The Telescope Array experiment

The largest cosmic ray detector array in the Northern Hemisphere

Armando di Matteo* armando.di.matteo@ulb.ac.be

> Service de Physique Théorique Université Libre de Bruxelles (ULB) Brussels, Belgium

Kick-off meeting, COST Action CA18108 (QG-MM) 2-4 October 2019 Barcelona, Spain

*Now at INFN Torino, Turin, Italy

The Telescope Array experiment

The largest cosmic ray detector array in the Northern Hemisphere

Armando di Matteo[†] armando.di.matteo@ulb.ac.be

> Service de Physique Théorique Université Libre de Bruxelles (ULB) Brussels, Belgium

Kick-off meeting, COST Action CA18108 (QG-MM) 2-4 October 2019 Barcelona, Spain

[†]Now at INFN Torino, Turin, Italy

A. di Matteo (ULB)

Telescope Array

1/29

OG-MM COST meeting, Oct 2019

The Telescope Array collaboration

147 members, 36 institutions, 6 countries

R.U. Abbasi¹, M. Abe², T. Abu-Zayyad¹, M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, **A. di Matteo⁷***, T. Fujij⁸, K. Fujita⁹, R. Fujiwara⁹, M. Fukushima^{10,11}, G. Furlich¹, W. Hanlon¹, M. Hayashi¹², Y. Hayashi⁹, N. Hayashida¹⁵, K. Hibino¹³, K. Honda¹⁴, D. Ikeda¹⁵, T. Inadomi¹⁶, N. Inoue², T. Ishii¹⁴, R. Ishimori³, H. Ito¹⁷, D. Ivanov¹, H. Iwakar¹⁶, H.M. Jeong¹⁸, S. Jeong¹⁸, S. C.H. Jui¹, K. Kadota¹⁹, F. Kakimoto³, O. Kalashev²⁰, K. Kasahara²¹, S. Kasami²², H. Kawai²³, S. Kawakami⁹, S. Kawana², K. Kawata¹⁰, E. Kido¹⁰, H.B. Kim⁴, J.H. Kim¹, J.H. Kim⁹, S. Kishigami⁹, V. Kuzmin^{20†}, M. Kuznetsov^{7,20}, YJ. Kwon²⁴, K.H. Lee¹⁸, B. Lubsandorzhiev²⁰, J.P. Lundquist¹, K. Machida¹⁴, K. Martens¹¹, H. Matsuniya⁹, T. Matsuyama⁹, J.N. Matthews¹, R. Mayta⁹, M. Minamino⁹, K. Mukai¹⁴, I. Myers¹, S. Nagataki¹⁷, K. Nakai⁹, R. Nakamura¹⁶, T. Nakamura¹⁶, T. Nonaka¹⁰, H. Oda³, S. Ogio^{9,26}, M. Ohnishi¹⁰, H. Ohoka¹⁰, Y. Oku²², T. Okuda²⁷, Y. Omura⁹, M. Ono¹⁷, R. Onogi⁹, A. Oshima⁹, S. Ozawa²¹, I.H. Park¹⁸, M.S. Pshirkov^{20,28}, J. Remington¹, D.C. Rodriguez¹, G. Rubtsov²⁰, D. Ryu²⁹, H. Sagawa¹⁰, R. Sahara⁹, K. Saito¹⁰, Y. Saito¹⁶, N. Sakuti⁰, T. Sako¹⁰, N. Sakurai⁹, K. Sano¹⁶, L.M. Scott³⁰, T. Sek¹⁶, K. Sekino¹⁰, P.D. Shah¹, F. Shibata¹⁴, T. Shibata¹⁰, H. Shimodaira¹⁰, B.K. Shin⁹, H.S. Shin¹, J.D. Smith¹, P. Sokolsky¹, N. Sone¹⁶, B.T. Stokes¹, S.R. Straton^{1,30}, T.A Stroman¹, T. Suzawa², Y. Takaj⁹, Y. Takahashi⁹, M. Takamura⁵, M. Takeda¹⁰, R. Takeish¹⁸, A. Taketa¹⁵, M. Takita¹⁰, Y. Tameda²², H. Tanaka³, K. Tanaka³, Y. Tanoue⁹, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{7,20}, I. Tkachev²⁰, H. Tokuno³, T. Tomida¹⁶, S. Troitsky²⁰, Y. Tsunesada^{9,26}, Y. Uchinori³⁵, S. Udo¹³, T. Uehama¹⁶, F. Urban³⁴

*Currently at INFN, sezione di Torino, Turin, Italy [†]Deceased

Outline

1 The detectors

2) Event reconstruction

3) Results

・ロト・日本・日本・日本・日本

Location

39.3° N, 112.9° W, 1400 m a.s.l. Millard County, Utah, USA Semi-desert area 200 km SW of SLC green magenta original blue red new additions

yellow under construction

The detectors

The original surface detector (SD) array

TA collab., Nucl. Instrum. Meth. A689 (2012) 87 [1201.4964]

- 507 detectors in a 1.2 km square grid (700 km² total)
- $_{\odot} \sim$ 100% efficient for $E \geq$ 10¹⁹ eV, heta < 45 $^{\circ}$

The original Middle Drum fluorescence detector (deployed in 2006–2007)

TA collab., Astropart. Phys. 39 (2012) 109 [1202.5141]

- 14 telescopes refurbished from the HiRes-1 experiment (1997–2006), each with: a 5.2 m² mirror, 256 PMTs using sample-and-hold electronics, $17^{\circ} \times 14^{\circ}$ FoV
- \circ Overall FoV: 112° in azimuth, elevations from 3° to 31°

Telescope Array

The Black Rock Mesa and Long Ridge fluorescence detectors

TA collab., Nucl. Instrum. Meth. 676 (2012) 54 [1201.0002]

11.0% and 9.0% duty cycles

- $\circ~$ 12 telescopes newly designed for TA at each site, each with: a 6.8 m² mirror, 256 PMTs using flash analog-to-digital converters, 18° \times 15.5° FoV
- $\,\circ\,$ Overall FoV: 108 $^\circ$ in azimuth, elevations from 3 $^\circ$ to 33 $^\circ\,$

The Telescope Array Low-energy Extension (TALE)

TA collab., PoS (ICRC2019) 375 and references therein

Fluorescence detector (deployed in 2012–2013)

- 10 telescopes at Middle Drum, refurbished from HiRes
- Covers 114° in azimuth and elevations from 30° to 57°

Surface detector

(deployed in 2018)

- 40 SDs with 400 m spacing
- 40 SDs with 600 m spacing
- 23 SDs with 1.2 km spacing (planned)

$TA \times 4$

TA collab., PoS (ICRC2019) 312 and references therein

Surface detectors

- 257 SDs on a 2.08 km square grid (deployed in Feb-Mar 2019)
- 243 more to be deployed

• Total area (TA + TA×4): 3 000 km² • > 95% efficiency for E > 57 EeV

Fluorescence detectors

 4 more telescopes at Middle Drum, looking north (first light in Feb 2018)

 8 more telescopes at Black Rock Mesa, looking south (under construction)

Outline

1) The detectors

2 Event reconstruction

3) Results

もう 「山山」 (山) (山) (日) (

FD event reconstruction

TA collab., Astropart. Phys. 61 (2015) 93 [1305.7273]

- Shower geometry fitted to signal timings (stereo > hybrid > monocular)
- Air fluorescence yield from Kakimoto et al.
- Shower profile fitted by Gaisser-Hillas function: $N(X|N_{max}, \lambda, X_0, X_{max}) = X_{max-X_0}$

$$N_{\max}\left(\frac{X-X_0}{X_{\max}-X_0}\right)^{\frac{X_{\max}-X_0}{\lambda}}\exp\left(\frac{X_{\max}-X}{\lambda}\right)$$
, where

- X: atmospheric depth $X = \int_{+\infty}^{z} \rho_{air}(h) \sec \theta \, dh$
- ► N_{max} : normalization ► λ : shape parameter
- ► X₀: X at first interaction
- X_{max} : X at shower maximum
- Calorimetric energy estimated as $\int_0^{+\infty} N(X) \, dX$
- Invisible energy estimated via parametrization from QGSJet II-03 proton simulations (7–9%)

Systematics: $E \pm 21\%$ $X_{max} \pm 17 \text{ g/cm}^2$ Resolution:

 $\begin{array}{l} E \ 17\% \ ({\rm mon.}), 7\% \ ({\rm hyb.}) \\ \hat{n} \ 8^{\circ} \ ({\rm mon.}), 0.9^{\circ} \ ({\rm hyb.}) \\ \chi_{\rm max} \ 72 \ g/{\rm cm}^2 \ ({\rm mon.}), \\ \sim 20 \ g/{\rm cm}^2 \ ({\rm hyb.}) \end{array}$

Shower profile red: fluorescence (domin. at $E \gtrsim 10^{17.3}$ eV) blue: Cherenkov (domin. at $E \lesssim 10^{17.3}$ eV)

SD event reconstruction

TA collab., Astrophys. J. 768 (2013) L1 [1205.5067]

Resolution: E < 20%, $\hat{n} \sim 1.5^{\circ}$

- Shower geometry from fit of signal times to modified Linsley shower-shape function
- Lateral distribution profile fitted by $\rho(r|\rho_0, \eta) = \rho_0(r/R_M)^{1.2}(1 + r/R_M)^{1.2-\eta}(1 + (r/k_M)^2)^{-0.6}$ (*r*: distance from shower axis, ρ_0 : normalization, R_M : Molière radius of air) and evaluated at r = 800 m
- E_{SD} estimated from (S_{800} , θ) via a look-up table from QGSJet II-03 proton simulations
 - \sim Constant intensity cuts (as used by Auger) found to return same $E_{
 m SD}$ to within \sim 3%
- E_{SD} /= 1.27 in order to bring average E_{SD} and E_{FD} of hybrid events into agreement

Outline

1) The detectors

2) Event reconstruction

3 Results

▲□▶▲□▶▲□▶▲□▶ ▲□▼ ろくの

Energy spectrum TA collab., PoS (ICRC2019) 298 and references therein

▲□▶▲□▶▲□▶▲□▶▲□≥ めへで

Combined spectrum

(Note: no artificial rescaling of energies or exposures)

Declination dependence of UHE spectrum

• Overlap with Auger $\theta < 60^{\circ}$ FoV:

▶ Break at 10^{19.64±0.04} eV

(spectrum still not quite the same as Auger's – but much closer, and break point energies do agree)

- Rest of the sky:
 - Break at 10^{19.84±0.02} eV

Post-trial significance of difference: 4.3σ

Mass composition (stereo FD)

TA collab., PoS (ICRC2019) 191 and references therein

red blue QGSJet II-04 simulations with detection biases taken into account

Systematic uncertainty on data: $\pm 15 \text{ g/cm}^2$

Resolution: < 25 g/cm²

Mass composition (Black Rock Mesa + Long Ridge hybrid) – I

TA collab., PoS (ICRC2019) 280 and references therein

 X_{max} distribution predicted by QGSJet II-04, but allowed to be shifted to take into account model uncertainty (and measurement systematics)

Mass composition (Black Rock Mesa + Long Ridge hybrid) — II TA collab., PoS (ICRC2019) 280 and references therein

Two-element mixes (10^{18.2}–10^{19.1} eV)

Mass composition (Black Rock Mesa + Long Ridge hybrid) — III TA collab., PoS (ICRC2019) 280 and references therein

Four-element mixes (10^{18.2}–10^{19.1} eV)

Mass composition (SD array)

TA collab., Phys. Rev. D99 (2019) 022002 [1808.03680]

Boosted decision tree using 14 observables, trained on QGSJet II-03 simulations

• Result: $(\ln A) = 2.0 \pm 0.1_{stat} \pm 0.4_{syst}$; no significant *E* dependence

• Can be improved used deep learning, see PoS (ICRC2019) 304.

Limits on diffuse photon fluxes

TA collab., Astropart. Phys. 110 (2019) 8 [1811.03920]

Boosted decision tree using 16 observables, trained on EGS4 and QGSJet II-03 simulations

(ロト 4 昼 ト 4 昼 ト 4 昼 ト 4 回 の Q (P)

Hotspot above 57 EeV

TA collab., ApJL 790 (2014) L21 [1404.5890]; PoS (ICRC2019) 310

Published, using 5 years of SD data

- 20° radius around (146.7°, +43.2°)
- 19 events in the circle (72 total), 4.49 expected
- 5.1 σ pre-trial ightarrow 3.4 σ post-trial

Preliminary update, using 11 years

- 25° radius around (144.3°, +40.3°)
- 5.1 σ pre-trial ightarrow 2.9 σ post-trial

(Loosened quality cuts, $heta < 55^\circ$)

Energy spectrum anisotropy TA collab., ApJ 862 (2018) 91 [1802.05003]

• Coldspot in the same direction as the hotspot, but at lower E ($10^{19.2} - 10^{19.75}$ eV)

• 6.2 σ pre-trial \rightarrow 3.7 σ post-trial

A. di Matteo (ULB)

Telescope Array

QG-MM COST meeting, Oct 2019 24/29

Correlation with starburst galaxies (or lack thereof) TA collab., *ApJL* **867** (2018) L27 [1809.01573]

- Auger arrival directions \geq 39 EeV reported to correlate with a catalog of nearby SBGs (best fit: $\Psi = 12.9^{\circ}$, $f_{SBG} = 9.7\%$; 4.0 σ post-trial over isotropy, 3.0 σ over the overall galaxy distribution)
- $\circ\,$ North polar cap (incl. e.g. M82) outside the Auger field of view ightarrow TA replication interesting

but not (yet) enough data for that.

Magnetic multiplets (preliminary) – I TA collab., PoS (ICRC2019) 343

- Regular + random magnetic fields
- → Wedges in which energy anticorrelates with distance from the vertex (assuming same electric charge)

- For each vertex position, we scan over:
 - energy thresholds; wedge lengths;
 - wedge widths; wedge orientations; for the most significant anticorrelation (using Kendall's τ_b rank correlation coefficient, unaffected by monotonic transformations).

Magnetic multiplets (preliminary) – II TA collab., PoS (ICRC2019) 343

• Stronger anticorrelations near the supergalactic plane ($\sim 4\sigma$ post-trial significance)

• Fit of $\Delta \theta$ vs $1/E \rightarrow$ estimate of *B*

Magnetic multiplets (very preliminary) – III

https://www.icrc2019.org/uploads/1/1/9/0/119067782/lundquist_icrc2019.pdf

← Transverse **B** estimated at each grid point:

- Strength as in previous slide
- Direction 90° clockwise of wedge orientation

 $\leftarrow \text{ Electric current density$ **toward/away from** $us estimated as <math>\nabla \times \mathbf{B}/\mu_0$ (i.e., neglecting $\epsilon_0 \partial \mathbf{E}/\partial t$)

Thanks for your attention!

《日》《聞》《言》《言》 毛言 シヘぐ

Outline

Back-up slides

- Test of systematics in declination dependence
- Auger vs TA spectrum in the common declination band
- Auger vs TA composition
- Time dependence of hotspot

Test of systematics in declination dependence

Auger vs TA spectrum in the common declination band Auger and TA collabs., PoS (ICRC2019) 234

large diff., PoS (ICRC2019) 298 (sl.)	1
TA. equat.	
small diff., PoS (ICRC2019) 234	
Auger + 11%, equat.	
no diff., PoS (ICRC201/) 486 (prev. ta	۹l
Auger + 11%, south —	
"south" = $[-90^{\circ} - 15^{\circ}]$ "equat" = $(-15^{\circ} + 25^{\circ})$ "north" = $[+25^{\circ} + 90^{\circ}]$	э.

Note: $1/\omega(\delta)$ weights used to correct for possible declination dependence within each band (see Auger+TA, JPS Conf. Proc. **19** (2018) 011020 for details)

Auger vs TA composition

Auger and TA collabs., EPJ Web Conf. 210 (2019) 01009 [1905.06245]

- Detector biases usually folded into simulations by TA and out of measurements by Auger
- ightarrow non-trivial comparisons (we had to fold TA biases into Auger measurements)

Time dependence of hotspot TA collab., PoS (ICRC2019) 310

• Variations well within expected Poisson fluctuations

