

The Pierre Auger Observatory

Francesco Salamida University of L'Aquila and INFN LNGS

Kick-off Meeting COST Action CA18108 QG-MM 2-4 October 2019

The Pierre Auger Observatory

Biggest Ultra High Energy Cosmic Ray (UHECR) detector located in Argentina, Malargüe

Surface detector (SD)

- 1660 Water Cherenkov detectors in 1.5 km grid, 3000 km² E > $10^{18.5}$ eV
- 61 stations in 0.75 km grid, 23.5 km²,E > 10^{17.5} eV
- 100% duty cycle

Fluorescence detector (FD)

- 24 tel.in 4 sites, FoV: 0-30°, E>10¹⁸ eV
- HEAT (3 tel.), FoV: 30 60°, E>10¹⁷ eV
- 15% duty clycle

Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km² array

Underground muon detector(AMIGA)

17 buried scintillators

The Surface Detector (SD) + AERA + AMIC^

The Fluorescence Detector (FD)

The Auger bestiary

Energy spectrum over 4 decades in energy

Event reconstruction - Hybrid

Energy Scale

FD: calorimetric energy measurement Hybrid events: absolute calibration of the full SD sample

 $\sigma(E_{FD})/E_{FD} \sim 8\%$

- high-quality events independently triggered/reconstructed by SD and FD
- correlation well described by a power-law relationship
- maximum-likelihood fit using a "bootstrap" estimate of the p.d.f. and event-by-event uncertainties

Systematic uncertainty in the energy scale

	TOTAL	14%
ICRC 2013	Stability of energy scale	5%
	Invisible energy	3%-1.5%
	FD profile recon.	6.5% - 5.6%
	FD calibration	9.9%
	Atmosphere	3.4% - 6.2%
	Fluorescence yield	3.6%

The Auger energy spectrum

AUGER COMBINED SPECTRUM All the different fluxes are in good agreement among them once rescaled by normalization factors that are consistent with the systematic uncertainties

The Auger energy spectrum

Mass composition(X_{max} moments)

- From X_{max} and $\sigma(X_{max})$ lighter composition up to ~2 EeV, heavier above this energy
- Above E₀≈ 2 EeV both Xmax moments are becoming compatible to MC predictions for heavier nuclei

 $(\ln A)$ and $\sigma^2(\ln A)$ and $r_{C}(X_{max}, S_{38})$

- \bullet below the ankle the correlation in data is significantly, at 6.4 σ from zero, negative
- \bullet pure compositions and proton-helium mixes (all having $\rm r_{\rm G}$ > 0) are excluded
- data are compatible to mixed compositions with $\sigma(\ln A) = 0.85 1.60$
- above the ankle there are indications on decrease of $\sigma(\ln A)$ (more statistics is needed)
- the uncertainties in the models are currently the main source of systematics

Astrophysical interpretation

Combined fit of energy spectrum and X_{max} distribution:

- sources uniformly distributed in a comoving volume
- nuclei are accelerated through a rigidity-dependent mechanism

- UHECR spectrum at Earth
- Composition at Earth
- Neutrino fluxes

AUGER @ ICRC 2019

- Suppression of flux dominated by maximum injection energy
- Very hard index of power law at injection

Suitable method to try constrain LIV

Large scale anisotropy

Weighted Fourier Analysis to obtain modulation in right ascension and azimuth

Auger data: Exposure >92000 km² sr yr

OBSERVATION (>5\sigma): 3D dipole above 8 EeV at (α, δ)=(98⁰,-25⁰): (6.6 $^{+1.2}_{-0.8}$) %, 125⁰ away from GC indicative of an extragalactic origin

Large scale anisotropy

Below full trigger efficiency the modulation in right ascension can still be obtained

- Use of Fourier analysis in RA for E > 2 EeV
- Use of East-West method below 2 EeV

RESULTS

- amplitudes grow, from below 1% to above 10%
- below 8 EeV the amplitudes not significant 99% CL upper bounds at the level of 1 to 3%
- phases shift, from ~GC to ~ opposite direction
- Suggests transition from anisotropies of Galactic origin below ~1 EeV to extragalactic origin above few EeV

Small scale anisotropy

Blind search - whole sky 1°x 1°grid Scan: 1°≤ψ≤30° and 32EeV≤E_{th} ≤80EeV

Likelihood test for anisotropy with astrophysical catalogs:

γ-emitting AGNs, Starburst Galaxies, Świft-BAT, 2MRS

Highest TS = 29.5 found for starburst galaxies with Eth=38 EeV

Neutrinos searches

Neutrino identification in inclined showers detected by Auger

Neutrinos searches

Expected events: Red band: 1.4 - 5.9

CONSTRAIN ON PROTON MODELS

UHECR source evolution models parameterized as :

 $\Psi(z) \propto (1+z)^m$

m: source evolution parameter z_{max}: the maximal redshift at which UHECR are accelerated

Exclusion of a significant region of parameter space $(z_{max}^{}, m)$ from non observation of v

UHE neutrinos: point like sources

Steady sources

- Good sensitivity at EeV energies in a broad range in declination
- Energy range complementary to IceCube and Antares

Transient sources (e.g GW)

- ANTARES, Icecube & Auger searched for in coincidence with GW170817 from TeV to EeV
- Very good Auger sensitivity because source was in the FoV of Earth Skimming at the moment of merger

Photon searches

Production of photons in interaction with CMB EM-shower penetrate deeper into atmosphere (narrower lateral spread) EM-component arrives later w.r.t muonic (large "risetime") **FD**: X_{max} **SD**: lateral distribution function (LDF)

10% 50% quantiles

Most sensitive EAS detector for E γ >0.8 EeV

Most top-down models excluded by experimental result Most optimistic models with proton

primaries already excluded

Muons measurements

EXPERIMENTAL FACTS:

- fluctuations compatible with model predictions and composition measurement
- Muon excess in average number
- not an effect of first interaction!
- small mismatch accumulating over shower development

LIV studies: effects on shower development

$$E_i^2 - p_i^2 = m_i^2 + \eta_i^{(n)} \frac{E_i^{2+n}}{M_{Pl}^n}$$

Consider as and example the neutral pion decay in two photons In presence of LIV the decay can be forbidden if:

$$m_{\pi}^2 + \eta_{\pi}^{(n)} \frac{E^{n+2}}{M_{Pl}^n} < 0$$

This define a threshold in energy. Putting the effect into MC shower simulators we can forecast the effect on UHECR observables (e.g X_{max} , N_{μ})

LIV studies: effects on shower development

F.Salamida, University of L'Aquila and INFN LNGS, Kick-off Meeting COST Action CA18108 QG-MM

Auger Prime

Aim: a large exposure detector with composition sensitivity above \sim 4 x 10¹⁹ eV

- 12 upgraded stations (Engineering Array) since 2016 with new electronics, higher sampling(120 MHz), large dynamic range (10 FADC ch)
- the SSD pre-production array: 80 stations (since March 2019)
- 356 SSD stations already deployed
- Underground Muon detector
- the world-largest radio detector (3000 km²)

Conclusions

OPEN QUESTIONS

- **1.** What is the origin of flux suppression?
- -fundamental constraints on sources and their properties

2. is there a fraction of protons above ~5 10¹⁹eV?

- -feasibility of charged particle astronomy
- -proof for future experiments

3. can we disentangle composition and hadronic interaction systematics?

-constraints on hadronic multiparticle production from EAS -constraints on new physics beyond the reach of LHC -new measurements at accelerators -constraints of LIV

FUTURE STEPS

- Increase in statistics at UHE
- Composition sensitivity at and above the suppression region (E>4 10¹⁹ eV)
- More data on neutrinos (and photons)
- More information on hadronic interactions

Auger 20th Anniversary

20th Anniversary

of the Foundation of the Pierre Auger Observatory

Scientific Symposium & Celebration Malargüe, 14 - 16 November 2019

14-15 : Scientific Symposium Guided tour to the Observatory 16 : Anniversary Celebration

JOIN US at https://www.auger.org/

Backup slides

The future of UHECR: Auger Prime detectors

F.Salamida, University of L'Aquila and INFN LNGS, Kick-off Meeting COST Action CA18108 QG-MM

The future of UHECR: Auger Prime electronics

- 1. Increase of the data quality (better timing, dynamic range and μ identification):
 - a) 10 FADC channels instead of 6
 - b) faster sampling of ADC traces (40 \rightarrow 120 MHz)
 - c) more precise absolute timing accuracy (new GPS receiver)
- 2. Faster data processing and more sophisticated local triggers
 - a) more powerful processor and FPGA
- 3. Improved calibration and monitoring capabilities
- 4. New components:
 - 1. Connection to the SSD and any additional (R&D) detectors
 - 2. Additional small PMT

Totally back-compatible with the old design

(same power communications, hardware interfaces...)

The Upgrade Unified Board (prototype)

SSD matrix inversion method

The future of UHECR: Auger Prime detectors

VERTICAL SHOWERS

Significance of distinguishing two different realisations of "maximum rigidity model" :

- as it predicts, i.e. no protons at UHE
- adding 10% protons

$>5\sigma$ in 5 years of operations

HORIZONTAL SHOWERS

RADIO Hybrid: E_{rad} from radio muons from WCD

Ultra High Energy Cosmic Rays (UHECRs)

Particles with E = 10^{17} - 10^{20} eV , \sqrt{s} = 14-450 Tev

ASTROPHYSICS

- What is the nature and origin of UHECRs?
- What is causing the suppression of the flux at the highest energies?
- Which are the sources? can we perform UHECRs astronomy?
- How are UHECRs accelerated to such extreme energies?

FUNDAMENTAL PHYSICS

- Tests of fundamental interactions and their models in extreme energy regimes
- Constrain or find hints of new phenomena (e.g. Lorentz invariance violation)

How are UHECR produced?

With LHC technology need accelerator of size of Mercury's orbit to reach 10²⁰eV

Realistic constraints more severe

- small acceleration efficiency
- synchrotron & adiabatic losses
- interactions in source region

How to get UHECRs at Earth?

Processes during extragalactic cosmic ray propagation

- Adiabatic energy losses due to the expansion of the Universe
- Interactions with photon backgrounds:
 - Pair production (Cosmic microwave background)
 - Disintegration (Extragalactic background light)
 - Pion production

- NO He >50 EeV, CNO > 100 EeV expected
- Extreme-E CRs can only be: local, &/or protons, &/or heavy nuclei

How to measure UHECRs?

The future of UHECR: TA x 4

AIM: increase the coverage up to ~3000 km² to increment the statistics at UHE

- **SD array:** increased by 500 stations with 2 km spacing
- **FD telescopes:** increased by 4 FD in the Northern site, 8 in the Southern site

Feb. 19 - Mar. 12, 2019:

- 257 SDs
- 6 communication towers

The future of UHECR: GRAND

- 200000 antennas over 200000 km²
- radio quiet regions around the world (half in China)
- autonomous radio detection of inclined air-showers in 50-200 MHz band

GOAL: observation of UHE cosmic particles with E>10¹⁸ eV to study their origin

- large exposure
- <1⁰ angular resolution
- sensitivity to neutrinos

Prototype GRANDproto300: 300 antennas on 200 km² in 2020/21

The future of UHECR: POEMMA

GOAL: observation of UHE cosmic particles with $E \ge 10^{19}$ eV to study their origin

- huge gain in exposure ($\sim 10^5$ km² sr yr) for both charged CRs and neutrinos
- full sky coverage of the celestial sphere
- sensitivity to neutrinos > 2×10^{19} eV from FD of v-induced EAS
- follow-up of transients

- 2 satellites flying in loose formation
- 4 m wide FoV (45°) Schmidt mirrors
- fast (1µs) UV camera for fluorescence observation + ultrafast (10 ns) optical camera for Cherenkov obs.

The future of UHECR: FAST

Fluorescence detector Array of Single-pixel Telescopes

- UHECR and neutral particles E > 10^{19.5} eV
- mass discrimination on event by event basis
- huge target volume with lower cost w.r.t current FDs
- Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array"

FAST Project Intersection detect Aring of Brogeneral Researces Presented state of Brogeneral Researces Presented state of Project.org

- <figure>
- Smaller optics and single or a few pixels 1 m² aperture, 15°×15° FoV
 - Low-cost and simplified telescope
 - installed for X-calibration and trigger at Auger and TA

Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72

The energy spectrum in Auger and TA

Tension on composition between Auger and TA?

Auger data show trend towards heavier composition above 10^{18.4} eV

- TA data have less statistical separation power and larger systematics
- TA data compatible with mix of 4 elements with 75% (p+He) below 10^{19.1} eV
- direct comparison is difficult (AUGER unbiased measurement, TA biased by detector acceptance)
- CAVEAT: TA analysis with QGSJetII-04 only [excluded by Auger σ(Xmax) measurement]

Full sky coverage with Auger + TA

Events

Events

969 events

• ~31000 events

Large Scale Anisotropy

Energy threshold

- 8.86 EeV for Auger
- 10 EeV for Telescope Array
- Agreement with Auger alone, smaller uncertainty
- Hint for a quadrupole moment

Intermediate Scale Anisotropy (<30°)

Energy threshold

- 40 EeV for Auger
- 53.2 EeV for Telescope Array

Blind search

20° radius around (α =12^h50^m, δ = - 50°), 2.6 σ post-trial

15° radius around (α = 9^h30^m, δ = +54°), 1.5 σ post-trial

Effect of Galactic B field on extragalactic dipole direction (and amplitude)

extragalactic dipole direction gets shifted towards spiral arms by Galactic B field

Rate of change of X_{max} with energy

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

Fluorescence Detector

Fluorescence Detector

High elevation Auger telescopes 3 telescopes at Coihueco site range of X_{max} analysis: $10^{17.2} \text{ eV} < E < 10^{18.1} \text{ eV}$ data: same to ICRC (2017) [J. Bellido, PoS(ICRC2017)506]

Standard telescopes

elevation $1.5^{\circ} - 30^{\circ}$

24 telescopes at 4 sites

range of X_{max} analysis: $E > 10^{17.8} \text{ eV}$

compared to ICRC (2017): update with 2016 - 2017 (+20% of statistics)

X_{max} measurement

(p-He-N-Fe)-fit of X_{max} Distributions

FD data:

Composition Fractions

PCGF method

The PCGF method of shower axis geometry reconstruction was successfully implemented in the Offline software used at the Pierre Auger Observatory. The resolution of the χ O reconstruction is 1.6°, and the calorimetric energy is reconstructed with a resolution of 18%. Correspondence between the measured data and full simulations of air showers and the FD is at a reasonable level.

A preliminary energy spectrum of cosmic rays in the energy region of 1016.5 – 1018 eV was estimated. Dominant systematic uncertainties are in the FD energy scale (14% in energy) and MC simulations of the FD (15% in exposure). The reconstruction procedure and Cherenkov emission model contribute to the uncertainty in the Cherenkov energy scale by ca. 5% each. A presence of the second knee is robust against changes in the invisible energy even to the MC predictions for pure beams.