# Low-energy constraints on New Physics

#### **IFAE** seminar

#### June 2019









### Outline

- Introduction
- SMEFT fit to Electroweak Precision Data
- Hadronic Tau Decays as a New Physics probe
- Neutrino oscillations as EFT constraints



M. González-Alonso (CERN)

### Introduction

• I'll focus on precision measurements in non-forbidden processes:

- Both exp & theory (lattice!) **precision** needed
- Precision ~  $10^{-2} 10^{-3} \rightarrow \Lambda \sim O(1)$  TeV
- Much higher scales if SM is suppressed  $(\pi \rightarrow ev, CPV, CKM, ...)$
- Still a very wide subject:
  - Leptonic processes, flavor (kaons, B's, LFU, ...), ...
  - Nuclear decays, atomic PV, neutrino, ...
  - Z/W data (LEP & LHC), LEP2, top, Higgs, ...  $\rightarrow$  low-energy?
- I'll assume "heavy NP"  $\rightarrow$  Effective Field Theory

## EFT 101



M. González-Alonso (CERN)

# **EFT:** motivation

Take your favorite precision experiment:

→ Implications for NP model M?

 $O_{i,exp}$  -  $O_{i,SM}$  =  $f_i$  (g', M')

Nontrivial:

- Atomic/huclear/hadronic/PDF TH;
- Correlations;
- Cuts, SM assumed?
- Large logs resummation

![](_page_4_Figure_9.jpeg)

# EFT: motivation

O<sub>i,exp</sub> - O

Take your favori → Implicatio

Useful especially if...

- ➡ Global analysis
- Final likelihood public
- Avoid additional assumptions

Valid also if NP is found!

Example: EFT for "B anomalies" [Aebischer et al'19, Algueró et al'19, Ciuchini et al.'19, Arbey et al.'19, ...]

#### ear/hadronic/PDF TH;

umed?

esummation

$$O_{i,exp} - O_{i,SM} = \delta O(\alpha_1, \alpha_2, ..., \alpha_{80}) \qquad \chi^2 = \chi^2(\alpha_i)$$

Specific NP model  

$$\frac{\alpha_6^{(i)}}{\Lambda^2} = f_i \left( g_{NP}, M_{NP} \right)$$

### Outline

- Introduction
- SMEFT fit to Electroweak Precision Data
- Hadronic Tau Decays as a New Physics prob
- Neutrino oscillations as EFT constraints

2005: global fit in the "flavoruniversal" SMEFT [Han-Skiba'05]

2015–2017: global fit in the flavor general SMEFT [Efrati, Falkowski & Soreq'15; Falkowski & Mimouni'15; Falkowski, MGA & Mimouni'17]

![](_page_6_Picture_7.jpeg)

M. González-Alonso (CERN)

- 258 experimental input •
  - Z- & W-pole data
  - $e^+e^-\rightarrow l^+l^-$ , qq
  - Low-energy processes: ۲
    - Nuclear and hadron decays  $(d \rightarrow ulv)$
    - Neutrino scattering 0
    - PV in atoms and in scattering •
    - Leptonic tau decays •

| Class                         | Observable                    | Exp. value                |  |
|-------------------------------|-------------------------------|---------------------------|--|
| $\nu_e \nu_e q q$             | $R_{\nu_e \bar{\nu}_e}$       | 0.41(14)                  |  |
| $ u_{\mu} u_{\mu}qq$          | $(g_L^{\nu_{\mu}})^2$         | 0.3005(28)                |  |
|                               | $(g_R^{\nu_\mu})^2$           | 0.0329(30)                |  |
|                               | $\theta_L^{\nu_\mu}$          | 2.500(35)                 |  |
|                               | $\theta_R^{\nu_\mu}$          | $4.56^{+0.42}_{-0.27}$    |  |
| PV low-E<br>eeqq              | $g_{AV}^{eu} + 2g_{AV}^{ed}$  | 0.489(5)                  |  |
|                               | $2g_{AV}^{eu} - g_{AV}^{ed}$  | -0.708(16)                |  |
|                               | $2g_{VA}^{eu} - g_{VA}^{ed}$  | -0.144(68)                |  |
|                               | .eu .ed                       | -0.042(57)                |  |
|                               | $g_{VA} - g_{VA}$             | -0.120(74)                |  |
| PV low-E                      | $b_{\rm SPS}(\lambda = 0.81)$ | $-1.47(42) \cdot 10^{-4}$ |  |
| $\mu\mu qq$                   | $b_{\rm SPS}(\lambda = 0.66)$ | $-1.74(81) \cdot 10^{-4}$ |  |
| $d(s) \to u \ell \nu$         | $\epsilon_i^{d_j\ell}$        | eq. (3.17)                |  |
| $e^+e^- \rightarrow q\bar{q}$ | $\sigma(q\bar{q})$            |                           |  |
|                               | $\sigma_c, \sigma_b$          | $f(\sqrt{s})$             |  |
|                               | $A_{FB}^{cc}, A_{FB}^{bb}$    | 1                         |  |

| Class                                                     | Observable                                      | Exp. value    |  |
|-----------------------------------------------------------|-------------------------------------------------|---------------|--|
| $ u_{\mu} u_{\mu}ee$                                      | $g_{LV}^{ u_{\mu}e}$                            | -0.040(15)    |  |
|                                                           | $g_{LA}^{ u_{\mu}e}$                            | -0.507(14)    |  |
| $e^-e^-  ightarrow e^-e^-$                                | $g^{ee}_{AV}$                                   | 0.0190(27)    |  |
| $\nu_{\mu}\gamma^{*} \rightarrow \nu_{\mu}\mu^{+}\mu^{-}$ | $\frac{\sigma}{\sigma_{\rm SM}}$                | 1.58(57)      |  |
|                                                           |                                                 | 0.82(28)      |  |
| $\tau \to \ell \nu \nu$                                   | $G_{	au e}^2/G_F^2$                             | 1.0029(46)    |  |
|                                                           | $G_{	au\mu}^2/G_F^2$                            | 0.981(18)     |  |
| $e^+e^- \rightarrow \ell^+\ell^-$                         | $\frac{d\sigma(ee)}{d\cos\theta}$               |               |  |
|                                                           | $\sigma_{\mu}, \sigma_{	au}, \mathcal{P}_{	au}$ | $f(\sqrt{s})$ |  |
|                                                           | $A^{\mu}_{FB}, A^{\tau}_{FB}$                   |               |  |

![](_page_7_Picture_11.jpeg)

| Observable                    | Experimental value    | Ref  | SM prediction | Definition                                                                                                                      |
|-------------------------------|-----------------------|------|---------------|---------------------------------------------------------------------------------------------------------------------------------|
| Γ <sub>z</sub> [GeV]          | $24952 \pm 0.0023$    | [47] | 2.4950        | $\frac{\sum \Gamma(Z \to f\bar{f})}{\sum \Gamma(Z \to f\bar{f})}$                                                               |
| $\sigma_{\rm had} [{\rm nb}]$ | $41.541 \pm 0.037$    | [47] | 41.484        | $\frac{12\pi}{m_Z^2} \frac{\Gamma(Z \to e^+e^-)\Gamma(Z \to q\bar{q})}{\Gamma_Z^2}$                                             |
| Re                            | $20.804 \pm 0.050$    | [47] | 20.743        | $\frac{\sum_{q} \Gamma(Z \rightarrow q\bar{q})}{\Gamma(Z \rightarrow e^{+}e^{-})}$                                              |
| $R_{\mu}$                     | $20.785 \pm 0.033$    | [47] | 20.743        | $rac{\sum_{q} \Gamma(Z  ightarrow q ar q)}{\Gamma(Z  ightarrow \mu^+ \mu^-)}$                                                  |
| $R_{\tau}$                    | $20.764\pm0.045$      | [47] | 20.743        | $rac{\sum_{q} \Gamma(Z 	o q ar{q})}{\Gamma(Z 	o 	au^+ 	au^-)}$                                                                 |
| $A^{0,e}_{ m FB}$             | $0.0145 \pm 0.0025$   | [47] | 0.0163        | $\frac{3}{4}A_e^2$                                                                                                              |
| $A_{\rm FB}^{0,\mu}$          | $0.0169 \pm 0.0013$   | [47] | 0.0163        | $\frac{3}{4}A_eA_\mu$                                                                                                           |
| $A_{ m FB}^{ar 0, 	au}$       | $0.0188 \pm 0.0017$   | [47] | 0.0163        | $\frac{3}{4}A_eA_{\tau}$                                                                                                        |
| $R_b$                         | $0.21629 \pm 0.00066$ | [47] | 0.21578       | $\frac{\Gamma(Z \to bb)}{\sum_{q} \Gamma(Z \to q\bar{q})}$                                                                      |
| $R_c$                         | $0.1721 \pm 0.0030$   | [47] | 0.17226       | $rac{\Gamma(Z  ightarrow car{c})}{\sum_{q} \Gamma(Z  ightarrow qar{q})}$                                                       |
| $A_b^{\rm FB}$                | $0.0992 \pm 0.0016$   | [47] | 0.1032        | $\frac{3}{4}A_eA_b$                                                                                                             |
| $A_c^{ m FB}$                 | $0.0707 \pm 0.0035$   | [47] | 0.0738        | $\frac{3}{4}A_eA_c$                                                                                                             |
| $A_e$                         | $0.1516 \pm 0.0021$   | [47] | 0.1472        | $\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow e^+ e^-)}$                   |
| $A_{\mu}$                     | $0.142\pm0.015$       | [47] | 0.1472        | $\frac{\Gamma(Z \to \mu_L^+ \mu_L^-) - \Gamma(Z \to \mu_R^+ \mu_R^-)}{\Gamma(Z \to \mu^+ \mu^-)}$                               |
| $A_{\tau}$                    | $0.136 \pm 0.015$     | [47] | 0.1472        | $\frac{\Gamma(Z \to \tau_L^+ \tau_L^-) - \Gamma(Z \to \tau_R^+ \tau_R^-)}{\Gamma(Z \to \tau^+ \tau^-)}$                         |
| $A_e$                         | $0.1498 \pm 0.0049$   | [47] | 0.1472        | $\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow \tau^+ \tau^-)}$             |
| $A_{\tau}$                    | $0.1439 \pm 0.0043$   | [47] | 0.1472        | $\frac{\Gamma(Z \rightarrow \tau_L^+ \tau_L^-) - \Gamma(Z \rightarrow \tau_R^+ \tau_R^-)}{\Gamma(Z \rightarrow \tau^+ \tau^-)}$ |
| $A_b$                         | $0.923 \pm 0.020$     | [47] | 0.935         | $\frac{\Gamma(Z \to b_L b_L) - \Gamma(Z \to b_R b_R)}{\Gamma(Z \to b\bar{b})}$                                                  |
| $A_c$                         | $0.670\pm0.027$       | [47] | 0.668         | $\frac{\Gamma(Z \to c_L \bar{c}_L) - \Gamma(Z \to c_R \bar{c}_R)}{\Gamma(Z \to c \bar{c})}$                                     |
| $A_s$                         | $0.895 \pm 0.091$     | [48] | 0.935         | $\frac{\Gamma(Z \to s_L \bar{s}_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s\bar{s})}$                                      |
| R <sub>uc</sub>               | $0.166\pm0.009$       | [45] | 0.1724        | $rac{\Gamma(Z  ightarrow u ar{u}) + \Gamma(Z  ightarrow c ar{c})}{2 \sum_q \Gamma(Z  ightarrow q ar{q})}$                      |

| Observable                          | Experimental value  | Ref. | SM prediction | Definition                                                                             |
|-------------------------------------|---------------------|------|---------------|----------------------------------------------------------------------------------------|
| $m_W \; [\text{GeV}]$               | $80.385 \pm 0.015$  | [50] | 80.364        | $\frac{g_L v}{2} \left(1 + \delta m\right)$                                            |
| $\Gamma_W [\text{GeV}]$             | $2.085 \pm 0.042$   | [45] | 2.091         | $\sum_{f} \Gamma(W \to ff')$                                                           |
| $\operatorname{Br}(W \to e\nu)$     | $0.1071 \pm 0.0016$ | [51] | 0.1083        | $\frac{\Gamma(W \rightarrow e\nu)}{\sum_{f} \Gamma(W \rightarrow ff')}$                |
| $\operatorname{Br}(W \to \mu \nu)$  | $0.1063 \pm 0.0015$ | [51] | 0.1083        | $\frac{\Gamma(W \to \mu\nu)}{\sum_{f} \Gamma(W \to ff')}$                              |
| $\operatorname{Br}(W \to \tau \nu)$ | $0.1138 \pm 0.0021$ | [51] | 0.1083        | $\frac{\Gamma(W \to \tau \nu)}{\sum_{f} \Gamma(W \to ff')}$                            |
| $R_{Wc}$                            | $0.49\pm0.04$       | [45] | 0.50          | $\frac{\Gamma(W \rightarrow cs)}{\Gamma(W \rightarrow ud) + \Gamma(W \rightarrow cs)}$ |
| $R_{\sigma}$                        | $0.998 \pm 0.041$   | [52] | 1.000         | $g_L^{Wq_3}/g_{L,\mathrm{SM}}^{Wq_3}$                                                  |

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

![](_page_8_Figure_3.jpeg)

Results given at the EW scale (QEDxQCD running included in precise low-E observables) [MGA, M. Camalich & Mimouni, PLB'17]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

![](_page_9_Figure_3.jpeg)

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

 $O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$ **Public!** www.dropbox.com/s/26nh71oebm4o12k/ SMEFTlikelihood.nb?dl=0 "Flavor-universal" limit  $\begin{pmatrix} \delta g_L^{We} \\ \delta g_L^{Ze} \\ \delta g_R^{Ze} \\ \delta g_L^{Zu} \\ \delta g_R^{Zu} \\ \delta g_R^{Zu} \\ \delta g_R^{Zd} \\ \delta g_R^{Zd} \\ \delta g_R^{Zd} \end{pmatrix} = \begin{pmatrix} -1.22 \pm 0.81 \\ -0.10 \pm 0.21 \\ -0.15 \pm 0.23 \\ -1.6 \pm 2.0 \\ -2.1 \pm 4.1 \\ 1.9 \pm 1.4 \\ 15 \pm 7 \end{pmatrix} \times 10^{-3}, \quad \begin{pmatrix} c_{\ell \ell}^{(3)} \\ c_{\ell \ell} \\ c_{\ell e} \\ c_{ee} \end{pmatrix} = \begin{pmatrix} -3.0 \pm 1.7 \\ 7.2 \pm 3.3 \\ 0.2 \pm 1.3 \\ -2.5 \pm 3.0 \end{pmatrix} \times 10^{-3}, \quad \begin{pmatrix} c_{\ell q} \\ c_{\ell q} \\ c_{\ell u} \\ c_{\ell u} \\ c_{\ell d} \\ c_{eu} \\ c_{ed} \end{pmatrix} = \begin{pmatrix} -4.8 \pm 2.3 \\ -15.4 \pm 9.1 \\ -14 \pm 23 \\ 4 \pm 24 \\ 6 \pm 42 \\ 4 \pm 11 \\ 26 \pm 18 \end{pmatrix} \times 10^{-3}.$ 

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

 $O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$ **Public!** www.dropbox.com/s/26nh71oebm4o12k/ SMEFTlikelihood.nb?dl=0 **Universal EFT** (oblique parameters)  $\begin{pmatrix} S \\ T \\ Y \\ W \end{pmatrix} = \begin{pmatrix} -0.10 \pm 0.13 \\ 0.02 \pm 0.08 \\ -0.15 \pm 0.11 \\ 0.01 \pm 0.08 \end{pmatrix}, \qquad \rho = \begin{pmatrix} 1. \ 0.86 \ 0.70 \ -0.12 \\ . \ 1. \ 0.39 \ -0.06 \\ . \ . \ 1. \ -0.49 \\ 1 \end{pmatrix}$ 

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

![](_page_12_Figure_3.jpeg)

→ eeqq: best bounds come from APV or CKM-unitarity! [competitive with LHC]

![](_page_12_Figure_5.jpeg)

PS: ττqq: no bound!

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

![](_page_13_Figure_3.jpeg)

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

$$O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$$
Precision needed in any other observable to compete?  

$$\chi^2 = \chi^2(c_i) \rightarrow \delta O(c_i) = \# \pm \#$$

### Cannot we do the same with flavor data?

- UV meaning of the famous CKM-triangle plot? Never done in the general SMEFT!
- Difficulties (flavor vs EWPO):
  - Nonperturbative QCD input;
  - CKM parameters (no hierarchy of observables)
    - Traditional approach: no NP in tree-level extraction of CKM from CC processes

![](_page_15_Figure_6.jpeg)

$$O = O_{SM} (V_{ij}; \theta_k) + \delta O (V_{ij}; \theta_k; \varepsilon_i)$$
  

$$\rightarrow \chi^2 = \chi^2 (\tilde{V}_{ij}; \theta_k; \varepsilon_i)$$
  
CKM QCD

# Cannot we do the same with flavor data?

- UV meaning of the famous CKM-triangle plot? Never done in the general SMEFT!
- Difficulties (flavor vs EWPO):
  - Nonperturbative QCD input;
  - CKM parameters (no hierarchy of observables)
    - Traditional approach: no NP in tree-level extraction of CKM from CC processes

![](_page_16_Figure_6.jpeg)

 $G_F = \frac{1}{\sqrt{2}v^2} \left( 1 + \frac{\delta G_F}{G_F} \right) -$ 

• EW case:

NP affecting the extraction of EW parameters (g, g', v) taken into account

- Muon decay: v = 246.21965(6) GeV
- This observable fixes v-tilde and the rest is used to set NP bounds

$$O = O_{\rm SM}(v) + \delta O_{\rm NP}^{\rm direct} = O_{\rm SM}(\tilde{v}) + \delta O_{\rm NP}^{\rm indirect} + \delta O_{\rm NP}^{\rm direct}$$

### Cannot we do the same with flavor data?

[Descotes-Genon, Falkowski, Fedele, MGA, & Virto, JHEP'19]

• Four "optimal" observables:

 $\Gamma(K \to \mu \nu_{\mu}) / \Gamma(\pi \to \mu \nu_{\mu}), \quad \Gamma(B \to \tau \nu_{\tau}), \quad \Delta M_d, \quad \Delta M_s.$ 

 $\rightarrow$  Four tilde Wolfenstein parameters;

$$\begin{pmatrix} \tilde{\lambda} = \lambda + \delta \lambda \\ \tilde{A} = A + \delta A \\ \tilde{\rho} = \bar{\rho} + \delta \bar{\rho} \\ \tilde{\eta} = \bar{\eta} + \delta \bar{\eta} \end{pmatrix} = \begin{pmatrix} 0.22537 \pm 0.00046 \\ 0.828 \pm 0.021 \\ 0.194 \pm 0.024 \\ 0.391 \pm 0.048 \end{pmatrix}, \quad \rho = \begin{pmatrix} 1 & -0.16 & 0.05 & -0.03 \\ \cdot & 1 & -0.25 & -0.24 \\ \cdot & \cdot & 1 & 0.83 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

- $\rightarrow$  NP effects in them calculated:  $\delta \lambda = f(\epsilon_i)$
- Any other flavor observable becomes a NP probe:

$$O_{\alpha} = O_{\alpha,\text{SM}}(W_j) + \delta O_{\alpha,\text{NP}}^{\text{direct}} = O_{\alpha,\text{SM}}(\widetilde{W}_j) + \delta O_{\alpha,\text{NP}}^{\text{indirect}} + \delta O_{\alpha,\text{NP}}^{\text{direct}}$$

 $W_i=(\lambda, A, \rho, \eta)$ 

![](_page_17_Figure_10.jpeg)

### Outline

- Introduction
- SMEFT fit to Electroweak Precision Data
- Hadronic Tau Decays as a New Physics probe
- Neutrino oscillations as EFT constraints

![](_page_18_Picture_5.jpeg)

M. González-Alonso (CERN)

### Hadronic tau decays as NP probes

![](_page_19_Figure_1.jpeg)

Great EXP & TH precision in hadronic tau decays:  $oldsymbol{O}$  $\alpha_s$ , V<sub>us</sub>, m<sub>s</sub>, ChPT LECs, QCD vacuum condensates, f<sub> $\pi$ </sub>, ...

![](_page_19_Picture_3.jpeg)

• UV meaning of their (dis)agreement with other determinations? What are they exactly probing? Are the competitive?  $\rightarrow$  EFT!

![](_page_19_Picture_5.jpeg)

# Low-energy EFT

$$\mathcal{L}_{eff} = -\frac{\int_{R} V_{ud}}{\sqrt{2}} \left[ \left( 1 + \epsilon_{L}^{d\tau} \right) \bar{\tau} \gamma_{\mu} (1 - \gamma_{5}) \nu_{\tau} \cdot \bar{u} \gamma^{\mu} (1 - \gamma_{5}) d \right. \\ \left. + \epsilon_{R}^{d\tau} \bar{\tau} \gamma_{\mu} (1 - \gamma_{5}) \nu_{\tau} \bar{u} \gamma^{\mu} (1 + \gamma_{5}) d \right. \\ \left. + \bar{\tau} (1 - \gamma_{5}) \nu_{\tau} \cdot \bar{u} \left[ \epsilon_{S}^{d\tau} - \epsilon_{P}^{d\tau} \gamma_{5} \right] d \right] d$$
Cirigliano et al. '10  
$$\left. + \epsilon_{T}^{d\tau} \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_{5}) \nu_{\tau} \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_{5}) d \right] + h.c.$$

We focus on nonstrange decays!

 $\frac{\tau}{u}$ 

[V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]

M. González-Alonso (CERN)

#### $\tau \rightarrow \pi \nu$

• Only channel widely perceived as a NP probe

$$\Gamma = \frac{m_{\tau}^3 f_{\pi}^2 G_F^2 |V_{ud}|^2}{16\pi} \left(1 - \frac{m_{\pi}^2}{m_{\tau}^2}\right)^2 \left(1 + \delta_{RC}^{(\pi)}\right)$$

$$\epsilon_L^{ au} - \epsilon_L^e -$$

 $-\epsilon_R^{\tau} - \epsilon_R^e - \frac{m_{\pi}^2}{m_{\tau}(m_u + m_d)}\epsilon_P^{\tau} = -(1.5 \pm 6.7) \times 10^{-3}$ 

Error dominated by  $f_{\pi}$  (2x exp. and 5x rad. corr)

![](_page_21_Figure_6.jpeg)

 $f_{\pi} = 130.2(8) \text{ MeV}!$ [FLAG'17, RBC / UKQCD'14]

#### M. González-Alonso (CERN)

#### $\tau \rightarrow \pi \pi \nu$

![](_page_22_Picture_1.jpeg)

#### • Precise data;

![](_page_22_Figure_3.jpeg)

#### $\tau \rightarrow \pi \pi \nu$

![](_page_23_Figure_1.jpeg)

• Precise data;

![](_page_23_Figure_3.jpeg)

- Lattice input too [M. Bruno et al., 1811.00508]
- Full spectrum available

\* Using Keshavarzi et al.'18 one finds 30

### $\tau \rightarrow \eta \pi \nu$

#### • Suppressed in the SM $\rightarrow$ Enhanced sensitivity to scalar contributions:

$$\Gamma_{exp} \approx \Gamma_{SM} \left( 1 + 700 \,\epsilon_S^{\tau} + 1.6 \times 10^5 \,\epsilon_S^{\tau} \right)$$

[Garcés, Hernández Villanueva, López Castro, P. Roig, 1708.07802]

 $\rightarrow$  Nontrivial constraint on  $\epsilon_s$  even though SM & NP contributions are hard to predict accurately.

#### • Inputs:

- Latest experimental results for the BR [BaBar'2010];
- SM prediction (& uncertainty) [Escribano et al.'2016];
- BSM prediction (& uncertainty) [Garcés et al., 2017];

$$\epsilon_S^{\tau} = (-6 \pm 15) \times 10^{-3}$$

Future?

It will improve if TH or EXP (Belle-II!) uncertainties can be reduced.

### Inclusive tau decays

![](_page_25_Figure_1.jpeg)

[Wilson'69, Shifman et al'79, Braaten et al'92, ...]

### Inclusive tau decays

![](_page_26_Figure_1.jpeg)

### Inclusive tau decays

![](_page_27_Figure_1.jpeg)

w(x) = 1 - x  $w(x) = (1 - x)^{2}$   $\epsilon_{L+R}^{\tau} - \epsilon_{L+R}^{e} + 3.1\epsilon_{R}^{\tau} + 8.1\epsilon_{T}^{\tau} = (5.0 \pm 50) \cdot 10^{-3} \quad \text{DV}$  $\epsilon_{L+R}^{\tau} - \epsilon_{L+R}^{e} + 1.9\epsilon_{R}^{\tau} + 8.0\epsilon_{T}^{\tau} = (10 \pm 10) \cdot 10^{-3} \quad \text{Exp, fr}$ 

### Recap: NP bounds from Hadronic Tau decays

![](_page_28_Picture_1.jpeg)

$$\begin{pmatrix} \epsilon_L^{\tau} - \epsilon_L^e + \epsilon_R^{\tau} - \epsilon_R^e \\ \epsilon_R^{\tau} \\ \epsilon_S^{\tau} \\ \epsilon_T^{\tau} \\ \epsilon_T^{\tau} \end{pmatrix} = \begin{pmatrix} 1.0 \pm 1.1 \\ 0.2 \pm 1.3 \\ -0.6 \pm 1.5 \\ 0.5 \pm 1.2 \\ -0.04 \pm 0.46 \end{pmatrix} \cdot 10^{-2} \qquad \rho = \begin{pmatrix} 1 & 0.88 & 0 & -0.57 & -0.94 \\ 1 & 0 & -0.86 & -0.94 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\$$

[MS-bar at  $\mu = 2 \text{ GeV}$ ]

Running to higher energies: (QCD x QED & QCD x EW) [MGA, Martin Camalich & Mimouni'17]

$$\begin{pmatrix} \epsilon_L \\ \epsilon_R \\ \epsilon_S \\ \epsilon_P \\ \epsilon_T \end{pmatrix}_{(\mu = 2 \text{ GeV})} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1.0046 & 0 & 0 & 0 \\ 0 & 0 & 1.72 & 2.46 \times 10^{-6} & -0.0242 \\ 0 & 0 & 2.46 \times 10^{-6} & 1.72 & -0.0242 \\ 0 & 0 & -2.17 \times 10^{-4} & -2.17 \times 10^{-4} & 0.825 \end{pmatrix} \begin{pmatrix} \epsilon_L \\ \epsilon_R \\ \epsilon_S \\ \epsilon_P \\ \epsilon_T \end{pmatrix}_{(\mu = Z)}$$

![](_page_29_Figure_1.jpeg)

M. González-Alonso (CERN)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_1.jpeg)

### Outline

- Introduction
- SMEFT fit to Electroweak Precision Data
- Hadronic Tau Decays as a New Physics probe
- Neutrino oscillations as EFT constraints

![](_page_33_Picture_5.jpeg)

M. González-Alonso (CERN)

v<sub>T</sub> u e d

**JHEP'191** 

[A. Falkowski, MGA, & Z. Tabrizi,

- Similar to flavor physics: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ )
- NP constrained by the observed consistency:  $\mathbf{0} = \mathbf{0} (\theta_i, \Delta m^2, \varepsilon_j)$ 
  - Linear sensitivity (EFT counting) to non-diagonal flavor structures
  - (Of course processes with charged leptons are expected to be way more powerful...)

- Similar to flavor physics: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ )
- NP constrained by the observed consistency: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ ,  $\epsilon_j$ )
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

[PS: no anomaly in far/near ratios]

![](_page_35_Picture_6.jpeg)

• Precision:  $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]

![](_page_35_Figure_8.jpeg)

![](_page_35_Figure_9.jpeg)

[A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

- Similar to flavor physics: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ )
- NP constrained by the observed consistency: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ ,  $\epsilon_j$ )
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

![](_page_36_Picture_5.jpeg)

Vτ

ρ

[A. Falkowski, MGA, & Z. Tabrizi,

u

d

**JHEP'191** 

- Precision:  $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]
- Again: UV-meaning of the good agreement with the SM?
  - No access to NC NSI (negligible matter effects): vvqq
  - Non-standard V-A ( $e_{L}\gamma_{\mu}\nu_{\tau}$   $u_{L}\gamma^{\mu}d_{L}$ ) gets hidden:  $\theta_{13} \rightarrow \theta'_{13}$  [Ohlsson-Zhang'09]
  - S, T and Im(V+A) can be probed

u

d

Vτ

e

- Similar to flavor physics: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ )
- NP constrained by the observed consistency: 0 = 0 ( $\theta_i$ ,  $\Delta m^2$ ,  $\epsilon_j$ )
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_{\nu}) = 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) \sin^2 \left(2\theta_{13} - \alpha_D \frac{m_e}{E_{\nu} - \Delta} - \alpha_P \frac{m_e}{f_T(E_{\nu})}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right) \sin(2\theta_{13}) \left(\beta_D \frac{m_e}{E_{\nu} - \Delta} - \beta_P \frac{m_e}{f_T(E_{\nu})}\right) + \mathcal{O}(\epsilon_X^2)$$

![](_page_37_Picture_5.jpeg)

![](_page_37_Figure_6.jpeg)

![](_page_37_Picture_7.jpeg)

Vτ

ρ

[A. Falkowski, MGA, & Z. Tabrizi,

u

d

# Summary

- The (SM)EFT is an *efficient* framework to combine / compare / interpret precision low-E experiments
- Intense activity in recent years: EFT basis, RGEs, **global fits**, BSM matching, ...
  - Flavor-general SMEFT fit to EWPO (publicly!) available
     [Falkowski, MGA & Mimouni, JHEP'17]

![](_page_38_Figure_4.jpeg)

- The UV information of many precision measurements has not been explored:
  - Hadronic Tau Decays
     [V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]
  - Reactor neutrinos [A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

![](_page_38_Figure_8.jpeg)

M. González-Alonso (CERN)

Low-energy BSM probes

![](_page_38_Picture_11.jpeg)

 $\chi^2 = \chi^2 \left( \mathbf{c}_i \right)$