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✦ General aim: 
 -  Describe scenarios for low-energy (sub-Planckian) effects induced by  
    quantum gravity theories  

✦ Tasks: 
 -  Improve the mathematical consistency and physical understanding  
 -  Provide reliable predictions and admit experimental constraints  
 -  Describe observers, their measurements and measurement comparison in  
    the presence of LIV or DSR scenarios consistently  
 -  Identify equations which connect the sub-Planckian theories to  
    fundamental approaches to quantum gravity

✦ Milestones: 
 -  Compile a comprehensive review of existing theoretical frameworks for  
    QG phenomenology 

[this is part of one of the Action milestone goals: review on theoretical predictions of 
possible observations, and of current experimental constraints for each cosmic 
messenger]
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General Relativity is a classical theory, describing spacetime dynamics and its interaction 
with classical ‘matter’

Quantum Mechanics (and relativistic Quantum Field Theory) is a quantum theory of 
‘matter’ on a fixed background spacetime

Attempts to quantise GR showed that it is fundamentally inconsistent as a perturbative 
quantum field theory (with or without matter), and attempts to build QFT on a dynamical 
spacetime have failed

While both GR and QFT use a classical spacetime, they define its points in incompatible 
ways: in QFT localisation improve with increasing mass of the probe (minimal quantum 
uncertainties); in GR localisation improves with decreasing mass of the probe (minimal 
back-reaction on spacetime geometry) 

✦ This might be a problem physicists might be tempted to ignore, since all 
experimental setups presently available are dominated either by the QM regime or 
by the GR regime. Indeed arguments to estimate the QG regime show that is it 
quite extreme.
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✦ Scale where the QG problem is relevant (a heuristic argument)

✦ But the QG regime is very relevant also e.g. in the early universe, which is 
accessible with current observations, and might have signatures in astrophysical 
observations — that’s why we are here!
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A (non-exhaustive) list of Quantum Gravity theories  

✦ Perturbative Quantum Gravity: quantised gravitational interactions treated at the 
perturbative level as an Effective Field Theory, no quantum spacetime  

✦ String Theory: quantum field theory on a fixed spacetime hoping to recover the 
(supersymmetric) theory of gravity plus standard model fields in the low energy limit  

✦ Loop Quantum Gravity: nonperturbative and background-independent theory of 
quantum spacetime, without matter  

✦  Asymptotic Safety: solve perturbative nonrenormalizability of gravitational interactions 
in a standard QFT perspective by looking for a nongaussian UV fixed point, no quantum 
spacetime 

✦ Noncommutative geometry: description of quantum properties of spacetime by 
introducing limitations on their measurability, no gravitational dynamics  

✦ Causal Sets: spacetime discretisation based on the definition of a discrete causal 
structure 

✦ Causal Dynamical Triangulations: nonperturbative and background-independent 
formulation of the path integral describing evolution of a discrete spacetime



✦ For the scopes of this Action it is relevant to focus on the aspects of theoretical 
research in quantum gravity that are closer to phenomenology  
(WG1 is called “Theoretical frameworks for QG effects below the Planck energy”)

✦ None of the candidate QG theories is sufficiently developed to produce direct 
clear predictions (often due to their complicated structure)
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Construct effective models which are directly testable and try to relate them to features of 
a given QG theory (bottom-up approach)  
 
Derive semi-classical effects from QG theories, even if with heuristic arguments, and try 
to link them to phenomenological models (top-down approach)

✦ Examples of QG-inspired features:

In string theory there can be an “emergent” spacetime noncommutativity  

In LGQ there are indications that spacetime is somewhat discretised, at least at the level 
of the area operator

From QG theory to phenomenology — and back 



✦ For the scopes of this Action it is relevant to focus on the aspects of theoretical 
research in quantum gravity that are closer to phenomenology  
(WG1 is called “Theoretical frameworks for QG effects below the Planck energy”)

✦ None of the candidate QG theories is sufficiently developed to produce direct 
clear predictions (often due to their complicated structure)

From QG theory to phenomenology — and back 

✦ At the phenomenology level we can establish a two-way communication channel 
between theory and experiments

Current observations cannot rule out specific QG theories, regardless how good the data 
are, because the link between fundamental theories and QG phenomenology is loose  

Still, we can constrain some classes of QG effects, and use the results to inform the 
theoretical developments

✦ We will discuss an explicit example later
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From QG theory to phenomenology — and back 

✦ Focus of this review talk: phenomenological models relevant for the description of 
the propagation and interaction of messengers from astrophysical sources

✦ Results from black holes might provide access to a different, strong gravity, regime 
(dynamical gravitational field) where maybe the connection with “fundamental” QG 
theories can be made stronger  [see T. Hinderer talk for WG1]

✦ This is mostly concerned with the Minkowski/de Sitter semiclassical limit of QG

Bronstein cube  
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Most studied* kinds of QG effects
✦ Departures from Lorentz symmetries — affecting e.g. dispersion relations of 
particles and their interactions 
 

✦ Fuzziness of spacetime geometry — affecting e.g. the localisability of far-away 
sources or inducing non-systematic deformations of particles trajectories 

✦ Departures from CPT symmetry  
 

✦ Violations of the equivalence principle  
 

✦ Departures from Quantum Mechanics — inducing modifications of the 
Heisenberg uncertainty principle and of the de Broglie relation  
 

*and promising from the point of view of Planck-scale experimental sensitivity, see WG2 review talk 
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depend on the theoretical framework in which they are embedded 
e.g. kinematical assumptions, dynamical assumptions, assumptions on the validity of 
a Hamiltonian description, etc…

Theoretical approach to quantum gravity phenomenology 

✦ The role of a theoretical analysis it to systematically characterise possible effects, 
emphasising how they are related in different theoretical frameworks
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✦ The effects mentioned in the previous slide have observational consequences that 
depend on the theoretical framework in which they are embedded 
e.g. kinematical assumptions, dynamical assumptions, assumptions on the validity of 
a Hamiltonian description, etc…

✦ Example1: a useful characterisation is w.r.t. the fate of Lorentz symmetry

 Relativistic models which preserve Lorentz invariance 
 Non-relativistic models which break Lorentz invariance (LIV) 
 Relativistic models where Lorentz transformations are deformed (DSR)

Theoretical approach to quantum gravity phenomenology 

✦ The role of a theoretical analysis it to systematically characterise possible effects, 
emphasising how they are related in different theoretical frameworks

 Models with systematic departures from standard physics 
 Models with stochastic (fuzzy) departures from standard physics 

✦ Example2: another relevant (and possibly related) characterisation concerns the 
kind of departures from standard physics 



Lorentz breaking (LIV) vs. Lorentz deformation (DSR)
✦ In Lorentz breaking theories everything transforms linearly under the appropriate 
representation of the Lorentz group. On top of this, Lorentz non-invariant fields (e.g. fixed 
background tensors) are introduced, that identify a preferred frame of reference (possibly 
coincident with that of the CMB) and so manifestly break the symmetry 
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✦ In relativistic theories with Lorentz deformations it is the action of the Lorentz group itself 
that is modified. The theory is still relativistic (i.e. different inertial observers agree on the 
physics), however the action of the group under which this invariance is realised is 
different (e.g. the action of the new Lorentz group linking different inertial observers is 
deformed and nonlinear on physical quantities).  
This implies the existence of a new relativistically invariant energy scale besides the speed 
of light. This framework leads to apparent Lorentz violating effects, such as an energy-
dependent speed of light, which are however compatible with the new relativistic 
symmetry transformations.  

m2 = E2 � |~p|2 � �E|~p|2

E ! E + ⇠pj
pi ! pi + ⇠

⇥
E�ij +

�
2 |~p|
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Status of Lorentz symmetries in QG theories
✦ No definite statement informed by a rigorous derivation is possible, however our 
current understanding of the theories allow us to make quite reliable guesses 
concerning their (semiclassical) Minkowski limit

String theory might entail a breakdown of Lorentz symmetries due to the presence of  
extra tensor fields  

LQG points towards a deformation of Lorentz symmetries, by looking at the structure of 
the modified hypersurface deformation algebra 

Causal sets has been constructed so to retain Lorentz invariance, thanks to an appropriate 
probability distribution of “spacetime atoms” 

Noncommutative geometry predicts either Loretnz breaking or Lorentz deformations, 
depending on the properties of the commutator between spacetime coordinates 



Example: theoretical implications of photon energy-dependent time delays
✦ Assume that we are able to state that the time of arrival of photons simultaneously 
emitted from distant sources has a systematic energy dependence (due to Plank-
scale physics) which in a flat spacetime approximation can be written as

Of course being able to make such a statement is highly nontrivial from an observational point of view (need 
to account for all possible ‘standard’ explanations, observational limitations, etc… but we leave these matters 
to the other WGs) 
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Example: theoretical implications of photon energy-dependent time delays

✦ This MDR can in principle be associated to either LIV or DSR — the theoretical 
implications and further observational signals to look for are very different in the 
two scenarios

✦ Assume that we are able to state that the time of arrival of photons simultaneously 
emitted from distant sources has a systematic energy dependence (due to Plank-
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✦ From a kinematical point of view, in a Lorentz breaking scenario the form of the 
MDR does not constrain other features, e.g. universality of the deformation 
parameter, conservation rules in interactions etc…

✦ The most natural assumption is that energy and spatial momenta are conserved as 
usual: in a process                           one has  a+ b ! c+ d

Ea + Eb = Ec + Ed

~pa + ~pb = ~pc + ~pd

Example: MDR in a Lorentz breaking scenario
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✦ These combined features have strong implications for threshold reactions, e.g. 
they allow for photon decay  � ! e+ e�

(there is no reason to expect that the deformation parameter in the MDR is universal)
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✦ One can also embed the Lorentz breaking scenario into a dynamical framework, 
e.g. an Effective field theory model — more later

✦ However in this case the only way to introduce a linear energy dependence of the 
velocity is by introducing a MDR with opposite corrections for different photon 
helicity:

E2 = |~p|2 ± ⌘
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✦ One can also embed the Lorentz breaking scenario into a dynamical framework, 
e.g. an Effective field theory model — more later

✦ However in this case the only way to introduce a linear energy dependence of the 
velocity is by introducing a MDR with opposite corrections for different photon 
helicity:

✦ In order to explain a measured energy-dependent speed of photons within the EFT 
framework it is necessary to control for the polarisation of the sources: 

A systematic dependence of the time of arrival on energy would be available only for 
(circular) polarised sources with the same polarisation 

For unpolarised sources there would be a spread in the time of arrival (advanced and 
delayed) that increases with energy
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✦ Moreover one needs to compare to constraints on birefringence
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EP

if the two circularly polarised components travel at different speed, with a speed that is 
energy-dependent, a linearly polarised source will have its polarisation direction rotated if 
observed in a narrow energy range, while if observed in a wide enough energy range will 
have its polarisation erased
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✦ Another kinematical framework to study MDRs is that of deformed Lorentz 
symmetries (DSR)

✦ The form of the MDR constrains the possible nonlinear modifications of boost 
transformations, such that the MDR is invariant:

The (infinitesimal) boost that leaves the dispersion relation invariant has the following 
nonlinear action on energy and momenta
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h
E�ij +

⌘
2EP

|~p|2�ij � ⌘
EP

E2�ij � ⌘
EP

pj
P

k pk�ik
i

Example: MDR in a Doubly Special Relativity scenario

The compatibility condition reads, for a boost Bj along the j direction

m2 = E2 � |~p|2 � ⌘
E

EP
|~p|2 m2 = Bj [E]2 � |Bj [~p]|2 � ⌘

Bj [E]

EP
|Bj [~p]|2

This is not satisfied by a standard boost,                          ,

E2 � |~p|2 � ⌘
E

EP
|~p|2 ! E2 � |~p|2 � ⌘

E

EP
|~p|2 � ⇠⌘

pj
EP

�
2E2 + |~p|2

�

Bj [E] = E + ⇠pj Bj [pi] = pi + ⇠E�ij



✦ The action of deformed boosts is not compatible with standard conservation of 
energy and spatial momenta

a ! b+ c
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Example: MDR in a Doubly Special Relativity scenario
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kinematical level

Example: MDR in a Doubly Special Relativity scenario

In a DSR setting the interplay between MDR and modified conservation rules weakens the 
effects on threshold reactions

Moreover the reactions that would be forbidden in special relativity (such as photon 
decay) are also forbidden in DSR, since this framework does not allow to identify preferred 
reference frames
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Moreover the reactions that would be forbidden in special relativity (such as photon 
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tensors in the Standard Model action, preserving gauge invariance, covariance of 
the action and energy-momentum standard conservation (dynamics is fully 
specified)



LIV: a concrete model

✦ Adding all possible terms will generate a tower of operators with increasing mass 
dimension (at tree level these operators are independent, radiative corrections 
produce in principle lower-order terms )

✦ The most conservative framework to describe Lorentz breaking in the matter 
sector is that of Effective Field Theory: Lorentz violations are introduced via extra 
tensors in the Standard Model action, preserving gauge invariance, covariance of 
the action and energy-momentum standard conservation (dynamics is fully 
specified)

Example: the extended QED of photons and electrons 

both the above equations would make all the coupling
coefficients diagonal in flavor space.

In the pure-photon sector, there is one CPT-even
Lorentz-violating term:

LCPT−even
photon = − 1

4 (kF )κλµνF
κλFµν . (24)

The coupling (kF )κλµν arises from Eq. (16) and is real
and dimensionless. Without loss of generality it can
be taken as double traceless, since any trace component
would serve merely to redefine the kinetic term and hence
is just a field renormalization. We disregard a conceivable
θ-type term proportional to FκλϵκλµνFµν , which might
arise from a totally antisymmetric component of kF , on
the grounds that it is a total derivative. The coupling
kF therefore can be taken to have the symmetries of the
Riemann tensor.

There is also a CPT-odd pure-photon term:

LCPT−odd
photon = + 1

2 (kAF )κϵκλµνA
λFµν , (25)

where the coupling coefficient (kAF )κ is real and has di-
mensions of mass. This term arises from the CPT-odd
gauge sector (17) of the standard-model extension. As
mentioned in the previous section, it has some theoreti-
cal difficulties associated with negative contributions to
the energy and it therefore seems likely to be absent in
practice. It is included in what follows so that we can
discuss explicitly its difficulties and some related issues
involving radiative corrections. Note also that the ex-
cluded destabilizing linear term in Bµ in the standard-
model extension would, if present, generate a correspond-
ing linear term −(kA)κAκ in Eq. (25), where (kA)κ is a
real coupling with dimensions of mass cubed. Certain
issues involving this term are addressed in sections IV A
and V.

The QED limit obtained from the standard-model ex-
tension also has a quark sector. This has the same gen-
eral form as the lepton sector given by Eqs. (20), (22),
and (23), except that six quark fields replace the three
leptons and so twice as many Lorentz-violating couplings
occur. Note that the lepton and quark sectors are cou-
pled only through the photon: the gauge invariance of
the standard-model extension excludes couplings mixing
leptons and quarks.

The extended QED of leptons and photons given in
Eqs. (20) - (25) should suffice for certain applications
where the asymptotic states are leptons or photons and
the strong and weak interactions play a negligible role,
including a variety of existing or proposed high-precision
experiments involving leptons. Interesting options for
such experiments are to establish the possible signals of
Lorentz violation suggested by the extended QED and to
place bounds on the associated coupling coefficients. For
example, promising possibilities involving the muon in-
clude accurate measurements of g−2 such as those under-
way at the Brookhaven muon ring [20] and sensitive tests

for the decay µ → eγ. There are also a variety of other
comparisons involving heavy leptons that are potentially
of interest [21]. These issues lie beyond the scope of the
present work and will be addressed elsewhere.

For certain experiments, it suffices to consider another
limiting case of the theory: the extended QED includ-
ing only electrons, positrons and photons. This limit can
be extracted from the lagrangian terms for the extended
QED of leptons and photons by setting to zero the muon
and the tau fields. Denoting the four-component electron
field by ψ and the electron mass by me, the usual QED
lagrangian for electrons and photons is

LQED
electron = 1

2 iψγµ
↔

Dµ ψ − meψψ − 1
4FµνF

µν . (26)

In the Lorentz-violating sector, the pure-photon terms
are still given by Eqs. (24) and (25). However, the CPT-
even terms in the fermion sector become

LCPT−even
electron = − 1

2Hµνψσ
µνψ

+ 1
2 icµνψγ

µ
↔

Dν ψ

+ 1
2 idµνψγ5γ

µ
↔

Dν ψ , (27)

while the CPT-odd ones become

LCPT−odd
electron = −aµψγ

µψ − bµψγ5γ
µψ . (28)

The real coupling coefficients a, b, c, d, and H are
the (1, 1)-flavor components of the corresponding coef-
ficients in the extended QED of leptons and photons
and inherit the corresponding dimensions and Lorentz-
transformation properties.

In addition to the expressions given in Eqs. (24) - (28)
for the extended QED of electrons, positrons, and pho-
tons, other Lorentz-violating terms can be envisaged that
are compatible with U(1) charge symmetry, renormaliz-
ability, and an origin in spontaneous Lorentz breaking
but that cannot be obtained as a reduction from the
standard-model extension. All such terms would be CPT
odd. They would have the form

Lextra
electron = 1

2 ieνψ
↔

Dν ψ − 1
2fνψγ5

↔

Dν ψ

+ 1
4 igλµνψσ

λµ
↔

Dν ψ , (29)

where the couplings eµ, fµ and gλµν are real and di-
mensionless. The reason such terms are absent from the
expressions obtained above is that all putative renormal-
izable terms in the standard-model extension that could
generate Eq. (29) are directly incompatible with the elec-
troweak structure. However, it is possible that nonrenor-
malizable higher-dimensional operators in the effective
lagrangian obeying SU(2) × U(1) symmetry and involv-
ing the Higgs field might generate the expressions (29)
when the Higgs field acquires its vacuum expectation
value. According to standard lore and the discussion
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✦ Renormalizable operators are part of the minimal Standard Model Extension. 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tons, other Lorentz-violating terms can be envisaged that
are compatible with U(1) charge symmetry, renormaliz-
ability, and an origin in spontaneous Lorentz breaking
but that cannot be obtained as a reduction from the
standard-model extension. All such terms would be CPT
odd. They would have the form

Lextra
electron = 1

2 ieνψ
↔

Dν ψ − 1
2fνψγ5

↔

Dν ψ

+ 1
4 igλµνψσ

λµ
↔

Dν ψ , (29)

where the couplings eµ, fµ and gλµν are real and di-
mensionless. The reason such terms are absent from the
expressions obtained above is that all putative renormal-
izable terms in the standard-model extension that could
generate Eq. (29) are directly incompatible with the elec-
troweak structure. However, it is possible that nonrenor-
malizable higher-dimensional operators in the effective
lagrangian obeying SU(2) × U(1) symmetry and involv-
ing the Higgs field might generate the expressions (29)
when the Higgs field acquires its vacuum expectation
value. According to standard lore and the discussion

7

+



LIV: a concrete model
✦ The minimal extension of the QED Lagrangian of photons and electrons predicts a 
modified dispersion relation of photons

E = (1 + ⇢)|~p| ±
p

(�2|~p|2 + ⌧2)

The parameters are functions of those appearing in the Lagrangian, and the different 
signs refer to different polarisations 

✦ Depending on which coefficients are nonzero, photons might or might not have 
a birefringent behaviour
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E = (1 + ⇢)|~p| ±
p

(�2|~p|2 + ⌧2)

The parameters are functions of those appearing in the Lagrangian, and the different 
signs refer to different polarisations 

✦ Depending on which coefficients are nonzero, photons might or might not have 
a birefringent behaviour

✦ Because we started with renormalizable operators, the parameters are either 
dimensionless (𝜌 and 𝜎) or have dimension of an energy — not Planck-scale 
suppressed

Very strong experimental constraints, even in the laboratory
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Example: the extended QED of photons and electrons with mass dimension 5 operators 
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covariant, not reducible to lower dimensional operators nor to total derivatives

✦ Operators that allow to introduce the Planck scale explicitly as a dimensionful 
deformation parameter) are nonrenormalizable (mass dimension > 4)

(n is a unitary fixed four-vector, 𝜉 and 𝜁 are dimensionless parameters)
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LQED
(5) = � ⇠

2EP
nµFµ↵(n ·D)(n⌫ F̃

⌫↵) +
1

2EP
nµ ̄�µ(⇣1 + ⇣2�5)(u ·D)2 

these are the only dimension five corrections that are quadratic, gauge invariant, 
covariant, not reducible to lower dimensional operators nor to total derivatives

✦ Operators that allow to introduce the Planck scale explicitly as a dimensionful 
deformation parameter) are nonrenormalizable (mass dimension > 4)

(n is a unitary fixed four-vector, 𝜉 and 𝜁 are dimensionless parameters)

E2 = |~p|2 ± ⇠

EP
|~p|3

E2 = |~p|2 +m2 + 2
(⇣1 ± ⇣2)

EP
|~p|3

photons necessarily have a birefringent behaviour in this framework

✦ The predicted dispersion relations for photons and electrons are

In principle nonrenormalisable operators produce lower mass dimension ones via radiative corrections. One 
needs to find mechanisms to avoid this in order to evade very stringent constraints on renormalisable terms



DSR: a concrete model
✦ A well studied framework for DSR is that of noncommutative geometry, in its 
realisation in terms of quantum groups: spacetime coordinates are affected by 
intrinsic limitation on their simultaneous measurability, formalised via a nontrivial 
commutator, and this requires deformed relativistic symmetries 

Example: 𝜅-Minkoswki spacetime,  

[x̂i, x̂j ] = 0

 ⇠ EP

[x̂0, x̂j ] =
x̂j



[see also J. Kowalski-Glikman talk for WG1]
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✦ A well studied framework for DSR is that of noncommutative geometry, in its 
realisation in terms of quantum groups: spacetime coordinates are affected by 
intrinsic limitation on their simultaneous measurability, formalised via a nontrivial 
commutator, and this requires deformed relativistic symmetries 

Example: 𝜅-Minkoswki spacetime,  

[x̂i, x̂j ] = 0

 ⇠ EP

Assuming a standard action of boost transformations on single coordinates, 
compatibility with spacetime commutators requires a deformed action on 
products of coordinates: 

(formulas shown for the 1+1 dimensional case, easily generalisable)

B[x̂0] ⌘ x̂0 + ⇠N . x̂0 = x̂0 + ⇠x̂1

B[x̂1] ⌘ x̂1 + ⇠N . x̂1 = x̂1 + ⇠x̂0

B[[x̂0, x̂1]] =
i



B[x̂1]
N . (x̂0x̂1) = (N . x̂0)x̂1 + x̂0N . x̂1 +

1
N . x̂1

N . (x̂1x̂0) = (N . x̂1)x̂0 + x̂1N . x̂0

[x̂0, x̂j ] =
x̂j



[see also J. Kowalski-Glikman talk for WG1]



DSR: a concrete model
✦ The nontrivial action of generators on products of coordinates is formalised via the 
‘coproducts’ of symmetry generators

�(P0) = P0 ⌦ 1 + 1⌦ P0

�(P1) = P1 ⌦ 1 + e�P0/ ⌦ P1

�(N) = N ⌦ 1 + e�P0/ ⌦N
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✦ The associated Casimir is nonlinearly deformed

3

II. RELATIVISTIC COMPATIBILITY OF THE -POINCARÉ MOMENTUM SPACE MODEL

As mentioned in the introduction, the -Poincaré momentum space model is based on the symmetries of the -
Poincaré Hopf algebra. In this Section we will review briefly how this momentum space is constructed and what are
its main properties. In the bicrossproduct basis [25] of the -Poincaré algebra the generators associated to spacetime
translations, P0, P1, and boost, N , have the following commutation relations:

[P0, P1] = 0 , [N,P0] = P1 , [N,P1] =


2

⇣
1� e

�2P0/

⌘
� 1

2
P

2
1 , (1)

and coalgebra:

�(P0) = P0 ⌦ 1 + 1⌦ P0 , �(P1) = P1 ⌦ 1 + e

�P0/ ⌦ P1 , �(N) = N ⌦ 1 + e

�P0/ ⌦N . (2)

The parameter , with dimensions of a momentum, governs the deformation with respect to the classical Poincaré
algebra, which is recovered in the 

�1 ! 0 limit. Because of the connection to quantum gravity research, the
parameter  is expected to be roughly of the order of the Planck scale E

p

' 1028 eV.
Other relevant structures of the Hopf algebra are the counit

✏(P0) = ✏(P1) = ✏(N) = 0 , (3)

and the antipode,

S(P0) = �P0 , S(P1) = �eP0/
P1 , S(N) = �eP0/

N . (4)

Finally, the Casimir element is

C = 42 sinh2
✓
P0

2

◆
� (P1)

2
e

P0/
. (5)

Because in the bicrossproduct basis the translation generators form a Hopf-subalgebra, they can be represented
as an algebra of functions over momentum space [2, 26], such that the two translation generators correspond to the
coordinate functions p0 and p1,

P0 = p0, P1 = p1 . (6)

Then one can establish a correspondence between the structures of the Hopf sub-algebra of translations and the prop-
erties of the momentum space, thus providing a physical interpretation of the Hopf algebra mathematical construction.
Specifically, a deformed composition law of momenta is read o↵ from the Hopf algebra coproduct:

(p� q)
µ

= (�(P
µ

))(p, q) )
⇢

(p� q)0 = p0 + q0 ,

(p� q)1 = p1 + e

�p0/
q1 .

(7)

This is associative (because of the coassociativity of the coproduct) but noncommutative (because of the noncocom-
mutativity of the coproduct). The internal structure of the Hopf algebra guarantees that the composition law makes
momentum space into a group with unit element provided by the co-unit,

0̃
µ

= ✏(P
µ

) = 0 , (8)

and inverse element provided by the antipode:

( p)
µ

= (S(P
µ

))(p) )
⇢

( p)0 = �p0 ,
( p)1 = �ep0/

p1 .
(9)

Indeed, one can easily check that for any p

µ

p� 0̃ = 0̃� p = p, p� ( p) = ( p)� p = 0̃. (10)

From the Hopf algebra structure one can also infer the mass-shell condition, which is naturally identified with
the Casimir, since this object is the invariant associated to the Hopf algebra. Upon representing the Casimir on
momentum space one finds the dispersion relation:

m

2 = 42 sinh2
⇣
p0

2

⌘
� (p1)

2
e

p0/
. (11)
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✦ The translation generators can be represented as an algebra of function over 
energy-momentum space

✦ The structures of the algebra of generators translate into properties of the energy 
and momenta

P0 = E P1 = p1
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Dispersion relation from the Casimir 

m2 = 42 sinh2 (E/2)� p21e
E/

' E2 � p21 � 1
Ep21
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The deformed commutator between boost and spatial translations encodes a nonlinear 
action of boosts on momenta

B[p1] ⌘ p1 + ⇠[N, p1] = p1 + ⇠
⇥

2

�
1� e�2E/

�
� 1

2p
2
1

⇤



Conclusions 

We do not know how does the correct QG theory look like, and given the status of 
theoretical research the best we can do at the moment is to get inspiration from the 
features of candidate QG theories to build a set of interesting observables and point 
to interesting observational windows

The results of experimental observations can in turn guide the theoretical effort in 
specific directions, hopefully leading to progress generated by joint experimental/
theoretical efforts

For this process to be effective, on the theoretical side we need a careful 
exploration of the logical relations between different features within any given 
model we want to test

On the experimental side we need clear statements about what is actually being 
tested, i.e. what are the assumptions behind the framework that is being used to 
interpret the data

… during the crises that lead to large-scale changes of paradigm, scientists usually develop many 
speculative and unarticulated theories that can themselves point the way to discovery. Often, 
however, the discovery is not quite the one anticipated by the speculative and tentative hypothesis. 
Only as experiment and tentative theory are together articulated to a match does the discovery 
emerge and the theory become a paradigm. — T.S. Kuhn, The structure of scientific revolution
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