SFGD beamtest analysis

Systematic Unpacking, MC development, ghost hits and 3D charge reconstruction

C. Jesús-Valls

cjesus@ifae.es

UNPACKING PROCEDURE: (to unpack 1 run)

- 1. Extract .daq FEB files from each mini-crate's .daq file.
- 2. Convert .daq to .root
- 3. Apply calibration to .root
- 4. Convert calibrated .root to the new data structure.

NEW SCRIPTS: (for all runs)

Allow to send each of the 4 steps as a collection of jobs in LXPLUS. All data can be easily converted at once. You can find it at:

/eos/experiment/neutplatform/t2knd280/Super_FGD/sFGD_beamtests_AugSep2018/ROOT_DATA

And the code can be found at:

https://gitlab.com/cesarjesusvalls/sfgd_unpacking_scripts.git

Is as easy to use as:

Jesús-Valls

source unzip_all.sh ../run_list.txt

cjesus@lxplus014 ROOT_DATA]\$ ls													
September_1	1September_20	25August_16	26August_19	27August_16	28August_5	29August_18	2September_16	2September_28	30August_17	31August_18	3September_13	4September_1	5September_2
September_10	1September_3	25August_17	26August_25	27August_3	28August_6	29August_19	2September_17	2September_29	30August_2	31August_19	3September_14	4September_12	5September_3
September_11	1September_5	25August_18	26August_4	27August_5	28August_8	29August_5	2September_18	2September_9	30August_20	31August_20	3September_15	4September_14	5September_4
September_12	1September_6	25August_8	26August_5	27August_9	28August_9	29August_6	2September_19	30August_1	30August_4	31August_21	3September_16	4September_17	
September_13	1September_8	26August_1	26August_6	28August_1	29August_1	29August_7	2September_21	30August_10	30August_5	31August_22	3September_3	4September_18	
September_14	1September_9	26August_10	26August_7	28August_12	29August_10	29August_8	2September_23	30August_11	30August_6	31August_6	3September_4	4September_4	
September_16	24August_13	26August_11	26August_9	28August_13	29August_11	29August_9	2September_24	30August_12	30August_8	31August_7	3September_5	4September_5	
September_18	25August_10	26August_12	27August_10	28August_17	29August_12	2September_10	2September_25	30August_13	31August_12	31August_8	3September_6	4September_7	
September_19	25August_11	26August_13	27August_14	28August_18	29August_13	2September_11	2September_26	30August_14	31August_15	3September_10	3September_7	4September_8	
September_2	25August_12	26August_16	27August_15	28August_4	29August_15	2September_15	2September_27	30August_16	31August_17	3September_11	3September_8	5September_1	

2

The run_list.txt contains: by Dana

2	3Augu	ist_	2	1		0		0	(0			
2	4Augu	ist_	1	2		0		0	(0			
2	4Augu	ist_	2	3		0		0	(0			
2	4Augu	ist_	4	4		0		0	(0			
2	4Augu	ist_	5	5		0		0	(0			
2	4Augu	ist_	6	6		0		0	(0			
2	4Augu	ist_	7	7		0		0	(0			
2	4Augu	ist_	8	8		0		0	(0			
2	4Augu	ist_	9	9		0		0	(0			
2	4Augu	ist_	10		1	0		0	(0	0		
2	4Augu	ist_	13		1	3		1	!	55	5	5	5
2	5Augu	ist_	1	1	4		0		5!	5	5	5	
2	5Augu	ist_	2	1	5		0	1	5!	5	6	0	
2	5Augu	ist_	3	1	6		0		5!	5	6	0	
2	5Augu	ist_	4	1	7		0		5!	5	6	0	
2	5Augu	ist_	5	1	8		0		5!	5	6	0	
2	5Augu	ist_	6	1	9		0		5!	5	5	0	
2	5Augu	ist_	7	2	0		0	1	5!	5	5	0	
2	5Augu	ist_	8	2	1		1		5!	5	5	0	
2	5Augu	ist_	9	2	2		0		5!	5	5	0	
2	5Augu	ist_	10		2	3		1		5(0	5	5

Currently

1st column: Name of the run
2nd column: Run number
3rd column: Status (0 bad // 1 good)
4th column: LG
5th column: HG
Future?
6th column: Beam Kind (0 hadron // 1 muon // ... etc)
7th column: Beam momentum
8th column: Magnetic Field

From a detailed run_list.txt would be easy to find runs with same conditions to enlarge the statistics of our analysis.

TChain can be used to analyze sets of files stored in lists: Currently implemented in stopping_protons.C

. . .

Motivation:

To have a comparison for the real data analysis, debug algorithms with true information, etc, a realistic MC would be helpful.

Update:

- A 'realistic' MC has been developed, simulating data inputs using t2k-nd280-up GEANT4 framework.
- It provides data with 'realistic' crosstalk, and energy deposit in #p.e.
- It stores data in the dataStructure.root from Dana, namely in Event and Hit classes.

Some modifications have been done in the classes to store True information.

The MC output and the sfgd_reconstruction (let's call it sfgd_analysis) work together: The analysis package includes options to deal with true information.

Remove/Include true crossTalk.

If you need it, please ask:

- To avoid you spending extra time learning to work with: 't2k-nd280-up' I can provide you the MC files that you require for your analysis in new DataStructure.root format.
- Also can give more details if someone is interested in the MC.

MC DEVELOPMENT :: CROSSTALK

- The results look quite similar concerning shape, crosstalk and #p.e.
- Still preliminar version.

Jesús-Valls

César

Time effects are not included.

REAL EVENT:

5

For each true 3D cube with energy deposit, look to its X and Y coordinates.

Lateral crosstalk:

For X: Add a crosstalk hit at X+1 or X-1 with 45% probability (each). For Y: Add a crosstalk hit at Y+1 or Y-1 with 2% probability (each). Charge on the crosstalk cube (TotQ): 5% of energy deposit from its associated core cube. Charge on each fiber of the crosstalk cube: Poisson distribution of TotQ/3.

Diagonal crosstalk:

X+1 & Y-1 // X-1 & Y-1 // X+1 & Y+1// X-1 & Y+1 Correlated to X and Y crosstalk probability. (if the Random–>Uniform associated to X+1 is small adds some difficulty to have crosstalk in X+1 & Y+1 // X+1 & Y-1)

Corner crosstalk (current not simulated)

X+1&Y+1&Z+1//X+1&Y+1&Z-1//X-1&Y+1&Z+1//X-1&Y+1&Z-1//X+1&Y-1&Z+1//X+1&Y-1&Z+1//X+1&Y-1&Z-1//X-1&Y-1&Z+1//X-1&Z+1//X-1&Z-1

FUTURE:

Precise values depend on aside studies (all input are more than welcome!) I want to implement dependence of crosstalk in the probability.

Current matching algorithm:

if hits in viewXY and viewXZ share X, add X,Y,Z and hits (2) to vX if hits in viewXY and viewYZ share Y, add X,Y,Z and hits (2) to vY if hits in viewXZ and viewYZ share Z, add X,Y,Z and hits (2) to vZ

if vX and vY share X,Y,Z, add X,Y,Z and hits (3) to vXY if vX and vZ share X,Y,Z, add X,Y,Z and hits (3) to vXZ if vY and vZ share X,Y,Z, add X,Y,Z and hits (3) to vYZ

select **all** different combinations of X,Y,Z, and hits(3).

The blue conditions ensure that all voxels are constructed from 3 fibers with at least 1 hit.

What happens if MPPC not records a hit? \longrightarrow With current algorithm **voxel is lost.**

Is it possible to What happens if we remove green conditions? ____ 'Ghost hits' appear. have ghost hits Using xy = (0,5) and noise hit yz = (5,30) we construct the irreal voxel xyz = (0,5,35). anyway? To be real I should see xz = (0,35)

IFAE

Jesús-Valls

César

Consider the following situations

Reconstructed:

(0,0,0): hXY1	hYZ1	hXZ1
(0,1,0): hXY2	hYZ2	hXZ1
(0,2,0): hXY3	hYZ3	hXZ1

Reconstructed:

8

(**0,0,0):** hXY1 hYZ1 hXZ1 hXY4 hYZ1 hXZ1 hXY1 hYZ1 hXZ2 hXY4 hYZ1 hXZ2 (**0,1,0):** hXY2 hYZ2 hXZ1 hXY2 hYZ2 hXZ2 (**0,2,0**): hXY3 hYZ3 hXZ1 hXY3 hYZ3 hXZ2

hXY4 is used to reconstruct 2 voxels, it has multiplicity 2 (0,0,0) is reconstructed with 4 hits combinations, this voxel has multiplicity 4. — This is was complete caos.

MULTIPLICITY PROBLEMS::SIMPLIFICATION

How do we reconstruct charge?

 $(\mathbf{Q_i} + \mathbf{Q_j})/2 \leftarrow 2 \leftarrow Yes \leftarrow There is at least 1 hit with multiplicity N? \leftarrow 1$ $N_0 = 1$ No ——— $(\mathbf{Q}_i + \mathbf{Q}_i + \mathbf{Q}_k)/3 \leftarrow 3$ N++

The MC stores 3MPPC hits per cube --> **True Charge :** (ChargeXY + ChargeXZ + ChargeYZ)/3

10

Cut: Ignore hits with <10p.e

If this is how it looks with cut 'on'. Multiplicity 1 is 95% of the voxels!

How does it look when we set the cut off?

3D CHARGE: WITHOUT CUTS

IFAE

Barcelona, Spain

ЧV

y

Jesús-Valls T2

3D CHARGE, GHOST HITS & CUTS

Distribution of Real hits

Jesús-Valls

César

Distribution of ghost hits

14

A real (ghost) hit is a cube with (without) a real energy deposit and that is intersected by 3 MPPC hits.

- Ghost hits are almost imposible to distinguish from real hits using geometric arguments.
- They are a dangerous nuisance for the 3D charge reconstruction.
- The cut in charge (<10p.e)
 kills 96% of ghost hits.
- 0.9% of real Voxels lost with and average Q of 5p.e.

ABOUT THE ASYMMETRIC DISTRIBUTION

Barcelona,Spain

Barcelona, Spain

