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� Systematic uncertainties of IACTs
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Mrk 501 (MAGIC)
z = 0.034

PKS2155 (H.E.S.S.)
z = 0.12

MQG1 > 0.3×1018 GeV
MQG2 > 5.7×1010 GeV

MQG1, 95%CL > 2.1 x 1018 GeV
MQG2, 95%CL > 6.4 x 1010 GeV

Phys. Lett. B 668 (2008) 253



Fermi Collaboration Nature 462 (2009) 331-334 6

GRB090510 (Fermi)
z = 0.9
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Photon time-of-flight limits from 
astrophysical sources

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018,
https://zaguan.unizar.es/record/76918.
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Introduction to IACTs

� Gamma-ray precision astronomy and astrophysics 
from 50 GeV to 100+ TeV

� Introduction CTA
� Sites climatology
� Characterization of observed fields-of-view
� Atmospheric characterization for dynamic 

scheduling
� Weather monitoring
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Introduction to IACTs

� Gamma-ray precision astronomy and astrophysics from 
50 GeV to 100+ TeV

� Very limited in energy resolution (currently 15%-20%, 
worsening towards the highest energies!)

� Limited by systematic uncertainties  (e.g. 12%-15% for the 
absolute energy scale)

� For strong sources, limitations of both are equally 
important.
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Current possibilities of IACTs

� Gamma-ray precision astronomy and astrophysics from 50 
GeV to 100+ TeV

� Very limited in energy resolution (currently 15%-20%, worsening 
towards the highest energies!)

� Limited by systematic uncertainties  (e.g. 12%-15% for the 
absolute energy scale)

� For strong sources, limitations of both are equally important.

IMPORTANCE WILL BE REVERSED FOR STRONG SOURCES IN CTA ! 
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� Limited by systematic uncertainties  (e.g. 12%-15% for 
the absolute energy scale)

� For strong sources, limitations of both are equally important.

IMPORTANCE WILL BE REVERSED FOR STRONG SOURCES IN CTA ! 

Current possibilities of IACTs
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� Limited by systematic uncertainties  (e.g. 12%-15% for 
the absolute energy scale)

Systematic uncertainties will get reduced only by 
a factor of two or less 

Situation for CTA
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Photon time-of-flight limits from 
astrophysical sources – current situation

From L. Nogués Marcén, PhD thesis, Universidad de Zaragoza 2018,
https://zaguan.unizar.es/record/76918.
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The atmosphere is responsible for 
the largest part of systematic 

uncertainties of an IACT
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Part currently 
achieved

goal for CTA comments

Simulation codes 5% 1-2%

Simplifications in MC 2% 2%

Cherenkov light creation 5% 2%

Ozone absorption 3% 1%

Molecular extinction 2% 1%

Cirrus layers extinction 5-20% 1-2% Raman LIDARs and FRAM

Boundary layer extinction 5-20% 1-2% Raman LIDARs and FRAM

Scattered Cherenkov light <1% <2%



Need to continuously characterize:

1. The profile from ground 
to 25 km distance
• Raman LIDARs

2. The extension of clouds 
across the FOV of 10°, 
determination of time 
slots with equal atm. 
conditions
• FRAM

3. For cross-checks:
• The Cherenkov 

Transparency 
Coefficient

FRAM

MAGIC LIDAR

IFAE/UAB LIDAR for CTA

Characterization of the atmosphere
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Performance of atmospheric 
corrections

From Ch. Fruck et al., EPJ Web of Conferences 89, 02003 (2015)
https://doi.org/10.1051/epjconf/20158902003

https://doi.org/10.1051/epjconf/20158902003/
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Additional ”practical” use of 
LIDARs

“Characterization of aerosols in the atmosphere, important for precise
calculations of data measured by Imaging Atmospheric Cherenkov Telescopes (IACTs),
and needed for studies proposed in this project (Working Group 3), will have a
long-term impact on the development of environmental research and its
application to climate research. In particular, physical and chemical properties
of aerosols will be assessed at the remote sites where IACTs are located”.

From our COST proposal:  Quantum gravity phenomenology in the multi-
messenger approach



23

Additional ”practical” use of LIDARs

From our COST proposal Quantum gravity phenomenology in the
multi-messenger approach

From: IPCC, 2013: Climate Change 2013: 
The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC
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Conclusions

� Murphy’s law states that: 

A GRB or strong AGN flare tends to occur in IACTs under the most 
unfavorable atmospheric conditions 

(high zenith angles, moon, dust instrusions, cirrus in the field-of-view, etc.)
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� Nevertheless, for ToF analyses, these conditions will 
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quadratic case.
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Conclusions

� Murphy’s law states that: 

A GRB or strong AGN flare tends to occur in IACTs under the most unfavorable atmospheric 
conditions 

(high zenith angles, moon, dust instrusions, cirrus in the field-of-view, etc.)

� Nevertheless, for ToF analyses, these conditions will dramatically 
limit sensitivity to EQG, particularly for  the quadratic case.

� Develop a standard to characterize atmospheric
aerosols based on LIDAR (Light Detection and Ranging)
and stellar extinction measurements, and provide the
corresponding corrections to IACT data, based on
tailored Monte Carlo simulations;

From our COST proposal:  Quantum gravity phenomenology in the multi-
messenger approach
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Backup
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Expected limits (λ1+λ2)

From Ahnen et al., APJS 232 (2017) 9
https://doi.org/10.3847/1538-4365/aa8404

https://doi.org/10.3847/1538-4365/aa8404

