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Introduction: Amplitudes

Objective of amplitude community:

Study a priori known objects from different perspective

Example in mind: gluon amplitudes

1986: Parke and Taylor calculated 6-point gluon-scattering

simplification: tree-level, no-fermions

final result: extremely simple

other way of calculation?
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Example: gluon amplitudes
standard method of calculating n-gluon scattering processes:

dominated by pure-gluon interactions in QCD

elementary 3pt and 4pt vertices

construct all possible Feynman diagrams, e.g. 9pt:

complicated already for the tree level diagrams even for small
number of external legs
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History: gluon amplitude, tree-level

3pt: 1 diagram, on-shell = 0

4pt: 4 diagrams can be calculated by hand:

intermediate steps complicated but differential cross section nice

5pt: calculated in ’80, calculation blows up on several pages

structure of the numerators, schematically:

double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),
single-propagator: (pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard methods, but...
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History: gluon amplitude, tree-level, 6pt
SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Indeed it was given a year later [Parke, Taylor ’86] for the MHV:

An(−−+ . . .+) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke,Xu ’87]

〈ij〉 =
√
|2pi · pj |eiφij

Is there some better way to calculate?
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Example: gluon amplitudes

Important simplification at tree level:

colour ordering → stripped amplitude

Ma1...an(p1, . . . pn) =
∑
σ/Zn

Tr(taσ(1) . . . taσ(n))Mσ(p1, . . . , pn)

Mσ(pσ(1), . . . , pσ(n)) = M(p1, . . . , pn) ≡M(1, 2, . . . n)

propagators ⇒ the only poles of Mσ

thanks to ordering the only possible poles are:

P 2
ij = (pi + pi+1 + . . .+ pj−1 + pj)

2
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Pole structure

Weinberg’s theorem (one particle unitarity): on the factorization channel

lim
P 2
1j→0

M(1, 2, . . . n) =
∑
hl

ML(1, 2 . . . j, l)× 1

P 2
1j

×MR(l, j + 1, . . . n)
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten ’05]

Reconstruct the amplitude from its poles (in complex plane)

shift in two external momenta

pi → pi + zq, pj → pj − zq

keep pi and pj on-shell, i.e.

q2 = q · pi = q · pj = 0

amplitude becomes a meromorphic function A(z)

only simple poles coming from propagators Pab(z)

original function is A(0)
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BCFW relations: factorization channels

Cauchy’s theorem

0 =

1

2πi

∫
dz

z
A(z) = A(0) +

∑
k

Res (A, zk)

zk

If A(z) vanishes for z →∞

A = A(0) = −
∑
k

Res (A, zk)

zk
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BCFW relations

P 2
ab(z) = 0 if one and only one i (or j) in (a, a+ 1, . . . , b).

Suppose i ∈ (a, . . . , b) 63 j

P 2
ab(z) = (pa + . . .+ pi−1 + pi + zq + pi+1 + . . .+ pb)

2 =

= P 2
ab + 2q · Pabz = 0

solution

zab = −
P 2
ab

2(q · Pab)
⇒ P 2

ab(z) = −
P 2
ab

zab
(z − zab)

Thus

Res(A, zab) =
∑
s

A−sL (zab)×
−zab
P 2
ab

×AsR(zab)

and for allowed helicities it factorizes into two subamplitudes
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BCFW relations

Using Cauchy’s formula, we have finally as a result

A =
∑
k,s

A−skL (zk)
1

P 2
k

AskR (zk)

based on two-line shift (convenient choice: adjacent i,j)

recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW Example: gluon amplitudes

# od diagrams for n-body gluon scatterings at tree level

n 3 4 5 6 7 8

# diagrams (inc.crossing) 1 4 25 220 2485 34300
# diagrams (col.ordered) 1 3 10 38 154 654

# BCFW terms – 1 2 3 6 20

[C.Cheung: TASI Lectures ’17]
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BCFW recursion relations: problems

We have assumed that

A(z)→ 0, for z →∞

More generally we have to include a boundary term in Cauchy’s theorem.

This is intuitively clear: we can formally use the derived BCFW recursion
relations to obtain any higher n amplitude starting with the leading
interaction. But this does not have to be the correct answer.
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BCFW recursion relations: problems
example: scalar-QED

L = −1

4
FµνF

µν − |Dφ|2 − 1

4
λ|φ|4

e e

Due to the power-counting the boundary term is proportional to

B ∼ 2e2 − λ

In order to eliminate the boundary term we have to set λ = 2e2, then the
original BCFW works.

I.e. we needed some further information (e.g. supersymmetry) to
determine the λ piece.
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Effective field theories
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Effective field theories: general picture
Now we have infinitely many unfixed “λ” terms. Schematically

L = 1
2(∂φ)2 + λ4(∂

m4φ)4 + λ6(∂
m6φ)6 + . . .

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

M6 =
∑

I=poles

λ24
. . .

PI
+ λ6(. . .)

λ6 part: not fixed by the pole behaviour.

Task: to find a condition in order to link these two terms
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Effective field theories: introduction

Usual steps:

Symmetry → Lagrangian → Amplitudes → physical quantities

(cross-section, masses,
decay constants, . . . )

In our work – opposite direction:

Amplitudes → physical quantities (→ Lagrangian → Symmetry)

Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny, Chia-Hsien

Shen, Jaroslav Trnka and Congkao Wen
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Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for three-particle amplitude

A(1h12h23h3) =

{
〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , Σhi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , Σhi ≥ 0

n.b. again the spinor-helicity notation, e.g. pi · pj ∼ 〈ij〉[ij]

For scalars (hi = 0) this is a constant - corresponding to Lint = λφ3.

All derivatives can be removed by equations of motions (boxes)

Lint = (∂α . . . ∂ωφ)(∂α . . . ∂ωφ)φ → Lint = (�φ)(. . .)
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Effective field theories: scalar theories

We start with (m counts number of derivatives)

Lint = λ4∂
mφ4

n.b. we want to connect this four-point vertex with the 6-point contact
terms

This rules out again the no-derivative terms, as the powercounting
dictates:

∂m × 1

∂2
× ∂m → ∂2m−2φ6

and we have to start at least with m = 2, i.e. two derivatives
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Simplest example: two derivatives, single scalar

L = 1
2∂µφ∂

µφ+ λ4∂
2φ4 + λ6∂

2φ6 + . . .

How to connect λ4 and λ6?
Well Lagrangian, an infinite series, looks complicated, but it is not the
case. It represents a free theory:

L = 1
2∂µφ∂

µφ (1 + λ4φ
2 + . . .)︸ ︷︷ ︸

F (φ)

F (φ) can be removed by a field redefinition

Summary: the non-trivial simplest cases:

more than two derivatives

more flavours (φ→ φ1, φ2, . . .)
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More flavours

L = 1
2∂µφ

i∂µφi + λijkl∂µφ
i∂µφjφkφl + λi1...l6∂µφ

i1∂µφi2φi3 . . . φi6 + . . .

Can be used for systematic studies of two species, three species, etc.

Very complicated generally

Assume some simplification, organize using a group structure

φ = φaT a

motivated by the ‘gluon case’: flavour ordering [KK,Novotny,Trnka’13]

Aa1...an =
∑
perm

Tr(T a1 . . . T an)A(p1, . . . pn)
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More flavours: stripped amplitude

first non-trivial case 6pt scattering:

power-counting is ok:

λ24 p
2 1

p2
p2 + λ6 p

2

in order to combine the pole and contact term we need to consider some
limit. The most natural candidate: we will demand soft limit, i.e.

A→ 0, for p→ 0

⇒ λ24 ∼ λ6
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Standard direction(s)
Assuming the shift symmetry

φa → φa + εa

⇒ Noether current

Aaµ =
δL

δ∂µφa

⇒ Ward identity ⇒ LSZ

〈0|Aaµ(x)|φb(p)〉 = iFδabpµe−ipx

⇒ Adler zero
lim
p→0
〈f |i+ φa(p)〉 = 0

⇒ CCWZ: non-linear sigma model

L =
F 2

2
Tr(∂µU

†∂µU), U = e
i
F
φaTa

[Weinber’66], [Ian Low ’14-’15]
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Natural classification: σ and ρ
Soft limit of one external leg of the tree-level amplitude

A(tp1, p2, . . . , pn) = O(tσ), as tp1 → 0

Interaction term
L = ∂mφn

Then another natural parameter is (counts the homogeneity)

ρ =
m− 2

n− 2
“averaging number of derivatives”

e.g. L = ∂mφ4 + ∂m̃φ6

so these two diagrams can mix: p2m−2 ∼ pm̃

2m− 2− 2 = m̃− 2 ⇒ 2m−4
4 = m̃−2

4 ⇒ ρ = ρ̃

rho is same if they
talk to each other
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Non-trivial cases
for: L = ∂mφn : m < σn

or

σ >
(n− 2)ρ+ 2

n

i.e.

ρ σ at least

0 1

1 2

2 2

3 3

i.e. non-trivial regime for ρ ≤ σ
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First case: ρ = 0 (i.e. two derivatives)

Schematically for single scalar case

L = 1
2(∂φ)2 +

∑
i

λi4(∂
2φ4) +

∑
i

λi6(∂
2φ6) + . . .

similarly for multi-flavour (φi: φ1, φ2, . . .).
non-trivial case

σ = 1

Outcome:

single scalar: free theory

multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]
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Second case: ρ = 1, σ = 2 (double soft limit)
1. focus on the lowest combination and fix the form:

Lint = c2(∂φ · ∂φ)2 + c3(∂φ · ∂φ)3 condition: c3 = 4c42

2. find the symmetry

φ→ φ− bρxρ + bρ∂
ρφφ (again up to 6pt so far)

3. ansatz of the form

H
HHH

HHHj

��������)

cn(∂φ · ∂φ)n + cn+1(∂φ · ∂φ)n∂φ · ∂φ

4. in order to cancel: 2(n+ 1)cn+1 = (2n− 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .
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Second case: ρ = 1, σ = 2 (double soft limit)

4. in order to cancel: 2(n+ 1)cn+1 = (2n− 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .

solution:
L = −

√
1− (∂φ · ∂φ)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim
Minkowski space

Á

Remark: soft limit and symmetry are “equivalent”
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Third case: ρ = 2, σ = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian

L =

d+1∑
n=1

dnφLdern−1

Ldern = εµ1...µdεν1...νd
n∏
i=1

∂µi∂νiφ

d∏
j=n+1

ηµjνj = −(d− n)! det
{
∂νi∂νjφ

}
.

It possesses the Galilean shift symmetry

φ→ φ+ a+ bµx
µ

(leads to EoM of second-order in field derivatives)
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Surprise: ρ = 2, σ = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley ’14] [KK, Novotny ’14])

we demanded O(p3) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny,Trnka

1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and

A. Joyce 1501.07600]

φ→ φ+ sµνx
µxν − 12λ4s

µν∂µφ∂νφ
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New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]
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The high energy behaviour forbids a naive Cauchy formula

A(z) 6= 0 for z →∞

Can we instead use the soft limit directly?

yes!
The standard BCFW not applicable, we propose a special shift:

pi → pi(1− zai) on all external legs

This leads to a modified Cauchy formula∮
dz

z

A(z)

Πi(1− aiz)σ
= 0

note there are no poles at z = 1/ai (by construction).
Now we can continue in analogy with BCFW
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Vector EFTs

[Cheung, KK, Novotny, Shen, Trnka, Wen ’18]
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Spin-1 sector

we have followed same strategy as for spin-0

first focused on single field, massless, Aµ

again start at 4-pt

gauge invariance ⇒ in Lagrangian we have Fµν , i.e.

L = f(∂µA
ν)

⇒ soft-limit trivial
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Spin-1 sector

general gauge invariant Lagrangian

L = −1

4
〈FF 〉+ g

(1)
4 〈FFFF 〉+ g

(2)
4 〈FF 〉

2 + g
(1)
6 〈FF 〉

3

+ g
(2)
6 〈FFFF 〉〈FF 〉+ g

(3)
6 〈FFFFFF 〉+ . . . ,

〈. . .〉: traces over Lorentz indices

trivial soft limit

⇒ we have tried O(t2) → no solution
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Spin-1 sector

important difference from the spin-0 case: two polarizations

spinor helicity variables

pµ = σµaȧλ
aλ̃ȧ

little group scaling

λ→ tλ, λ̃→ 1

t
λ̃

momenta invariant under the little group scaling

pµ → pµ

but not the polarization vector (and consequently neither amplitude)

ε+aȧ →
1

t2
ε+aȧ, ε−aȧ → t2 ε−aȧ
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Spin-1 sector
focusing on D = 4, defining

f = −1
4FµνF

µν , g = −1

4
FµνF̃

µν

Cayley-Hamilton relation⇒ these are the only two building blocks:

L = f + a1f
2 + a2g

2 + b1f
3 + b2fg

2 + . . .

three 4-pt possibility (+/−: positive/negative helicity)

−−−−, −−−+, −−++

��
��*

trivially zero

thus only two possible 4-pt amplitudes

A−−−− = (a1 − a2)(〈12〉2〈34〉2 + perm)

A−−++ = (a1 + a2)(〈12〉2[34]2)

simplificaton: focus only on the spinor-conserving models
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Spin-1 sector

we can study quite generic amplitudes and its properties

single soft limit doesn’t work, but we can study more combinations,
depending on helicities

two basic possibilities

pµ = σµaȧλ
aλ̃ȧ → 0

{
λ→ 0

λ̃→ 0

so-called holomorphic or anti-holomorphic soft-limit

we can study combinations of multiple soft limits
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Spin-1 sector

Result, what finally worked: multichiral soft limit

A(1−2− . . . (n/2)−(n/2 + 1)+ . . . n+) = O(ε) for λ̃i → 0

i.e. anti-holomorphic soft-limit of all negative helicity photons

(or vice versa)

can be easily generalized to non-concerving helicity models
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Spin-1 sector

the only reasonable soft limit leads to the following theory

LBI = 1−
√

(−1)D−1det(ηµν + Fµν),

very well-known (from 1934!): the Born-Infeld model

U(1) gauge field on the brane

so far we don’t have a symmetry explanation of this behaviour

proved using SUSY breaking N=2 to N=1

the soft limit property is strong enough for new on-shell recursion
relation
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Spin-1 sector

alternatively we used dim reduction to fix the amplitude

we have also studied the Galileon-like theories

(no-go theorem on vector Galileon [Deffayet et al’14])

the starting amplitude is easy

A−−++ = 〈12〉2[34]2s12

however, there is no signal of an exceptional theory
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Further avenues

so far avoided the fermionic degrees of freedom (see e.g. Elvang et

al.’18)

multiple flavours – especially without flavour ordering

only two-flavour case fully classified

preliminary study of the mixed scalar-vector case (Galileon-BI): more
promising than the pure Galileon-like BI

spin-2: similar to Galileon-like studies – no exceptional candidate

non-abelian Born-Infeld

non-zero masses (technically possible)

more generally: breaking the shift symmetries

loop corrections – focused on the exceptional theories

connection with CHY [Cachazo, He, Yuan] formalism
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Flavour of Phenomenology...

Our works so far for hep-th.
Principal connections with phenomenology mainly ih these directions:

Chiral Perturbation Theory: multiple pion scattering

“Beyond Standard Gravity”

High-energy SM precision tests

modification of the Standard EFT expansion

Leff = LSM +
∑

c6i
O6

Λ2
+
∑

c8i
O8

Λ4
+ . . .

Higgs non-linear dynamics
cf. works of F.Riva and collaborators
for spin-1: see e.g. recent Ellis, Ge studies on the BISM extensions
focusing on gg → γγ scattering at LHC
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Summary

different look on effective field theories

motivated by the amplitude methods employed for renormalizable
theories

used for classification of scalar theories

one new theory discovered: special galileon

one exceptional theory for spin-1 particles: BI

Thank you!
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