

High Energy Neutrino Telescopes &

The Search for Quantum Gravity

Bruny Baret APC Paris (CNRS)

Interaction effects

	<u>Gamma-rays</u>	<u>Neutrinos</u>	<u>Sources</u>	
TOF difference	γ @ diff. E	$\nu - \gamma$	AGNs, GRBs	T talagaanag
Evolution of	polarisation	flavor	VHE diffuse	
Flux suppr.	VHE	UHE	"GZK"	I UHE ν det

Hard to detect

KM3NeT

ν -Telescopes today

Antares->KM3NeT 0.01 (-> 1) km³

Baïkal GVD-1 0.15 (->0.4) km³

lceCube 1 km³

v-Telescopes tomorrow

Baïkal GVD ~1.5 km³

KM3NeT phase 3

1->5 km³

KM3NeT

IceCube Gen2 10km³

Neutrino 2018, Heidelberg

B.Baret - COST CA18108 - 03/10/2019 Barcelona

U. Katz: Future neutrino telescopes

Complementary coverage (µ channel)

Optical noise (biolum) / no noise absorption / diffusion

pointing / calorimetry

ANTARES/KM3NeT ■ > 75% ■ 25% – 75% □ < 25%

TeV γ-Sources

• galactic

extragalactic

IceCube ■ 100% ■ 0%

Water V.S. Ice (Monte Carlo Simulations)

Water V.S. Ice (in real life)

Cascades

Size of some astrophysical objects : RXJ1713 (SNR):1° Sun, Moon : 0.5° Cen A (AGN) : 0.3°

Point sources search: Signal/Noise : $1/\Delta\Omega^2$

Based on photons time and position likelihood

Muons:

Based on photons number and position likelihood

ANTARES & GVD: similar resolutions

A Diffuse Flux

Name	Approx. Neutrino Energy	Direction	Dominant Flavor	Unbroken Spectral Index
HESE	50 TeV - 5 PeV	All-sky	е, µ, т	2.89
Cascades	5 TeV - 5 Pev	All-sky	е, т	2.48
NuMu	50 TeV - 10 PeV	Northern sky	μ	2.28

• Extragalactic:

- association with sources of UHE CRs [Kistler, Stanev & Yuksel'13] [Katz, Waxman, Thompson & Loeb'13; Fang, Fujii, Linden & Olinto'14]
- association with diffuse γ -ray background [Murase, MA & Lacki'13] [Chang & Wang'14; Ando, Tamborra & Zandanel'15]
- active galactic nuclei (AGN) [Stecker'13;Kalashev, Kusenko & Essey'13]
 [Murase, Inoue & Dermer'14; Kimura, Murase & Toma'14; Kalashev, Semikoz & Tkachev'14]
 [Padovani & Resconi'14; Petropoulou, Dimitrakoudis, Padovani, Mastichiadis & Resconi'15]
- gamma-ray bursts (GRB)

[Murase & loka'13; Dado & Dar'14; Tamborra & Ando'15]

galaxies with intense star-formation

[He, Wang, Fan, Liu & Wei'13; Yoast-Hull, Gallagher, Zweibel & Everett'13] [Murase, MA & Lacki'13; Anchordoqui, Paul, da Silva, Torres& Vlcek'14] [Tamborra, Ando & Murase'14; Chang & Wang'14; Liu, Wang, Inoue, Crocker& Aharonian'14] [Senno, Meszaros, Murase, Baerwald & Rees'15; Chakraborty & Izaguirre'15]

• galaxy clusters/groups [Murase, MA & Lacki'13; Zandanel, Tamborra, Gabici & Ando'14]

• . . .

Adapted from M. Ahlers

An entropy of the second second

Sept. 22, 2017: A neutrino in coincidence with a blazar flare

Science 361 (2018) no. 6398, eaat1378

2014-2015: A (orphan) neutrino flare found from the same object in historical data

Fermi-LAT data; Padovani et al, MNRAS 480 (2018) 192

Adapted from A. Kappes

B.Baret – COST CA18108 - 03/10/2019 Barcelona

T. Jacobson et al. Ann. Phys. 321, 150 (2006),

- Theories of Quantum Gravity (deformed relativity, LQG, noncommuntative geometry, some string theories...
- -> Lorentz Invariance Violation at the Planck scale
- Some QG can be effectively parametrized at "low energy" G. Amelino-Camelia, et al., Nature 393, 763

(1998).

D. Colladay et al. Phys. Rev. D 55, 6760 (1997), V. A. Kosteleck´y et al. Phys. Rev. D 80, 015020 (2009)

Propagation dispersion relation :

 $E^{2} - p^{2}c^{2} = \pm E^{2} \cdot (E/M_{\text{LIV}})^{n} + m^{2} \cdot c^{4}$ $v = \partial E/\partial p$ sizeable effect : n=1 $\Delta t_{\text{LIV}} = (\pm 1) \cdot E/M_{\text{LIV}} \cdot D(z)/c$ $D_{\text{LIV}}(z) = \frac{c}{H_{0}} \int_{0}^{z} \frac{(1+z')dz'}{\sqrt{\Omega_{m}(1+z')^{3} + \Omega_{\Lambda}}}$

U. Jacob and T. Piran, JCAP 0801 (2008) G. Amelino-Camelia et al., Astrophys. J. 806(2), 269 (2015)

$$\Delta v_{\nu\gamma} = -E/M_1 \qquad \longrightarrow \qquad M_1 \gtrsim \frac{H_0^{-1}}{\Delta t} E \int_0^{z_{\rm src}} \frac{(1+z)}{\sqrt{\Omega_\Lambda + \Omega_M (1+z)^3}} dz \approx 3 \times 10^{16} \,\,{\rm GeV}$$

$$\Delta v_{\nu\gamma} = -E^2/M_2^2 \qquad \longrightarrow \qquad M_2 \gtrsim \left[\frac{3}{2}\frac{H_0^{-1}}{\Delta t}E^2 \int_0^{z_{\rm src}} \frac{(1+z)^2}{\sqrt{\Omega_\Lambda + \Omega_M (1+z)^3}} dz\right]^{1/2} \approx 10^{11} \,\,{\rm GeV}$$

Using GRBs and time of flight

<u>Search for:</u>

- neutrinos shifted w.r.t. the prompt emission out of the T90 time window
- Correlation between time shift and energy

Hints? (theorist view)

p-value=1%

400

Amelino-Camelia et al (2015):

track channel data -> 2010 : 2 low significance events 2-3x10^3 s before 2 GRBS

3×10⁵

2×105

 10^{5}

 5×10^{4}

∆*'[s]

Amelino-Camelia et al (2016) arXiv:1605.00496v1: cascade channel data 2010-> 2014

$$\Delta t^* \equiv \Delta t \frac{D(1)}{D(z)}$$
$$\Delta t^* = \eta \frac{E}{M_P} D(1) \pm \delta \frac{E}{M_P} D(1)$$

- Directional coincidence: Within 2σ of instrument resolution
- Time coincidence: <6 days
- Energy: 60-500TeV
- Unknown z -> default values

Avoid multiple coincidences

60

100

150

200

E [TeV]

300

Correlation=0.8-0.95

Strength Strength Market Way State Strength

Blind selection of GRBs

Stacked variables :

 $\tau_{obs} = t_v - t_{GRB}$ Generic time delay $\tau_z = \tau_{obs}/(1+z)$ Fixed delay at the source $\tau_{LIV} = \frac{\tau}{E_{est} \cdot D(z)}$ L.I.V. efffects

<u>Test Statistic</u>: $\psi = -10 \log_{10} p(D|H, I)$ $= -10 \left[\log_{10} n! + \sum_{k=1}^{m} n_k \log_{10} p_k - \log_{10} n_k! \right]$

 <u>Maximum time delay 42 days:</u> set by maximum expected L.I.V. shift (other effects shorter OR arbitrarily long)
 <u>Directional coincidence:</u>

<u>Results:</u>

Eur.Phys.J. C77 (2017) no.1, 20

v telescope data	$ au_{ m tot}$ (d)	Nevents	<i>m</i> (δ) (°)	δ_{\max} (°)	τ _{max} (d)	N _{GRB}	N _{GRB,z}	n_{coinc} $n_{\text{coinc},z}$ (uncorrelated)		Mea w. z w	as.	P-value		
ANTARES (07-12)	2154	5516	0.38	0.51 – 1.59	40	563	150	3.9	0.7	0	0	1.2%	51.4%	
IC40 (08-09)	408	12876	0.70	0.95 – 2.99	40	60	12	35.0	4.0	42	8	13.5%	5.1%	

<u>Sensitivity (Antares):</u> Signal delayed of 5 days at the source

Test Statistic	Sensitivity	at 90% CL	Sensitiv	ity at 99% CL	\mathcal{MD}	Р 3σ	$MDP 5\sigma$		
	$f_{\rm all}$	f_z	$f_{\rm all}$	f_z	$f_{\rm all}$	f_z	$f_{\rm all}$	f_z	
r	0.8%	3%	1.5%	5.5%	2.4%	<mark>9%</mark>	4.5%	17%	
ψ	0.6%	2.2%	1.3%	5%	1.3%	5%	2.4%	9%	
ψz	0.3%	1.1%	0.8%	3%	0.6%	2.3%	1.2%	4.5%	
$\psi_{ m LIV}$	0.3%	1.1%	0.8%	3%	1.5%	5.5%	3%	12.5%	

Results:

Eur.Phys.J. C77 (2017) no.1, 20

v telescope data	τ _{tot} (d)	N _{events}	m(δ) (°)	δ _{max} (°)	$ au_{\max}$ (d)	N _{GRB}	N _{GRB,z}	n _{coinc} (uncoi	$n_{\text{coinc},z}$ rrelated)	Meas w. z w.o.	5. z	P-value	è			
ANTARES (07-12)	2154	5516	0.38	0.51 - 1.59	40	563	150	3.9	0.7	0 (2	1.2%	51.4	1%		
IC40 (08-09)	408	12876	0.70	0.95 – 2.99	40	60	12	35.0	4.0	42 8	5 .	13.5%	5.1%	0		
Sensitivity Signal define More data (2007-2018 => x 2) -More flavors (adding cascades, signal x 1.2) -More sensitivity (dedicated "cuts" => sensitivity x 1.5) -Potential z estimation from other GRB parameters when missing																
8 - 6 -							Test S	tatistic	Sensitivit f_{all}	y at 90% CL <i>f</i> z	Sensiti f_{all}	ivity at 99% C	$f_z \mid f$	$\begin{array}{c} ADP \ 3\sigma \\ \\ all \\ f_z \end{array}$	\mathcal{M}_{fall}	ΟΡ 5σ fz
4					0.2		r		0.8%	3%	1.5%	5.5	% 2.4	% 9%	4.5%	17%
0.01 0.02 0.03	3 0.04	0.05 0.0	6 0.07	0.08 0.09	0.1		ψ		0.6%	2.2%	1.3%	5	% 1.3	% 5%	2.4%	9%
					'z		ψ _z		0.3%	1.1%	0.8%	3	% 0.6	% 2.3%	1.2%	4.5%
							$\psi_{\rm LIV}$		0.5%	1.1%	0.8%	3	% 1.5	% 5.5%	3%	12.5%

Using flavor composition of cosmic flux

UHE detection (search for flux suppression)

So far, no unambiguous detection

But a nighmare to detect (and data not trivial)

So far one (low significance) transient VHE source for TOF => statistical approach on GRBs and AGNs flares still a lot to learn/understand about sources more km3+ detectors comming on line => higher statistics is comming

VHE diffuse flavor analysis promissing

UHE "GZK" diffuse flux far away but individual sources maybe less =>many new projects

No need to say theorist and experimentalist need to work together ab initio...