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Motivation

« GW astronomy:
- We want to get the “fingerprints” of GW sources from the
shapes of their waveforms

- Want to learn about binary parameters and astrophysics and
fundamental physics of these systems

- LIGO / Virgo have set the stage with about a dozen observations
in O1 & O2, more coming as we speak in O3.

e Testing General Relativity with GWs:

- GWs emitted from merging compact binaries allow us to test GR
In the strong field regime

- So far, no evidence for deviations from GR

 First, let’s look at basic GW data analysis:
- How can we infer binary parameters given a GW signal?
- Ingredients: matched filtering, model of (GR) waveform and noise

2 M. Purrer - Data Analysis Techniques for Testing GR with GWs  Oct 2, 2019



Introduction to GW data
analysis for compact
binary mergers

See also: “Guide to LIGO data analysis”, arXiv:1908.11170
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Current GW detector network
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LIGO Hanford. Credit: LIGO
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Matched filtering
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GW data analysis

* Detection:
- Build a bank of template waveforms that covers parameter
space
- Want to keep fraction of missed signals small
- Cross-correlate templates against detector data

e Parameter estimation:

- Given a likely detection follow it up with Bayesian methods to
find the probability distribution of the binary parameters
given the signal in the detectors and the PSD of the detector
noise

- Need high accuracy waveforms to make sure that we don'’t infer
wrong / biased parameters

 Both need fast & accurate waveform models
- Require O(107) - O(108) waveform evaluations!
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Interferometric GW detectors
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What do we need to model?

« A waveform model is a BBH coalescence
parametrized function of the e ringdom
waveform polarizations h, (1; 1) O,
or complex modes i, (r; 1) o )

h(t) |
(hy = i)t 1) = 3 Iun(t; 22,0, ) i,
Im A VeV, \j\}\]\]h Jv\/v ,

 Need to model the inspiral, merger
and ringdown stages in binary
bIaCk hOle COaleSCGnce. [Baumgarte & Shapiro, Numerical Relativity]

post-Newtonian numerical perturbation
techniques relativity methods

e GW detectors record GW strain:
h(t, 0)=h,(t; A)F.(n,y) + h(t; 1)F (7, )
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Model parameters

Intrinsic parameters:
masses, spins,
eccentricity, tidal
deformability

Extrinsic parameters:
time, sky position,
distance, orientation,
reference phase

Credit: LIGO/Virgo

9 M. Purrer - Data Analysis Techniques for Testing GR with GWs Oct 2, 2019



To find the signal: Likelihood
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e Subtract signal model from data d — A( T), where d=n+nh

frue

* Assumptions: noise is Gaussian (zero mean) and stationary

L] 7) x exp —% (d— W), d— h(T))
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Parameter Estimation

* Posterior probability of model
parameters 1 given the data d GWTC-1 Catalog
(Bayes' Theorem):

p(A | d)x p(MNL(d|7)

0 20 40 60 80

* Need Models for signal and noise ma (M)
& specify prior knowledge G TTON IO Tamn o
LVC, PRX 9, 031040, 2019

e Numerically sample the posterior
Y P P & (2)VIRD

distribution
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Tests of GR with GWs

See LVC, arXiv:1903.04467
Results on GWTC-1 Catalog

l@Nes
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Residuals test

* Residual: detector data - maximum N e owisels
. . 1 R o
likelihood template R WA %- GWI51012
W —— GWI151226
— g + -3%- GWI170104
F(t) == d(t) = h( A pax 73 1) 7 awWiT0729
" —— GW170809
o f \ ~%- GW170814
e Compute 90% upper limit of SNR ¢ IR 4 awiTosts
. 2 GW 170823
of residuals pgo(£) z N
- describe signal as Gaussian £
noise + coherent signal
e Repeat analysis for noise-only e L
detector data many times:
P(P90( A, 10ise)) * p-values > 0.05

* Meta p-value = 0.4

« At which percentile does pos(%) . o
lie in p(p (B . )7 No statistically significant
90\~“noise// evidence for deviations from GR
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Inspiral-merger-ringdown consistency test
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* Check whether final mass M,
and final spin arinferred from
the low and high frequency
parts of the signal are consistent.

P(AM; | My)
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 Compute posterior distributions
with different frequency bounds
for likelihood integral:

- Transition point: innermost

1 =0.5
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* lines = 90% credible regions

stable circular orbit (ISCO) of p(AM,/M,, Aa,/a,|d)
- Normalization: * Plus sign = GR value
V1 MR * GR value recovered at
AM, /M, = U < 80% credible level
| MR
(M + M52 All events consistent with GR
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Parametrized test of GW generation

e Compute posteriors p(ép, | d) of
deviations in coefficients p, of the
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e Templates have to be phase coherent with oot o, LY 144

the signal to a fractions of a radian to #-2 #0

capture the SNR of an event 6 o
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* post-Newtonian phase up to 3.5PN or 0 $ Sf-ff*-:R:—; z?s
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128,7 (M) 5/32%(9)(”Mf )" » Combined posteriors for &4,
for the most significant events

 Fractional deviations, 6, := (¢, — p)/pSR e Horizontal lines: 90% CR

except for -1PN and 0.5PN which are zero e GR value = 0

in GR

All events consistent with GR
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Parametrized test of GW propagation

» Assume a phenomenological [T 7] [T 777711
dispersion relation eSS EEe e
2 _ 2.2 a.a A A |
E“=pocc+ A, pc 2 JERRPYYE o o8,
3 [ A *. T
where GR has A, =0 B e * e
< S ess=====ll=—>
* Massive graviton (e = 0,4, > 0) A e

A GWI150914 + GW151226 + GW 170104

* Lorentz-violating theories ® 0! nd 02 combined remit

10—2]

e Dispersive propagation of

* 90% credible upper bounds

GWs except for a =2 on |A |
a
* IpeV ~ h X 250Hz
* Use GR waveforms and only o m, <47 % 1073V/C?

mOdIfy propagation No indication for dispersive

propagation of GWs.
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Constraints on Alternative Polarizations

e For events observed with three or more GW
detectors:

- Is possible to distinguish purely tensor from
purely vector or purely scalar perturbations

- detectors have different antenna patterns for
different polarizations

« Compute Bayes factors between options:

- GW170817: BF > 1020 in favor of pure tensor
polarizations

- Weaker constraints from binary black hole events
(SNR and sky localizations play a role)
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Conclusion & Outlook
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* Will have many more events during O3 and 10-
future observing runs: statistical errors of the _ 05
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* Goal: inspiral-merger-ringdown waveforms for
alternative theories of gravity

- This is hard: need to solve initial value
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problem for 2-body problem: well-posedness? . ——— 1.
- Obtain waveform in the inspiral regime Time from 1126259658.400 (s)
- Develop numerical relativity codes for Biases / stat error and
alternative theories power in residual

from population study
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Einstein Telescope and 3G Science

Science Targets for 3G GW Detectors

e determine the properties of the hottest and densest matter in the
Universe

e reveal the merging BH population throughout the Universe; seeds

 investigate the particle physics of the primeval Universe and
probe its dark sectors

e 3G Science Case Document, led subgroup
on waveforms & data analysis

* 3G White paper on Extreme Gravity and
Fundamental Physics, arXiv:1903.09221

* 3G network sensitivity ~ 20 times better than
Einstein Telescope aLlGO/Virgo: precision measurements!
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Extra slides
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Phase contributions from dispersion relation

* Treat the GW as a stream of gravitons, which travel at the particle
velocityv,/c = pc/E =1 - AE*2/2 + O(Aczy)

* Length scale of modifications to the Newtonian potential 1, := hc|A,|'/(@ 2

e Fourier domain dephasing due to modified dispersion relation:

( 7TDL L f a—1

—a_ l/lA’eﬂ:(z) . a# 1
0D, (f) = sign(A,) -
nD;, . (rGMf
In , a=1
\/lA,eﬂ" C3
(1 +Z)1—aDL 1/(a=2) B (1 +Z)1—a Z (1 +Z)a—2 )
A eff = A D, = H = dz .
: D, 0 0 VQu(l+72)3+Qp

Mirshekari et al, PRD 85, 024041 (2012)
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