PIZZA SEMINAR

TPC beam test results for the ND280 upgrade

C. Jesús-Valls

The Tokai 2 Kamioka experiment

- Staggered in 2D.
- Limited tracking resolution.

- (Time projection chambers)
- Gas volume boxes with electric field.
- Tracks are reconstructed on the anode.
- Good tracking resolution.

The upgraded ND280

ND280 Current: Very good for forward going tracks, limited for vertical tracks.

Solution: Remove P0D and copy the FGD + TPCs rotated 90°.

Let's try to do it better:

- Current FGD are 2D, let's do the new FGD 3D... and we will call it SFGD!
- Build TPCs with thinner field cage to maximize available sensitive volume.
- Improve read-out by testing new system: The resistive bulk MM.

All this talk is about.

2018 BEAM TEST

Trigger system and data sample

- **Positrons** = Scintillators + Cherenkov
- **Protons (+ kaons)** = S1_delayed + S2 (delay ~ proton TOF between S1 and S2)
- **Pions (+ muons)** = Scintillators + not protons+ not positrons
- **Cosmics** =S4* but only out of spill. Downscaled to have a balance beam:cosmic~1:7.

From tracks to analog signals

César

From analog signals to digital outputs

- Bin content is in reality integrated charge in a t_{shaping} window.
- For most of the data samples $t_{shaping} = 600$ ns.

STRATEGY:

Find tracks in a 2D plane at $t=t_{max}$. Assume all charge collected in $t_{shaping}$.

IFAE **Barcelona**, Spain

César

- Look for a cluster on first or last columns (rows).
- Linear fit.
- Pads around extrapolated fit.
- Fit quality.

Row

- 1: Take a candidate pad, search M pads closer than a distance D.
- If '1', add pad to cluster and add the pads closer than D ass cluster candidates.
- If any pad candidate is missing, end cluster and start a new one (random candidate without cluster)

Algorithm B: DBSCAN

TIME FILTER & SAFETY:

Different for each Clustering

- Cuts on max & min number of selected pads
- Cuts on min number of columns (rows), to avoid holes.
- Check time of neighbor pads change to other t_{MAX} and Q_{MAX} under certain conditions.

IFAE Barcelona, Spain

Selection on typical event:

DBSCAN potential:

- Both selections have similar selection efficiency.
- Algorithm A is safer (DBSCAN is not physical and depends a lot on time-cuts and safety conditions).
- We decided to take the safest option, and develop it together with resolution studies.
- DBSCAN has proved to be very powerful and will be tested for future analysis.

Experimental conditions (Drift velocity)

Jesús-Valls César

Experimental conditions (Charge attenuation)

Experimental conditions (Absolute Gain)

17

Barcelona, Spain

dE/dx studies

Cluster charge

Barcelona, Spain

Particle ID fundamentals (characteristic dE/dx)

19

dE/dx studies

Gain stability and MM uniformity

Take cosmic tracks, and compute average charge in each pad with large statistics.

César

Barcelona, Spain

Point resolution σ_{xy}

What is the real trajectory of the track? How sure we are?

- A. Apply your selection.
- B. Do a linear fit. (B = 0 during test beam).

PRF (Pad Response function)

Point resolution σ_{xy}

Column

Column

Column

ொ

ொ

Jesús-Valls

César

When the track is closer some extra effect enters into play!

Still under study...

Nevertheless the resolution of the resistive micromegas supersedes the one in the current T2K **TPCs!**

Barcelona, Spain

25

15

20

Conclusions & Future studies

- After the first test, 13 years ago, a new team (with some experienced members) has started the testing of prototypes for the new T2K upgrade.
- We had no software, so we had problems monitoring the gas conditions, but...
 - A new software stand-alone platform has been developed from scratch.
 - Nice training for students learnt quite a lot about how to deal with the detector at the basic lvl. We have ~3years of tests ahead.
- We found that the resistive bulk xq works nicely (even if it is not final version):
 - Larger pad multiplicity than in the past. (Back up)
 - Good uniformity from pad to pad. (3.6%)
 - 9-10.5% energy resolution.
 - 400-500µm point resolution.

Future:

- Work on SFGD prototype!

BONUS, SFGD

Since I had so much fun with TPC... we decided to expand my PhD and also join SFGD:

BeamTest with 10k cubes

- 2M scintillator cubes of 1x1x1cm³.
- 3 fibers cross each cube.
- Needs a completed new software and reconstruction system.
- It is a new technology that could boost the efficiency and sensitivity of T2K.

viewXY

-10

10

5

15 20 25 30 35

THANKSSSS!!!

The ND280 upgrade

- Replace (most of) P0D with Scintillator Detector + 2 High-Angle TPCs + TOF
 - Improve acceptance for large angle tracks
- Keep current "tracker" [2 FGDs + 3 TPCs] (& upstream part of P0D) as well as ECal, magnet & SMRD
 - For keeping continuity and forward acceptance

IFAE

Barcelona, Spain

César

Goal: measure oscillation parameters

We compare expected vs observed neutrino vs antineutrino samples.

We test oscillation hypothesis and look for best oscillation parameters.

31

Jesús-Valls César

IFAE

ND280 Role

Before oscillation Error in Flux is \sim %10. After using ND280 constrain overall (Flux, cross section, SK) uncertainty is \sim 5% for muons, \sim 10% for electrons.

There are lots of topologies not used since the modeling is not good enough... !

Particle ID fundamentals (momentum reconstruction)

33

Momentum reconstruction:

Momentum resolution:

Jesús-Valls

$$\frac{\sigma_{pt}}{p_t} = \frac{\sigma_s}{s} = \sigma_{xy} \frac{p_t}{eBl^2} \sqrt{\frac{720}{N_p + 4}}$$

Polar angle reconstruction:

 $\overrightarrow{p} \qquad p = \frac{p_t}{\sin\Theta}$ \overrightarrow{B}

$$\sigma_{xy}$$
 = point resolution XY plane N_p = number of points

Polar angle resolution:

$$\frac{\sigma_{\Theta}}{\Theta} = \sqrt{\frac{12(N_p - 1)}{N_p + 1}}$$

0.85