

Atmospheric Calibration of Cherenkov Telescopes

O

(and their relationship with time-of-flight studies to constrain LIV)

Markus Gaug

Universitat Autònoma de Barcelona and IEEC-CERES

Introduction

- ToF studies and their current limitations
- Systematic uncertainties of IACTs
- Atmospheric Calibration of IACTs
- Plans for CTA
- Conclusions

Photon time-of-flight

...plus cosmological corrections (Amelino-Camelia et al., Nature 393 (1998) 763)

Photon time-of-flight

...plus cosmological corrections (Amelino-Camelia et al., Nature 393 (1998) 763)

Tests from astrophysical sources:

Source	d	\mathbf{E}	δt	Expected	limits		
family	[pc]	[GeV]	[s]	E_{QG1} [GeV]	E_{QG2} [GeV]		
GRB	1010	10^{1}	$10^0 - 10^2$	$10^{17} - 10^{19}$	$10^9 - 10^{10}$		
AGN	10^{8}	(10^4)	$10^2 - 10^5$	$10^{15} - 10^{18}$	$10^9 - 10^{11}$		
Pulsar	10 ³	10^{2}	10^{-4} 10^{-2}	$10^{17} - 10^{19}$	$10^{10} - 10^{11}$		

Photon time-of-flight limits from astrophysical sources

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, <u>https://zaguan.unizar.es/record/76918</u>.

10¹⁰

10¹¹

Photon time-of-flight limits from astrophysical sources

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, https://zaguan.unizar.es/record/76918.

Gamma-ray precision astronomy and astrophysics from 50 GeV to 100+ TeV

- Very limited in energy resolution (currently 15%-20%, worsening towards the highest energies!)
- Limited by systematic uncertainties (e.g. 12%-15% for the absolute energy scale)
- For strong sources, limitations of both are equally important.

Gamma-ray precision astronomy and astrophysics from 50 GeV to 100+ TeV

- Very limited in energy resolution (currently 15%-20%, worsening towards the highest energies!)
- Limited by systematic uncertainties (e.g. 12%-15% for the absolute energy scale)
- For strong sources, limitations of both are equally important.

IMPORTANCE WILL BE REVERSED FOR STRONG SOURCES IN CTA !

Current possibilities of IACTs

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, https://zaguan.unizar.es/record/76918.

• For strong sources, limitations of both are equally important.

IMPORTANCE WILL BE REVERSED FOR STRONG SOURCES IN CTA !

Current possibilities of IACTs

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, <u>https://zaguan.unizar.es/record/76918</u>.

• For strong sources, limitations of both are equally important.

IMPORTANCE WILL BE REVERSED FOR STRONG SOURCES IN CTA !

Situation for CTA

Size of statistical error bars will become factor ~5-10 smaller Systematic uncertainties will get reduced only by a factor of two or less

Photon time-of-flight limits from astrophysical sources – current situation

Study of systematic uncertainties							
Systematic effect	Size(E_{QG1})	Size(E_{QG2})					
Spectrum uncertainties	< 6%	< 4%					
Energy scale	< 10%	< 20%					
Extrapolation uncertainty	< 1%	< 1%					
Background estimation	< 5%	3%					
Total	12.7%	20.6%					

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, https://zaguan.unizar.es/record/76918.

	Linear Scenario	Quadratic Scenario
	$E_{QG1} \propto \frac{E_2 - E_1}{\Delta t}$	$E_{QG2} \propto \frac{E_2^2 - E_1^2}{\Delta t}$
Global shift of energy scale $\Delta E = \Delta E_0$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx 0$	$\frac{\Delta E_{QG2}}{E_{QG2}} \approx \frac{2 \Delta E_0}{E_2 + E_1}$
Shift of energy scale depends on energy $\Delta E \approx \alpha \cdot (E - E_1)$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx \alpha$	$\frac{\Delta E_{QG2}}{E_{QG2}} \approx \frac{\alpha \cdot (E_2 - E_1)}{E_2 + E_1}$

Photon time-of-flight limits from astrophysical sources – current situation

Study of systematic uncertainties						
Systematic effect	Size(E_{QG1})	Size(E_{QG2})				
Spectrum uncertainties	< 6%	< 4%				
Energy scale	< 10%	< 20%				
Extrapolation uncertainty	<1%	< 1%				
Background estimation	< 5%	3%				
Total	12.7%	20.6%				

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, https://zaguan.unizar.es/record/76918.

	Linear Scenario	Quadratic Scenario
	$E_{QG1} \propto \frac{E_2 - E_1}{\Delta t}$	$E_{QG2} \propto \frac{E_2^2 - E_1^2}{\Delta t} \approx 5\%-20\%$
Global shift of energy scale $\Delta E = \Delta E_0$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx 0$	$\frac{\Delta E_{QG2}}{E_{OG2}} \approx \frac{2 \Delta E_0}{E_2 + E_1}$
Shift of energy scale depends on energy $\Delta E \approx \alpha \cdot (E - E_1)$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx \alpha$	$\frac{\Delta E_{QG2}}{E_{QG2}} \approx \frac{\alpha \cdot (E_2 - E_1)}{E_2 + E_1}$

Photon time-of-flight limits from astrophysical sources – current situation

Study of systematic uncertainties						
Systematic effect	Size(E_{QG1})	Size(E_{QG2})				
Spectrum uncertainties	< 6%	< 4%				
Energy scale	< 10%	< 20%				
Extrapolation uncertainty	< 1%	< 1%				
Background estimation	< 5%	3%				
Total	12.7%	20.6%				

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018, https://zaguan.unizar.es/record/76918.

	Linear Scenario	Quadratic Scenario
	$E_{QG1} \propto \frac{E_2 - E_1}{\Delta t}$	$E_{QG2} \propto \frac{E_2^2 - E_1^2}{\Delta t}$
Global shift of energy scale $\Delta E = \Delta E_0$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx 0$	$\frac{\Delta E_{QG2}}{E_{QG2}} \approx \frac{2 \Delta E_0}{E_2 + E_1}$
Shift of energy scale depends on energy $\Delta E \approx \alpha \cdot (E - E_1)$	$\frac{\Delta E_{QG1}}{E_{QG1}} \approx \alpha$	$\frac{\Delta E_{QG2}}{E_{QG2}} \approx \frac{\alpha \cdot (E_2 - E_1)}{E_2 + E_1}$ $\approx 3\% - 20\%$

The atmosphere is responsible for the largest part of systematic uncertainties of an IACT

Part	currently achieved	goal for CTA	comments
Simulation codes	5%	I-2%	
Simplifications in MC	2%	2%	
Cherenkov light creation	5%	2%	
Ozone absorption	3%	۱%	
Molecular extinction	2%	1%	
Cirrus layers extinction	5-20%	I-2%	Raman LIDARs and FRAM
Boundary layer extinction	5-20%	I-2%	Raman LIDARs and FRAM
Scattered Cherenkov light	<1%	<2%	

Characterization of the atmosphere

Need to continuously characterize:

- 1. The profile from ground to 25 km distance
 - Raman LIDARs
- 2. The extension of clouds across the FOV of 10°, determination of time slots with equal atm. conditions
 - FRAM
- 3. For cross-checks:
 - The Cherenkov Transparency Coefficient

IFAE/UAB LIDAR for CTA

FRAM

MAGIC LIDAR

Performance of atmospheric corrections

From Ch. Fruck et al., EPJ Web of Conferences **89**, 02003 (2015) https://doi.org/10.1051/epjconf/20158902003

Additional "practical" use of LIDARs

"Characterization of aerosols in the atmosphere, important for precise calculations of data measured by Imaging Atmospheric Cherenkov Telescopes (IACTs), and needed for studies proposed in this project (Working Group 3), will have a long-term impact on the development of environmental research and its application to climate research. In particular, physical and chemical properties of aerosols will be assessed at the remote sites where IACTs are located".

From our **COST proposal**: Quantum gravity phenomenology in the multimessenger approach

Additional "practical" use of LIDARs

			Emitted compound	Resulting atmospheric drivers	Ra	diative fo	orcing	by emiss	ions ar	nd driver	s ,	Level of confidence			
		jases	CO2	CO ₂						 	3 [1.33 to 2.03]	VH			
		enhouse o	CH_4	CO_2 $H_2O^{str} O_3$ CH_4					 	0.97	7 [0.74 to 1.20]	н			
		nixed gree	Halo- carbons	O ₃ CFCs HCFCs			⊢ ●			 0.18 	3 [0.01 to 0.35]	н			
		Well-m	N ₂ O	N ₂ O			Þ			0.17	7 [0.13 to 0.21]	VH			
	ogenic	s	CO	CO_2 CH_4 O_3			I◆I			 0.23	3 [0.16 to 0.30]	м			
	Anthrop	nd aeroso	NMVOC	CO_2 CH_4 O_3			I ≁I			0.10) [0.05 to 0.15]	м			
		gases ar	gases ar	gases ar	gases ar	NO _x	Nitrate CH ₄ O ₃	 	 	1			 -0.15	[-0.34 to 0.03]	м
		short lived	Aerosols and precursors (Mineral dust	Mineral dust Sulphate Nitrate Organic carbon Black carbon			—			 -0.27 	[-0.77 to 0.23]	н			
		e la construcción de la construc	SO ₂ , NH ₃ , Organic carbon and Black carbon)	Cloud adjustments due to aerosols						 -0.55	[-1.33 to -0.06]	L			
				Albedo change due to land use						-0.15 [[-0.25 to -0.05]	м			
	Natural			Changes in solar irradiance			◆I			 0.05	5 [0.00 to 0.10]	М			
	Total anthropogenic RF relative to 1750			2011				2.29	9 [1.13 to 3.33]	н					
				1980				1.25 	5 [0.64 to 1.86]	н					
				I	1950	-			0.57	7 [0.29 to 0.85]	М				
					-1	C)	1	2	2	3				
From: IF	PC	om: IPCC, 2013: Climate Change 2013:			3: Radiative forcing relative to 1750 (W m ⁻²)										

The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC

Conclusions

Murphy's law states that:

•

A GRB or strong AGN flare tends to occur in IACTs under the most unfavorable atmospheric conditions

(high zenith angles, moon, dust instrusions, cirrus in the field-of-view, etc.)

Conclusions

Murphy's law states that:

A GRB or strong AGN flare tends to occur in IACTs under the most unfavorable atmospheric conditions

(high zenith angles, moon, dust instrusions, cirrus in the field-of-view, etc.)

 Nevertheless, for ToF analyses, these conditions will dramatically limit sensitivity to E_{QG}, particularly for the quadratic case.

Conclusions

Murphy's law states that:

A GRB or strong AGN flare tends to occur in IACTs under the most unfavorable atmospheric conditions (high zenith angles, moon, dust instrusions, cirrus in the field-of-view, etc.)

 Nevertheless, for ToF analyses, these conditions will dramatically limit sensitivity to E_{QG}, particularly for the quadratic case.

• **Develop a standard** to characterize atmospheric aerosols based on LIDAR (Light Detection and Ranging) and stellar extinction measurements, and provide the corresponding corrections to IACT data, based on tailored Monte Carlo simulations;

From our **COST proposal**: Quantum gravity phenomenology in the multimessenger approach

Backup

