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Introduction: Amplitudes

Objective of amplitude community:
Study a priori known objects from different perspective

Example in mind: gluon amplitudes
@ 1986: Parke and Taylor calculated 6-point gluon-scattering
@ simplification: tree-level, no-fermions
@ final result: extremely simple

@ other way of calculation?
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Example: gluon amplitudes
standard method of calculating n-gluon scattering processes:
@ dominated by pure-gluon interactions in QCD

@ elementary 3pt and 4pt vertices

@ construct all possible Feynman diagrams, e.g. 9pt:

@ complicated already for the tree level diagrams even for small
number of external legs
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History: gluon amplitude, tree-level

e 3pt: 1 diagram, on-shell =0
@ 4pt: 4 diagrams can be calculated by hand:

zzgj’mm@is 3?}m€i2 422%)7}7&?&@223 z%;;j
1 4 1 4 1 2

intermediate steps complicated but differential cross section nice
@ 5pt: calculated in '80, calculation blows up on several pages

7o, e

structure of the numerators, schematically:
double-propagator: (p; - p;)(pk - €)(€ - €)(€ - €),
single-propagator: (pg - €)(€ - €)(€ - €),

@ 6pt: impossible by standard methods, but...
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History: gluon amplitude, tree-level, 6pt

SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Ne I Accele Lab ry, P.O. Box 500, Batavia, IL 60510 USA

Recceived 13 September 1985

The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.

Theoretical predictions for four-jet production at hadron colliders allow detailed
tests of QCD. Moreover, at SSC energies, four jets become a serious background
to many interesting processes which probe new physics, e.g. pair production of
electroweak bosons [1]. Hence a detailed knowledge of four-jet event characteristics
is crucial for good background rejection. Although some individual contributions
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon
to four-gluon scattering, which is the dominant contribution for a wide range of
subprocess energies, has remained beyond the scope of previous computational
techniques. Here we outline our calculation of the cross section for this process, in
the tree approximation of perturbative QCD. The final cross section is presented in
a form suitable for fast numerical calculations.

Our calculation makes use of techniques developed in ref. [3], based on the
application of extended supersymmetry. We adopt the convention that all particles
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.

Indeed it was given a year later [Parke, Taylor '86] for the MHV:

(12)*
(12)(23) ... (nl)

Ap(——+...+H) =

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke, Xu '87]

(ig) = \/|2pi - pjle’®

Is there some better way to calculate?
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Example: gluon amplitudes

Important simplification at tree level:

. . . 1 .
@ colour ordering — stripped amplitude n

Mf1--an (p17 N pn) _ Z Tr(taa(l) .. taa("))Mg(pl, ...

0/Zn

L Mg(pg(l), RN 7pa(n)) = M(pl, ce ,pn) = M(1,2, .. n)
@ propagators = the only poles of M,

@ thanks to ordering the only possible poles are:

Pl =pi+pis1+...+pj—1+p))°

. Pn)
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Pole structure

Weinberg's theorem (one particle unitarity): on the factorization channel

1
lim M(1 M ( l Mg(l 1,.
qugo Z L Ji 1) % Pz x Mgr(l,j+1,...n)
J J+l
[ [
2
1 n
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten '05]

Reconstruct the amplitude from its poles (in complex plane)

@ shift in two external momenta
pi = pi + 2q, p; =7 Pj—2q
@ keep p; and p; on-shell, i.e.
2 _ _ _
¢ =qpi=qp=0

e amplitude becomes a meromorphic function A(z)
@ only simple poles coming from propagators P,;(2)

e original function is A(0)
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Imz

BCFW relations: factorization channels

S0

Cauchy's theorem

1 @A(z) _A(O)JFZMSZLZ’C)
k

2mi z
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Imz

BCFW relations: factorization channels

S0

Cauchy's theorem

0L MA(Z)—A(O)—%ZI%SZW
k

2 ) oz
If A(z) vanishes for z — oo

A=A@)=- Yy et (Zf )
k
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BCFW relations

P2(2)=0 if one and only one i (or j) in (a,a+1,...,b).
Suppose i € (a,...,b) Z j

P2(2)= pa+. - +pic1 +Di+ 20 +pis1 + ... +pp)° =
— P2 1 2¢ Pyz= 0

solution
I 2b 2 2b
Zab = — = = P35 (z) = Wz — Zab
a 2(q . Pab) ab( ) Zab ( a )
Thus

Res A Zab ZA Zab P x Aj (Zab)
ab

and for allowed helicities it factorizes into two subamplitudes
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BCFW relations

Using Cauchy's formula, we have finally as a result
A= A7k L A%k
= Z L (Zk)P_,f 7 (21)
k,s

based on two-line shift (convenient choice: adjacent i,5)
recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW Example: gluon amplitudes

# od diagrams for n-body gluon scatterings at tree level

n |3/4]5 |6 | 7 | 8
# diagrams (inc.crossing) || 1 | 4 | 25 | 220 | 2485 | 34300
# diagrams (col.ordered) || 1 | 3| 10 | 38 | 154 654
# BCFW terms -11] 2 3 6 20

[C.Cheung: TASI Lectures '17]

13/42



BCFW recursion relations: problems

We have assumed that
A(z) — 0, for zZ — 00

More generally we have to include a boundary term in Cauchy’s theorem.

This is intuitively clear: we can formally use the derived BCFW recursion
relations to obtain any higher n amplitude starting with the leading
interaction. But this does not have to be the correct answer.
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BCFW recursion relations: problems
example: scalar-QED

1 1
L= _ZF;WFMV - |D¢>|2 - 1)‘|¢|4

Due to the power-counting the boundary term is proportional to
B~ 22—\

In order to eliminate the boundary term we have to set A = 2¢2, then the
original BCFW works.

l.e. we needed some further information (e.g. supersymmetry) to
determine the X piece.

15/42



Effective field theories
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Effective field theories: general picture
Now we have infinitely many unfixed “A" terms. Schematically

L= 1(09)% + M\i(8™ )" + A6 (9™6)5 + ...

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

Me= Y AiﬁJr/\G(...)

I=poles
A part: not fixed by the pole behaviour.
Task: to find a condition in order to link these two terms
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Effective field theories: introduction

Usual steps:

Symmetry — Lagrangian — Amplitudes — physical quantities

(cross-section, masses,
decay constants, ...)

In our work — opposite direction:

Amplitudes — physical quantities (— Lagrangian — Symmetry)
Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny, Chia-Hsien
Shen, Jaroslav Trnka and Congkao Wen
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Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.
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Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for three-particle amplitude

(12)hs=hi=h2(93yh=ha=hs (31)ha=hs=h1 = 53p, <

h
A(1hi2h23hs) :{ 1]/ e [ag]haths =i gphstinhe - mp, > 0

n.b. again the spinor-helicity notation, e.g. p; - p; ~ (ij)[i]]

18/42



Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for three-particle amplitude

(12)hs=hi=h2(93yh=ha=hs (31)ha=hs=h1 = 53p, <

A(1highe3hs) :{ 1]/ e [ag]haths =i gphstinhe - mp, > 0

n.b. again the spinor-helicity notation, e.g. p; - p; ~ (ij)[i]]
For scalars (h; = 0) this is a constant - corresponding to L;n; = 3.

All derivatives can be removed by equations of motions (boxes)

Lint = (O .. 000)(0%...0°0)0 —  Lin = (T8)(...)
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Effective field theories: scalar theories
We start with (m counts number of derivatives)
Lint = A" ¢

n.b. we want to connect this four-point vertex with the 6-point contact
terms

This rules out again the no-derivative terms, as the powercounting
dictates: 1
m m 2m—2 ;6
o™ x 2 X 0 — 0 10)

and we have to start at least with m = 2, i.e. two derivatives
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Simplest example: two derivatives, single scalar

L=10,00"¢ + MO " + X60°¢° + . ..

How to connect A4 and \g?
Well Lagrangian, an infinite series, looks complicated, but it is not the
case. It represents a free theory:

L=10,00"¢(1+\p>+...)
F(¢)

F(¢) can be removed by a field redefinition
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Simplest example: two derivatives, single scalar

L=10,00"¢ + MO " + X60°¢° + . ..

How to connect A4 and \g?
Well Lagrangian, an infinite series, looks complicated, but it is not the
case. It represents a free theory:

L=10,00"¢(1+\p>+...)
F(¢)

F(¢) can be removed by a field redefinition

Summary: the non-trivial simplest cases:
@ more than two derivatives

e more flavours (¢ — ¢1, P, ...)

20/42



More flavours

L

= 300" 0"’ + Nijra0ud' 0" 97 6" ' + Niy 150" MGG L P 4

-2

@ Can be used for systematic studies of two species, three species, etc.

@ Very complicated generally
@ Assume some simplification, organize using a group structure

6= T
@ motivated by the ‘gluon case’: flavour ordering [KK,Novotny, Trnka'13]
At = N THTM LT A(py, - )

perm
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More flavours: stripped amplitude

first non-trivial case 6pt scattering:

3 4 2 3 1 2 3 4

S Lo La o s
S Ne o Ns s N, N\,

power-counting is ok:

1
A p? ﬁpQ + X p?

in order to combine the pole and contact term we need to consider some
limit. The most natural candidate: we will demand soft limit, i.e.

A—0, for p—0

= A2~
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Standard direction(s)
Assuming the shift symmetry

QZ)G' % ¢a +€a
= Noether current
o 0L
I SOHpa

= Ward identity = LSZ
(0145 ()[@°(p)) = iF 6" pe™ P

= Adler zero
lim (/]i + 6°(p)) = 0

= CCWZ: non-linear sigma model
F? i jaa
L= 7Tr(8uUT6“U), U=er®T

[Weinber'66], [lan Low '14-'15]
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Natural classification: o and p
Soft limit of one external leg of the tree-level amplitude

A(tpi,p2,-..,pn) = O(t7), as tp1 — 0

Interaction term
L=09""
Then another natural parameter is (counts the homogeneity)

m — 2

p= n—2

eg L=0m¢*+0m¢0

N LN/
/NN

so these two diagrams can mix: p?™~2 ~ p™

“averaging number of derivatives”
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Natural classification: o and p
Soft limit of one external leg of the tree-level amplitude

A(tpi,p2,-..,pn) = O(t7), as tp1 — 0

Interaction term
L=09""
Then another natural parameter is (counts the homogeneity)

m — 2

p= n—2

eg L=0m¢*+0m¢0

N LN/
/NN

so these two diagrams can mix: p?™~2 ~ p™
2m—2—-2=m—2 = 24 = M2 o

“averaging number of derivatives”

24 /42



Natural classification: o and p
Soft limit of one external leg of the tree-level amplitude

A(tpi,p2,-..,pn) = O(t7), as tp1 — 0

Interaction term
L=09""
Then another natural parameter is (counts the homogeneity)
m — 2
n—2

[):

eg L=0m¢*+0m¢0

N LN/
/\A

“averaging number of derivatives”

so these two diagrams can mix: p>” =2 ~ p™ rho is same if they
2m—2—-2=m—2= =4 =12 o 5,5 |talk to each other
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Non-trivial cases

for: L=0"¢": m < on
or
—2 2
o> (n=2p+2
n
i.e.
p | o at least
0 1
1 2
2 2
3 3

i.e. non-trivial regime for p < o
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First case: p =0 (i.e. two derivatives)

Schematically for single scalar case
L=15(00)7+ > Ni(0%¢") + D Ni(0%¢°) + ...

similarly for multi-flavour (¢;: ¢1, @2, .. .).
non-trivial case
oc=1
Outcome:
@ single scalar: free theory

e multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye '70], [Ellis, Renner '70]
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N

2. find the symmetry

¢ — ¢ —bpx” +b,0°0¢ (again up to 6pt so far)
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N

2. find the symmetry
¢ — ¢ —bpx” +b,0°0¢ (again up to 6pt so far)

3. ansatz of the form
cn(0¢ - 09)" + cny1(09 - 0¢)"0¢ - O

4. in order to cancel: 2(n + 1)cyr1 = (2n — 1)cy,
5

: _ 1 _ 1 _ 1 _
.. ¢1 =5 = C2 = 3,03 = 75,04 = 19gy- -~
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Second case: p =1, 0 = 2 (double soft limit)

4. in order to cancel 2(n +
ie. cp = 2 = Ccy =
solution:

Depy1 = (2n — ey,
1. _L — 5
§1C3 = 16,64 = 128 -

L=—y1-(9¢-09)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] — DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim

Minkowski space

Remark: soft limit and symmetry are “equivalent”

28 /42



Third case: p =2, o0 = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian
d+1

L= dnpLd,
n=1

n d
Lder = ghtpagh.va H O Ov, & H Muyvy = —(d —n)ldet {90,,} .

i=1 j=n+1
It possesses the Galilean shift symmetry
¢ — d+a+byat

(leads to EoM of second-order in field derivatives)
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Surprise: p =2, 0 = 3 (enhanced soft limit)

o general galileon: three parameters (in 4D)

] Only two relevant (dUe to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
we demanded O(p?) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny, Trnka
1412.4095]
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
we demanded O(p?) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny, Trnka
1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and
A. Joyce 1501.07600]

¢ = o+ spata” —12X48" 0,00, ¢
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New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]

31 /42



The high energy behaviour forbids a naive Cauchy formula
A(z) #0 for z— o0

Can we instead use the soft limit directly?
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The high energy behaviour forbids a naive Cauchy formula
A(z) #0 for z— o0

Can we instead use the soft limit directly? yes!

The standard BCFW not applicable, we propose a special shift:

pi — pi(l — za;) on all external legs

This leads to a modified Cauchy formula

j{ dz A(z) _o

;Hi(l — aiz)“

note there are no poles at z = 1/a; (by construction).
Now we can continue in analogy with BCFW
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Vector EFTs

[Cheung, KK, Novotny, Shen, Trnka, Wen '18]
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Spin-1 sector

we have followed same strategy as for spin-0
first focused on single field, massless, A,

again start at 4-pt

gauge invariance = in Lagrangian we have [, i.e.
L= f(0,A")

= soft-limit trivial
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Spin-1 sector

@ general gauge invariant Lagrangian
_ 1 (1) @2 o O3
L= 4<FF) + 9y (FFFF) + g, (FF)* + g5 ' (FF)

+ ¢ FFFF)(FF) + ¢ (FFFFFF) + ...,

(...): traces over Lorentz indices
o trivial soft limit

@ = we have tried O(¢?) — no solution
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Spin-1 sector

@ important difference from the spin-0 case: two polarizations
@ spinor helicity variables
P = ot AN
o little group scaling
- 1~

A—=tA A — ¥>\

@ momenta invariant under the little group scaling
=t

@ but not the polarization vector (and consequently neither amplitude)

+ L
t2 aa’

_ 2 _
€aa - €aa —1 €aa
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Spin-1 sector
e focusing on D = 4, defining
f=—1F,F", g= —%FWFW
o Cayley-Hamilton relation=> these are the only two building blocks:
L=[f+arf>+ag® +b1f>+baf g’ + ...
@ three 4-pt possibility (+/—: positive/negative helicity)
-— - -——+, - —++
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Spin-1 sector

e focusing on D = 4, defining

. 1 ~
f=—3F,F", g = _ZFWF‘“’

o Cayley-Hamilton relation=> these are the only two building blocks:

L=[f+arf>+ag® +b1f>+baf g’ + ...
@ three 4-pt possibility (+/—: positive/negative helicity)
e

trivially zero /

@ thus only two possible 4-pt amplitudes
A = (ay — a2)({12)%(34)* + perm)
Ao g = (a1 + a2)((12)%[34)°)
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Spin-1 sector

e focusing on D = 4, defining

1 ~
f=—3F,F", g = _ZFWF“”

o Cayley-Hamilton relation=> these are the only two building blocks:

L=[f+arf>+ag® +b1f>+baf g’ + ...
o three 4-pt possibility (+/—: positive/negative helicity)
) - 74'7’

trivially zero /

@ thus only two possible 4-pt amplitudes

A___H_ = (al + a2)(<12>2[34]2)

@ simplificaton: focus only on the spinor-conserving models
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Spin-1 sector

we can study quite generic amplitudes and its properties

single soft limit doesn't work, but we can study more combinations,
depending on helicities
two basic possibilities
< A—=0
pt =l AN — 0 { %0

so-called holomorphic or anti-holomorphic soft-limit

we can study combinations of multiple soft limits
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Spin-1 sector

Result, what finally worked: multichiral soft limit

A1727 .. .(n/2) (n/2+ )" ...nT) =0(e) for \; — 0

i.e. anti-holomorphic soft-limit of all negative helicity photons

(or vice versa)

can be easily generalized to non-concerving helicity models
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Spin-1 sector

the only reasonable soft limit leads to the following theory

Lo = 1=/ (=1)P~1det (g + F),

very well-known (from 1934!): the Born-Infeld model

U(1) gauge field on the brane

so far we don't have a symmetry explanation of this behaviour
proved using SUSY breaking N'=2 to N'=1

the soft limit property is strong enough for new on-shell recursion
relation

38 /42



Spin-1 sector

alternatively we used dim reduction to fix the amplitude
we have also studied the Galileon-like theories

(no-go theorem on vector Galileon [Deffayet et al'14])

e 6 o6 o

the starting amplitude is easy
Ay = (12)%[34)s12

@ however, there is no signal of an exceptional theory
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Further avenues

so far avoided the fermionic degrees of freedom (see e.g. Elvang et
al.'18)

multiple flavours — especially without flavour ordering
only two-flavour case fully classified

preliminary study of the mixed scalar-vector case (Galileon-BI): more
promising than the pure Galileon-like BI

spin-2: similar to Galileon-like studies — no exceptional candidate
non-abelian Born-Infeld

non-zero masses (technically possible)

more generally: breaking the shift symmetries

loop corrections — focused on the exceptional theories
connection with CHY [Cachazo, He, Yuan] formalism
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Flavour of Phenomenology...

Our works so far for hep-th.
Principal connections with phenomenology mainly ih these directions:

@ Chiral Perturbation Theory: multiple pion scattering

@ "Beyond Standard Gravity”

@ High-energy SM precision tests
e modification of the Standard EFT expansion

Leff £SM+ZQ 1z JchZ At

e Higgs non-linear dynamics
o cf. works of F.Riva and collaborators
e for spin-1: see e.g. recent Ellis, Ge studies on the BISM extensions

focusing on gg — 77y scattering at LHC
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Summary

o different look on effective field theories

@ motivated by the amplitude methods employed for renormalizable
theories

@ used for classification of scalar theories
@ one new theory discovered: special galileon

@ one exceptional theory for spin-1 particles: Bl

42 /12



Summary

o different look on effective field theories

@ motivated by the amplitude methods employed for renormalizable
theories

@ used for classification of scalar theories
@ one new theory discovered: special galileon

@ one exceptional theory for spin-1 particles: Bl

Thank you!
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