballa, Phys.Rev. D82 (2010)

Take-home message #1

Take-home message #1

Matter at finite isospin density
Invitation: Charge neutrality

- Required for a realistic description of compact stars
- u,d quarks have different charges -> isospin imbalance

Try something simpler: $\mu_B = 0, \mu_I \neq 0$

 μ_I

Qualitative picture:

vacuum

()

Qualitative picture:

Qualitative picture:

Qualitative picture:

Qualitative picture:

Quantitatively?

Meson chiral perturbation
theory - SU(2)
$$\mathcal{L} = \frac{F_0^2}{4} \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_0^2 m_{\pi}^2}{4} \operatorname{Tr}(U^{\dagger} + U)$$

Degrees of freedom: meson fields

$$U = e^{i\frac{\phi}{2F_0}}\sum e^{i\frac{\phi}{2F_0}} \qquad \phi = \tau_a \phi^a$$

$$SU(2): \phi = \begin{pmatrix} \pi^0 / \sqrt{2} & \pi^+ \\ \pi^- & -\pi^0 / \sqrt{2} \end{pmatrix}$$

Two free parameters: F_0, m_π

External fields

Introduced through the covariant derivative

$$D_{\mu}U = \partial_{\mu}U - \frac{i}{2}[v_{\mu}, U] + \frac{i}{2}\{a_{\mu}, U\}$$

Chemical potentials too!

$$v^{\mu} = -2eQA^{\mu} - 2\mu\delta^{\mu 0}$$
$$\mu = diag\left(\frac{1}{3}\mu_{B} + \frac{1}{2}\mu_{I}, \frac{1}{3}\mu_{B} - \frac{1}{2}\mu_{I}, \frac{1}{3}\mu_{B} - \mu_{S}\right)$$

Limits of validity

Low-energy effective theory:

- Small momenta
- No baryons
- Lightest mesons only

 $\mu_B \lesssim 940 \,\mathrm{MeV}$ $\mu_I \lesssim 770 \,\mathrm{MeV} \approx 5 \, m_{\pi}$

Ground state - SU(2)

Ansatz: $\Sigma = e^{i\alpha \cdot \sigma} = \cos \alpha + i(\mathbf{n} \cdot \sigma) \sin \alpha$ $\mathbf{n} = (\cos \theta, \sin \theta, 0)$

Ground state: maximize the static part of the Lagrangian ("potential energy")

$$\mathcal{L}_{stat} = F_0^2 m_\pi^2 \cos \alpha + \frac{1}{2} F_0^2 \mu_I^2 \sin^2 \alpha (n_1^2 + n_2^2)$$

Pion condensation

When μ_I reaches m_{π} pion condensate forms!

(and the chiral condensate melts)

Son & Stephanov (2000), Kogut & Toublan (2001)

Energy density

T. Graf et al, Phys.Rev. D93 (2016)

XPT Equation of state - πc phase

$$\epsilon^{\pi c} = \frac{f_{\pi}^2 \mu_I^2}{2} \left(1 + 2\frac{m_{\pi}^2}{\mu_I^2} - 3\frac{m_{\pi}^4}{\mu_I^4} \right)$$

$$\epsilon(P) = 2\sqrt{P(2F_0^2m_\pi^2 + P)} - P$$

Comparison with lattice ?

Energy density

T. Graf et al, Phys.Rev. D93 (2016)

Energy density

Lowest order XPT already gives surprisingly good agreement!

SC, A. Mammarella and M. Mannarelli, Phys. Rev. D 93 (2016)

Peak

Peak position

$$\mu_I^{peak} = \left(\sqrt{13} - 2\right)^{1/2} m_\pi \approx 1.28 \, m_\pi$$

Parameter-independent!

Continuum-extrapolated lattice result:

$$\mu_I^{peak} = 1.3 \, m_\pi$$

NLO Lagrangian

 $\mathcal{L} = \frac{F_0^2}{\Lambda} \operatorname{Tr}[D_{\mu}U(D^{\mu}U^{\dagger})] + \frac{F_0^2}{\Lambda} \operatorname{Tr}\left(\chi U^{\dagger} + U\chi^{\dagger}\right)$ $+ L_1 \left\{ \mathrm{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] \right\}^2$ + $L_2 \operatorname{Tr} \left[D_{\mu} U (D_{\nu} U)^{\dagger} \right] \operatorname{Tr} \left[D^{\mu} U (D^{\nu} U)^{\dagger} \right]$ + $L_3 \text{Tr} \left[D_{\mu} U (D^{\mu} U)^{\dagger} D_{\nu} U (D^{\nu} U)^{\dagger} \right]$ + $L_4 \operatorname{Tr} \left[D_{\mu} U (D^{\mu} U)^{\dagger} \right] \operatorname{Tr} \left(\chi U^{\dagger} + U \chi^{\dagger} \right)$ + $L_5 \text{Tr} \left[D_{\mu} U (D^{\mu} U)^{\dagger} (\chi U^{\dagger} + U \chi^{\dagger}) \right]$ $+L_6 \left[\operatorname{Tr} \left(\chi U^{\dagger} + U \chi^{\dagger} \right) \right]^2$ $+L_7 \left[\operatorname{Tr} \left(\chi U^{\dagger} - U \chi^{\dagger} \right) \right]^2$ $+ L_8 \text{Tr} \left(U \chi^{\dagger} U \chi^{\dagger} + \chi U^{\dagger} \chi U^{\dagger} \right)$ $-iL_9 \operatorname{Tr} \left[f^R_{\mu\nu} D^{\mu} U (D^{\nu} U)^{\dagger} + f^L_{\mu\nu} (D^{\mu} U)^{\dagger} D^{\nu} U \right]$ $+ L_{10} \operatorname{Tr} \left(U f_{\mu\nu}^{L} U^{\dagger} f_{R}^{\mu\nu} \right)$

In principle: 2+10
free parameters

("low-energy constants")

NLO ground state

In practice:

$$\mathcal{L} = F_0^2 m_\pi^2 \cos \alpha + \frac{F_0^2}{2} \mu_I^2 \sin^2 \alpha + 2\mu_I^4 (2L_1 + 2L_2 + L_3) \sin^4 \alpha + 4\mu_I^2 m_\pi^2 (2L_4 + L_5) \sin^2 \alpha \cos \alpha + 4m_\pi^4 \left[(4L_6 + L_8) \cos^2 \alpha - L_8 \sin^2 \alpha \right]$$

Parameters only enter in given combinations!

$$(2L_1 + 2L_2 + L_3) = a_0 \epsilon$$

 $(2L_4 + L_5) = b_0 \epsilon$ $\epsilon = 10^{-3}$
 $(2L_6 + L_8) = c_0 \epsilon$

Energy density

Energy density

(Effectively a (2+1)-parameter fit -> can use lattice to fix LEC!)

SC. L.Lepori, A.Mammarella, M.Mannarelli and G.Pagliaroli, Eur.Phys.J. A53 (2017)

Take-home message #2

- Mesonic chiral perturbation theory is a powerful tool for describing strong interaction matter at finite isospin densities
- Peculiar shape of energy density curve very well reproduced by chiral perturbation theory
- Overlap of different methods possibility to benchmark them against each other!
- Using LQCD to fix low-energy constants

Chiral plasmas

Chiral plasma

- System of massless fermions at finite temperature/density
- Could be relevant for
 - Heavy-ion collisions
 - Weyl-Dirac semimetals
 - Astrophysical scenarios
- Lots of new physics! Especially when chiral imbalanced (chiral magnetic effect, plasma instabilities...)

Theoretical framework

- Keep things simple: QED
- Introduce temperature/density: multi-scale problem (g, T..)
- Do perturbative computations behave well in thermal field theory?

Separation of scales a fundamental concept in thermal FT

For a system at high temperature:

hard scale ~ T

soft scale ~ $g\,T$

($g \ll 1$)

Separation of scales a fundamental concept in thermal FT

For a system at high temperature:

hard scale ~ T

soft scale ~ $g\,T$

($g \ll 1$)

Now consider eg. photon self-energy

Leading contribution comes from hard loop momenta Q ~ T

$$\Pi_{HTL} \sim g^2 T^2$$

For a soft photon momentum...

For a soft photon momentum...

For a soft photon momentum...

Breakdown of perturbation theory: for soft external momenta, one-loop hard thermal corrections as relevant as tree amplitudes

Resummation is required !

Hard thermal loops

• HTL resummation: include (hard) correction into (soft) propagators

$$\begin{split} \Pi_{(1)}^{L} &= -\frac{m_D^2}{2} \left(1 - \frac{l_0}{2l} \log \frac{l_0 + l}{l_0 - l} \right) \\ \Pi_{(1)}^{T} &= -\frac{m_D^2}{2} \left[1 + \frac{L^2}{l^2} \left(1 - \frac{l_0}{2l} \log \frac{l_0 + l}{l_0 - l} \right) \right] \end{split}$$

 $m_D^2 \sim g^2 T^2$ Debye ("thermal") mass

Can we go beyond this? -> Power corrections

Deriving HTL corrections

Start from photon self-energy:

HTL computation

One arrives at $\Pi_{R}^{\mu\nu}(L) = e^{2} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1 - 2n_{F}(q)}{q} \left(\frac{2qv^{\mu}v^{\nu} - (v^{\mu}L^{\nu} + v^{\nu}L^{\mu}) + g^{\mu\nu} \quad v \cdot L}{v \cdot L - \frac{L^{2}}{2q} + i \operatorname{sgn}(q - l_{0})\eta} - \frac{2q\tilde{v}^{\mu}\tilde{v}^{\nu} - (\tilde{v}^{\mu}L^{\nu} + \tilde{v}^{\nu}L^{\mu}) + g^{\mu\nu}\tilde{v} \cdot L}{\tilde{v} \cdot L + \frac{L^{2}}{2q} + i \operatorname{sgn}(q + l_{0})\eta} \right)$

Leading contribution from hard (q ~ T) on-shell particles

HTL computation

One arrives at

$$\Pi_{R}^{\mu\nu}(L) = e^{2} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1 - 2n_{F}(q)}{q} \left(\frac{2qv^{\mu}v^{\nu} - (v^{\mu}L^{\nu} + v^{\nu}L^{\mu}) + g^{\mu\nu}}{v \cdot L - \frac{L^{2}}{2q}} + i \operatorname{sgn}(q - l_{0})\eta - \frac{2q\tilde{v}^{\mu}\tilde{v}^{\nu} - (\tilde{v}^{\mu}L^{\nu} + \tilde{v}^{\nu}L^{\mu}) + g^{\mu\nu}\tilde{v} \cdot L}{\tilde{v} \cdot L + \frac{L^{2}}{2q}} + i \operatorname{sgn}(q + l_{0})\eta} \right)$$

now expand for large q the integrand...

QED photon self-energy

One finds

 $\Pi_{(1)}^{L} = -\frac{m_D^2}{2} \left(1 - \frac{l_0}{2l} \log \frac{l_0 + l}{l_0 - l} \right)$ $\Pi_{(1)}^{T} = -\frac{m_D^2}{2} \left[1 + \frac{L^2}{l^2} \left(1 - \frac{l_0}{2l} \log \frac{l_0 + l}{l_0 - l} \right) \right]$

 $\Pi_{(3)}^{L} = \frac{\alpha}{3\pi} \left[\frac{l^2}{\epsilon} + 2l^2 \left(\ln \frac{\sqrt{\pi}T e^{-\gamma_E/2}}{2\nu} - 1 \right) + \left(2l^2 - L^2 \right) \left(1 - \frac{l_0}{2l} \ln \frac{l_0 + l}{l_0 - l} \right) \right]$ $\Pi_{(3)}^{T} = \frac{2\alpha L^2}{3\pi} \left[\frac{1}{2\epsilon} + \left(\ln \frac{\sqrt{\pi}T e^{-\gamma_E/2}}{2\nu} - 1 \right) + \frac{1}{4} + \left(1 + \frac{L^2}{4l^2} \right) \left(1 - \frac{l_0}{2l} \ln \frac{l_0 + l}{l_0 - l} \right) \right]$

SC, Manuel & Soto, PLB780 (2018)

Missing stuff

We computed one power correction $\, \sim e^2 \,$ of the HTL result

Is it the full story?

No! two-loop diagrams equally important

Mirza & Carrington, PRD 87

....so not the full story (but still one necessary piece!)
All in all a nasty computation...

... can we figure out a way to make our lives easier ?

The hint:

For many quantities in thermal field theory the relevant degrees of freedom are on-shell (quasi)particles

The idea:

An EFT to describe physical phenomena dominated by (almost) on-shell degrees of freedom

-> On-shell effective field theory

The idea:

An EFT to describe physical phenomena dominated by (almost) on-shell degrees of freedom

For massless fermions: $Q^2 \approx 0$ Particles: $q^{\mu} = pv^{\mu} + k^{\mu}$ Antiparticles: $q^{\mu} = -p\tilde{v}^{\mu} + k^{\mu}$ $v^{\mu} = (1, \vec{v})$ $v^{2} = \tilde{v}^{2} = 0$ k << p

Manuel & Torres-Rincon, PRD90 (2014)

The idea:

An EFT to describe physical phenomena dominated by (almost) on-shell degrees of freedom

Manuel & Torres-Rincon, PRD90 (2014)

The idea:

An EFT to describe physical phenomena dominated by (almost) on-shell degrees of freedom

Manuel & Torres-Rincon, PRD90 (2014)

OSEFT Lagrangian

1) Split fermion field (almost) on-shell antiparticle $\psi_{\mathbf{v}} = e^{-ipv \cdot x} \left(P_v \chi_v(x) + P_{\tilde{v}} H_{\tilde{v}}^{(1)}(x) \right) + e^{ip\tilde{v} \cdot x} \left(P_{\tilde{v}} \xi_{\tilde{v}}(x) + P_v H_v^{(2)}(x) \right)$ (almost) on-shell particle

$$P_{v} = \frac{1}{2} \gamma \cdot v \gamma_{0} ,$$
$$P_{\tilde{v}} = \frac{1}{2} \gamma \cdot \tilde{v} \gamma_{0}$$

OSEFT Lagrangian

1) Split fermion field

$$\psi_{\mathbf{v}} = e^{-ipv \cdot x} \left(P_v \chi_v(x) + P_{\tilde{v}} H_{\tilde{v}}^{(1)}(x) \right) + e^{ip\tilde{v} \cdot x} \left(P_{\tilde{v}} \xi_{\tilde{v}}(x) + P_v H_v^{(2)}(x) \right)$$
2) Integrate out the H fields

OSEFT and other EFT

OSEFT and other EFT

Compare with High-density effective field theory (HDET)..

$$\mathcal{L}_{\text{HDET}} = \psi^{\dagger}(x) \left(i v \cdot D + i \not D_{\perp} \frac{1}{2\mu + i \tilde{v} \cdot D} i \not D_{\perp} \right) \psi(x)$$

.. or heavy-quark effective field theory (HQET)..

$$\mathcal{L}_{v} = \bar{Q}_{v} \left\{ iv \cdot D + i \not{\!\!D}_{\perp} \frac{1}{2m + iv \cdot D} i \not{\!\!D}_{\perp} \right\} Q_{v}$$

OSEFT and other EFT

$$\mathcal{L}_{p,\mathbf{v}} = \chi_{v}^{\dagger}(x) \left(i v \cdot D + i \mathcal{D} \underbrace{2p + i \tilde{v} \cdot D}_{2p + i \tilde{v} \cdot D} i \mathcal{D}_{\perp} \right) \chi_{v}(x) + \xi_{\tilde{v}}^{\dagger}(x) \left(i \tilde{v} \cdot D + i \mathcal{D}_{\perp} \frac{1}{-2p + i v \cdot D} i \mathcal{D}_{\perp} \right) \xi_{\tilde{v}}(x)$$

Compare with High-density effective field theory (HDET)..

$$\mathcal{L}_{\text{HDET}} = \psi^{\dagger}(x) \left(i v \cdot D + i \not D \underbrace{2\mu + i \tilde{v} \cdot D}_{2\mu + i \tilde{v} \cdot D} i \not D_{\perp} \right) \psi(x)$$
..or heavy-quark effective field theory (HQET)..
$$\mathcal{L}_{v} = \bar{Q}_{v} \left\{ i v \cdot D + i \not D \underbrace{2m + i v \cdot D}_{2m + i v \cdot D} i \not D_{\perp} \right\} Q_{v}$$

In practice: expand our Lagrangian in powers of 1/p ...

$$\mathcal{L}_{p,\mathbf{v}} = \chi_v^{\dagger}(x) \left(i v \cdot D + i \not D_{\perp} \frac{1}{2p + i \tilde{v} \cdot D} i \not D_{\perp} \right) \chi_v(x)$$

$$=\sum_{n}\mathcal{L}_{p,v}^{(n)}$$

In practice: expand our Lagrangian in powers of 1/p ...

$$\mathcal{L}_{p,v}^{(0)} \;= \chi_v^\dagger \left(i \, v \cdot D \,
ight) \chi_v$$

In practice: expand our Lagrangian in powers of 1/p ...

$$\mathcal{L}_{p,v}^{(0)} = \chi_v^{\dagger} \left(i \, v \cdot D \right) \chi_v$$

$$\mathcal{L}_{p,v}^{(1)} - \frac{1}{2p} \chi_v^{\dagger} \left(D_{\perp}^2 - \frac{e}{2} \sigma_{\perp}^{\mu\nu} F_{\mu\nu} \right) \chi_v$$

In practice: expand our Lagrangian in powers of 1/p ...

$$\mathcal{L}_{p,v}^{(0)} = \chi_v^{\dagger} \left(i \, v \cdot D \right) \chi_v$$

$$\mathcal{L}_{p,v}^{(1)} - \frac{1}{2p} \chi_v^{\dagger} \left(D_\perp^2 - \frac{e}{2} \sigma_\perp^{\mu\nu} F_{\mu\nu} \right) \chi_v$$

$$\mathcal{L}_{p,v}^{(2)} = \frac{1}{8p^2} \chi_v^{\prime\dagger} \Big(\left[\not\!\!D_\perp, \left[i \vec{v} \cdot D, \not\!\!D_\perp \right] \right] - \Big\{ (\not\!\!D_\perp)^2, \left(i v \cdot D - i \vec{v} \cdot D \right) \Big\} \Big) \chi_v^{\prime}$$

ugliness intensifies..

Propagators and vertices

Real-time (Keldysh) propagators in OSEFT:

$$S^{R/A}(k) = \frac{P_v \gamma_0}{k_0 \pm i\epsilon - f(\mathbf{k})},$$

$$S^S(k) = P_v \gamma_0 \left(-2\pi i \delta(k_0 - f(\mathbf{k})) \left(1 - 2n_f(p + k_0)\right)\right)$$

dispersion relation (order (2)):
$$f^{(2)}(\mathbf{k}) = k_{\parallel} + \frac{\mathbf{k}_{\perp}^2}{2p} - \frac{k_{\parallel}\mathbf{k}_{\perp}^2}{2p^2}$$

Additional vertex from O(1/p):

Applications

• Derivation of power corrections to Hard Thermal Loops

-> C. Manuel, J. Soto and S. Stetina, Phys.Rev. D94 (2016)

Applications

• Derivation of power corrections to Hard Thermal Loops

-> C. Manuel, J. Soto and S. Stetina, Phys.Rev. D94 (2016)

• Kinetic theory

Chiral kinetic theory

 Kinetic theory for massless fermions describing evolution of quasi-particle distribution functions

- Chiral anomaly has macroscopic effects on transport (chiral magnetic effect, chiral vortical effect...)
- What is the correct kinetic equation to describe these effects ?

Chiral kinetic theory and OSEFT

Transport equations describe propagation of on-shell quasiparticles

OSEFT works with on-shell degrees of freedom

Chiral kinetic theory and OSEFT

Transport equations describe propagation of on-shell quasiparticles

OSEFT works with on-shell degrees of freedom

Anomaly is a quantum effect: can be formulated in terms of Berry curvature/phase...

OSEFT provides a systematic way to include quantum corrections!

Chiral kinetic theory and OSEFT

Transport equations describe propagation of on-shell quasiparticles

OSEFT works with on-shell degrees of freedom

Anomaly is a quantum effect: can be formulated in terms of Berry curvature/phase...

OSEFT provides a systematic way to include quantum corrections!

OSEFT seems to be the perfect tool to derive the equations of chiral kinetic theory!

The recipe

- Build order-by-order equations of motions for the two-point function starting from the OSEFT Lagrangian formulated in a general covariant frame
- Perform a Wigner transform, add link operators to make results gauge-invariant
- Make sure you've had enough coffee because equations are lengthy and it's easy to miss factors of 2
- Go back from the EFT variables to full momenta

Chiral kinetic theory

Covariant form of the transport equation

$$\left(v_{\mu}^{q} - \frac{e}{2E_{q}^{2}}S_{\chi}^{\mu\nu}F_{\nu\rho}\left(2u^{\rho} - v_{q}^{\rho}\right)\right)\Delta_{\mu}f(X,q)\delta_{+}(Q) = 0$$

with
$$v^q_\mu = \frac{q^\mu}{E_q}$$
 $E_q = q \cdot u$

$$\Delta^{\mu} \equiv \partial_X^{\mu} - eF^{\mu\nu}(X)\partial_{q,\nu}$$

SC, Manuel & Torres-Rincon, PRD 98 (2018)

CKT and beyond

With OSEFT one can

Derive kinetic equations for a chiral plasma

Check Lorentz invariance (= reparametrization invariance) of the results

Derive the current and the anomalous current

Recover the chiral anomaly equation

SC, Manuel & Torres-Rincon, PRD 98 (2018)

Chiral plasma instabilities

- A chirally imbalanced plasma could develop instabilities leading to the reduction of the chiral charge ~ n_5
- It has been argued that this could result in generation of axial magnetic fields in the early universe and in proto-neutron stars
- Can we see this instability by inspecting the lifetime of a fermion in such a system?

Fermion damping

Fermion propagating through a hot/dense plasma

For simplicity: consider QED

Interactions with the medium: decay (damping)

(only at finite temperature)

Fermion damping

Fermion damping $P \qquad \swarrow \qquad \checkmark \lor \lor \lor \lor$ $\gamma_{\chi}(E) = -\frac{1}{2E} \operatorname{Tr} \left[\mathcal{P}_{\chi} \mathcal{P} \operatorname{Im} \Sigma(p_0 + i\eta, \mathbf{p}) \right] \Big|_{p^0 = E}$

Fermion damping

$$\gamma_{\chi}(E) = -\frac{1}{2E} \operatorname{Tr} \left[\mathcal{P}_{\chi} \not P \operatorname{Im} \Sigma(p_0 + i\eta, \mathbf{p}) \right] \Big|_{p^0 = E}$$

Leading contribution from soft photon momenta: need HTL resummed propagator!

Photon self-energy with chiral imbalance

$$\mu_R = \mu_V + \mu_5 \neq \mu_L = \mu_V - \mu_5$$

Fermion loop with asymmetric contributions from different chiralities generates parity-violating contribution to the self-energy

-> Different propagation of transverse modes!

Photon self-energy with chiral imbalance

Fermion damping in chiral imbalanced system

$$\mathcal{P}_{\mu\nu}^{T,h} = \frac{1}{2} \Big(\delta^{ij} - \hat{q}^i \hat{q}^j - ih \epsilon^{ijk} \hat{q}^k \Big) \delta_{\mu i} \delta_{\nu j}$$

Fermion damping in chiral imbalanced system

After some massaging and expanding...

$$\begin{split} \gamma_{\chi}^{\text{soft}} &\simeq \frac{e^2}{2} \int \frac{d^3 q}{(2\pi)^3} \Big(\Theta(q_0) - \Theta(\mu_{\chi} - E + q_0) \Big) \Theta(q^* - q) \\ &\times \left\{ \rho_L(Q) \Big(1 - \frac{q_0}{E} \Big) + \frac{1}{2} (1 - \cos^2 \theta) \right. \\ &\left. \times \sum_{h=\pm} \left[\Big(1 - \chi h \frac{q}{E} \Big) \rho_T^h(Q) \Big] \right\} \Big|_{q_0 = q \cos \theta} \end{split}$$

SC and C.Manuel, arXiv:1811.06394

Fermion damping in chiral imbalanced system

Leading chemical potential dependence ($\mu_{\chi} = \mu_{V} + \chi \mu_{5}$)

$$\begin{split} \gamma_{\chi}^{\text{soft}} &\simeq \frac{e^2}{2} \int \frac{d^3 q}{(2\pi)^3} \Big(\Theta(q_0) - \Theta(\mu_{\chi} + E + q_0) \Big) \Theta(q^* - q) \\ &\times \left\{ \rho_L(Q) \Big(1 - \frac{q_0}{E} \Big) + \frac{1}{2} (1 - \cos^2 \theta) \right. \\ &\left. \times \sum_{h=\pm} \left[\Big(1 - \chi h \frac{q}{E} \Big) \rho_T^h(Q) \Big] \right\} \bigg|_{q_0 = q \cos \theta} \end{split}$$

SC and C.Manuel, arXiv:1811.06394
Fermion damping in chiral imbalanced system

At Fermi surface damping is zero!

$$\begin{split} \gamma_{\chi}^{\text{soft}} &\simeq \frac{e^2}{2} \int \frac{d^3 q}{(2\pi)^3} \Big(\Theta(q_0) - \Theta(\mu_{\chi} - E + q_0) \Big) \Theta(q^* - q) \\ &\times \left\{ \rho_L(Q) \Big(1 - \frac{q_0}{E} \Big) + \frac{1}{2} (1 - \cos^2 \theta) \right. \\ &\times \left. \sum_{h=\pm} \left[\Big(1 - \chi h \frac{q}{E} \Big) \rho_T^h(Q) \Big] \right\} \bigg|_{q_0 = q \cos \theta} \end{split}$$

SC and C.Manuel, arXiv:1811.06394

Fermion damping in chiral imbalanced system

$$\begin{split} \gamma_{\chi}^{\text{soft}} &\simeq \frac{e^2}{2} \int \frac{d^3 q}{(2\pi)^3} \Big(\Theta(q_0) - \Theta(\mu_{\chi} - E + q_0) \Big) \Theta(q^* - q) \\ &\times \left\{ \rho_L(Q) \Big(1 - \frac{q_0}{E} \Big) + \frac{1}{2} (1 - \cos^2 \theta) \\ &\times \sum_{h=\pm} \left[\Big(1 - \Big(\chi h \frac{q}{E} \Big) \rho_T^h(Q) \Big] \right\} \right|_{q_0 = q \cos \theta} \\ &\text{Fermions couple differently with transverse photons} \\ &\text{depending on their chirality} \end{split}$$

Fermion damping

Close to the Fermi surface chirality-dependent effects turn out to be subleading

Same behavior as symmetric case

$$\gamma_{\chi}(E) = \frac{e^2}{24\pi} (E - \mu_{\chi}) + \dots$$

Away from the Fermi surface: full numerical result

Fermion damping

SC and C.Manuel, arXiv:1811.06394

Fermion damping

SC and C.Manuel, arXiv:1811.06394

Take-home message #3

- Chiral plasmas provide a nice playground for new physical effects with several real-world applications
- OSEFT is a nice tool to simplify our lives (or at least give us some guidance) in thermal field theory computations

 Still a lot of work to be done: maybe some (more or less accepted) ideas need rethinking

Inhomogeneous chiral condensates in NJL

• Allow for a spatially modulated chiral condensate

 $\langle \bar{\psi}\psi\rangle = S(\mathbf{x}) \qquad \langle \bar{\psi}i\gamma^5\tau_a\psi\rangle = P_a(\mathbf{x})$

(we can also build $M(\mathbf{x}) = -2G(S(\mathbf{x}) + iP_3(\mathbf{x}))$

 Diagonalize the mean-field quark Hamiltonian in momentum space

$$\mathcal{H}_{\vec{p}_m,\vec{p}_n} = \begin{pmatrix} -\vec{\sigma} \cdot \vec{p}_m \,\delta_{\vec{p}_m,\vec{p}_n} & \sum_{\vec{q}_k} M_{\vec{q}_k} \,\delta_{\vec{p}_m,\vec{p}_n + \vec{q}_k} \\ \sum_{\vec{q}_k} M_{\vec{q}_k}^* \,\delta_{\vec{p}_m,\vec{p}_n - \vec{q}_k} & \vec{\sigma} \cdot \vec{p}_m \,\delta_{\vec{p}_m,\vec{p}_n} \end{pmatrix}$$

Inhomogeneous chiral condensates in NJL

• Then, minimize the thermodynamic potential

$$\Omega(T,\mu;M(\vec{x})) = -\frac{T}{V} \operatorname{Log} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x\in[0,\frac{1}{T}]\times V} (\mathcal{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$
$$= -\frac{TN_{c}}{V} \sum_{n} \operatorname{Tr}_{D,f,V} \operatorname{Log} \left(\frac{1}{T} \left(i\omega_{n} + \mathcal{H}_{MF} - \mu\right)\right) + \frac{1}{V} \int_{V} \frac{|M(\vec{x}) - m|^{2}}{4G_{s}}$$

with respect to the mass function M(x)

Inhomogeneous chiral condensates in NJL

• Then, minimize the thermodynamic potential

$$\Omega(T,\mu;M(\vec{x})) = -\frac{T}{V} \operatorname{Log} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x\in[0,\frac{1}{T}]\times V} (\mathcal{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$
$$= -\frac{TN_{c}}{V} \sum_{n} \operatorname{Tr}_{D,f,V} \operatorname{Log} \left(\frac{1}{T} \left(i\omega_{n} + \mathcal{H}_{MF} - \mu\right)\right) + \frac{1}{V} \int_{V} \frac{|M(\vec{x}) - m|^{2}}{4G_{s}}$$

with respect to the mass function M(x)

- Not so easy for an arbitrary M(x) !
- To make the problem tractable, assume specific ansatz for the functional form of M, minimize thermodynamic potential, compare free energies for different modulations...

- Tackling arbitrary modulations is numerically intensive
- Can we avoid having to diagonalize the quark hamiltonian?

- Tackling arbitrary modulations is numerically intensive
- Can we avoid having to diagonalize the quark hamiltonian?

Ginzburg-Landau expansion of the free energy:

- Systematic expansion in terms of order parameter and its gradients
- For inhomogeneous phases, expected to be valid where both amplitudes and gradients are small

$$\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int d\mathbf{x} \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) + \alpha_8 \left(M^8 + 14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]$$

D.Nickel, Phys.Rev.Lett.103 (2009) H.Abuki, D.Ishibashi, K.Suzuki, Phys.Rev.D85 (2012)

$$\Omega_{\rm G} = \Omega[0] + \frac{1}{V} \int d\mathbf{x} \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) + \alpha_8 \left(M^8 + 14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]$$

Restored +

$$\Omega_{\rm G} = \Omega[0] + \frac{1}{V} \int d\mathbf{x} \left[\alpha_2 M^2 \right) \left(\alpha_4 \left(M^4 \right) (\nabla M)^2 \right) + \left(\alpha_6 \left(M^6 \right) 3 (\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) \\ + \alpha_8 \left(M^8 \right) 14 M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]$$

Restored + "homogeneous" +

Restored + "homogeneous" + gradient terms

 In principle straightforward: for each order add all possible independent terms (considering gradients are of the same order as M)

$$\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int d\mathbf{x} \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) \right] \\ + \alpha_8 \left(M^8 + 14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]$$

• GL coefficients $\alpha_n(T,\mu)$ are independent from the shape of the modulation -> can be computed relatively easily in a chirally restored background!

$$\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int d\mathbf{x} \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M \left(+ 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) \right. \\ \left. + \alpha_8 \left(M^8 + 14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]$$

- GL coefficients $\alpha_n(T,\mu)$ are independent from the shape of the modulation -> can be computed relatively easily in a chirally restored background!
- But: calculating the relative prefactors between terms of the same order is an extremely tedious task.. There are tricks, however. _{SC, M. Mannarelli, F. Anzuini, O.Benhar, Phys.Rev.D97 (2018)}