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Matter Generation

Introduction
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® three generations of neutrinos
® neutrino masses are very small

® mass hierarchy among neutrinos (possibly) much milder



Introduction

Summary of current knowledge about neutrino masses.
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Introduction

Neutrinos could be their own antiparticles.

Beta decay Double Neutrinoless double
beta decay beta decay

B ’E' ‘E'

ot
Antineutrino Antineutrinos



Introduction

Dark Matter is another important component of our Universe.

Observations show

® the known particles cannot
account for Dark Matter

Dark Matter

* there is five times more
Dark Matter than ordinary
matter

Dark Energy

® Dark Matter shares several
properties with neutrinos:
no electric charge, (Planck ('13))
no strong interaction




Introduction

Summary of current knowledge about lepton mixing.

| NUFIT 4.1 (2019) |
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Introduction

* form of PMNS mixing matrix at best fit point
(NUFIT (°19))

0.82 0.55 0.15
|Uppmns|| = | 031 0.60 0.74 [NO]
0.48 0.58 0.66
and hint for CP violation: § ~ 222°, a=7?, =7

® lepton mixing is thus strikingly different from quark mixing



Flavour violation among charged leptons ...

Introduction

® ... Is instead strongly constrained experimentally

Observable | Upper bound
BR (i —ey) | 2.55-10713
BR (7 — 1) 4.4-107%
BR (1 — ev) 3.3-1078
CReonv (Au) 7-10713
CReony (Ti) 4.3-10712

® ... is expected to arise in many beyond SM theories

Also dipole moments of charged leptons are interesting.



Introduction

One can understand the smallness of neutrino masses ...

® ... by invoking a large new physics scale.
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Introduction

One can understand the smallness of neutrino masses ...
® ... by invoking a large new physics scale.
® ... by protecting them with an approximate symmetry.

® ... by generating them at loop level.

H H
"'
()} ,"-.."(I)/
l’ '
I, —>—e —b—a— |,




Introduction

About the flavour structure ...
® ... you can be agnostic.
® ... you can rely on some symmetry.

V@) SUB);,

U(l) gy
SOB)y

S, A(384)



Example: 1-loop model

Let’s consider a "bottom-up" model
(H/Herrero-Garcia/Molinaro/Schmidt (’18))
® starting point: SM extended by
® global dark symmetry U(1)pm (could be gauged)
® two Higgs doublets ® (Y =1/2) and ¢’ (Y = —1/2)
® one Dirac fermion ¢ that is a gauge singlet
* &, ¢’ and v are charged under U(1)pwm



Example: 1-loop model

Let’s consider a "bottom-up" model

(H/Herrero-Garcia/Molinaro/Schmidt (°18))

® starting point: SM extended by
® global dark symmetry U(1)pm (could be gauged)
® two Higgs doublets ® (Y =1/2) and ¢’ (Y = —1/2)
® one Dirac fermion ¢ that is a gauge singlet
* &, ¢’ and v are charged under U(1)pwm

° purpose:
® generation of two H H
neutrino masses o ;’fz.,_{‘; o
(third one is massless) r
L—>—e ——— ],

* fermionic DM Y



Example: 1-loop model

Lagrangian

Ly = i@y —my = (30 d Lo+ (yg)" 68" Lo +H.e.)
and

V=-m4H H+ \g(H H)? + m20T® + As(®T®)? + m2,0' 70" + \g/ (®'T0")?
+ Ao (HTH)(®T®) + e (HTH) (TP + Apg (PTD)(D'TD)
+ Apo,2(HT®)(PTH) + Ao o(HT ') (DT H) + Apgr 2(2TD) (2T @)

T - [(H%’)(HT@ + H.c.]



Example: 1-loop model

Lagrangian

Lo = i0Pb—mydip— (yg@iﬂ Lo+ (y&)" @é”fﬂaJrH.c.)

and
mass eigenstates of scalars
® h with mass my,
® two charged scalars n* = ¢™ and '™ = ¢'*

® two neutral (complex) scalars

No = Se b0 + co by, My = —coPo + So by

with m,, > m,, and

tan 20 X Agoe



Example: 1-loop model

Neutrino mass matrix

S yn + U yg) F(mpyy, myy , my)

sin 20 m
1) (y

Mo)as = =357

with loop function

F(x,y,z) =




Example: 1-loop model

Neutrino mass matrix

sin 20 my,
32 72

(y% Yo + Yo yg) F(my,, Mng s my)

(MV)aB —

with loop function

Fla,y,z) = 555 - 52

0.100}

10'*? 16*5 0.601 0.1'00
Yol



Example: 1-loop model

Neutrino mass matrix

sin 20 my,
39 72 (ycp Yo/ + y@’ yg) F(mn07m m@b)

(MV)aB —

with loop function

2 2 2 2
_ L L Yy Y
F(ﬂj,y,Z) — xZ_ZQ ln?_yQ—ZQ an_Q

® two non-zero neutrino masses only
® both neutrino mass hierarchies, NO and IO, possible

® Yukawa couplings yg and y¢,, a = e, i, 7, are traded for
lepton mixing angles 0,
one Majorana phase ~ and Dirac phase ¢



Example: 1-loop model

Neutrino mass matrix

sin 20 m
39 712 - (ycb Yo + Y yé) F(mno,m m¢)

(MV)aB —

with loop function

72 1 72 2 1 2
n— — n —
x2 — 22 22 g2 — 22 2

F(x,y,z) =
* for NO
Yh X Yo, Yp <Yy and yg,yg smaller

¢ for 1O

yh ~ —y%  yh, ~ —yh, and 35,y similar



Example: 1-loop model

Charged lepton flavour violation: ¢, — {57

n)+ Y
, A
(b
(8
BR(£, — £57) = 4872;%““ A5 [7 4 [AF[" | XBR (ba — €5 v 75)
F

with

B* .« 2 B* o 2
1 m ) , m
Ag’ =0 and Ag = — [yq) qu) f( ;b ) + Yo 2y¢ f( 2¢

2




Example: 1-loop model

Charged lepton flavour violation: ¢, — {57

n)+ Y
,

fa—b—‘ é > fﬁ

(3

Use estimates for Yukawa couplings to estimate BRs
® for NO we find

BR(r = ¢9) ~ (0.2 and BR(r = 1)

BR(u — €e7) BR(u — €e7) 0

* for IO we get

BR(t —evy) BR(r — uv)

7 ~ (.2
BR(x —ev) BR(u—ev) !




Example: 1-loop model

Charged lepton flavour violation: ¢, — {57

n)+ Y

fa—b—‘ é > fﬁ

Numerical analysis

10 107 102 107 107" 1072 107 102 107 107"



Example: 1-loop model

Charged lepton flavour violation: ¢, — ¢z~ ¢

This decay can have different contributions

12 14
e g A g
Py Y Py 7
—— 5

b, —>—o (., —>—=b —— 5
W 0
l ly by
pO+y ¥ kg0
Eoz ——é *—> 65 65

W



Example: 1-loop model

Charged lepton flavour violation: £, — £5 £5 {3

We get

2 9
6 ogm

G

BR(fa — 55 25 55) = ‘Af‘z + ‘AQRf (136 In Mo _ 22)

m5 3

1
+ é IB]” — 4Re (AlL*A§ - (AF —2AL) B*)
x BR (fa — 55 l/a%)

However, we find in the numerical analysis that

1 22
BR(u — 3e) %O;:r-n (361n2”— 3> x BR(u — e%)

~ 0.006 x BR(ux — e~)




Example: 1-loop model

Charged lepton flavour violation: © — e conversion in nuclei

0

W —— —>r—c
n(O+ % An+

N
N —> — N\

Other diagrams (with Z or SM Higgs) are suppressed.
In this case

e . () (m) |2
Weonv = 4 gAg“D —I—g(Lp‘)/V(p) —I—gé‘)V( )

with
g ~e?Al and G\ ~ 0



Example: 1-loop model

Charged lepton flavour violation: © — e conversion in nuclei

In addition, A} has a form similar to A%

AF ~ %rg/f AL with 1 < re/f S 1.5
So, we get
CReony = o2
Weapt
2
~ 10 :;%ucapt b ? o/ eV| X BR(u = e7)

Q

0.0077,0.011] ([0.010, 0.015]) {[0.013, 0.019]} x BR(x — e~)

for Al (Au){Ti}



Example: 1-loop model

Charged lepton flavour violation: © — e conversion in nuclei

CR(A])

16—7 16—5 0.001 0.100 '
Yol



Example: 1-loop model

DM relic abundance: Different channels

annihilation

Y — EZF/I/

/)

* /v

=
O= ==



Example: 1-loop model

DM relic abundance: Different channels

annihilation — constrained by charged lepton flavour violation
coannihilation

o WF/Z  1ye=====- e A~ WF/Z/h
>— o ) )
¥ Gl — )y
nE ZIWE/h  pEeeeaaa- AN Z /W= /h
‘ = = /my) It

Y (Elvjer o ¢ 0E /v /e*




Example: 1-loop model

DM relic abundance: Different channels

annihilation — constrained by charged lepton flavour violation
coannihilation — DM fermion and scalar/s masses are close



Example: 1-loop model

DM relic abundance: Different channels

annihilation — constrained by charged lepton flavour violation
coannihilation — DM fermion and scalar/s masses are close
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Example: 1-loop model

DM relic abundance: Different channels

annihilation — constrained by charged lepton flavour violation

coannihilation — DM fermion and scalar/s masses are close
such a compressed spectrum affects the scalars’

lifetime
1073
- " Stable at colliders |
10—10 .. . 7
@ " .: ':.::': .,'.
= R
~15 ot
b‘,\ 10 -
/r;? .'.; X
~—" . *
l;;? 10—20 N N
10—25
| | | | ] 10*27 [ | | |
i 0.001 0.100 10 1073 0.001 0.100 10

o(my,), 0(my,) o(rmy+)



Example: 1-loop model

DM direct detection
® occurs at 1-loop level

® can be parametrised by magnetic (and electric) dipole
Interactions

e - U e - . U
EDD — Moy S?QpO'MVwF’u —+ dlp nguyl’}%w}?“

with d,, = 0 at 1-loop




Example: 1-loop model

Further phenomenology considered

® lepton dipole moments

® electroweak precision tests

® production and decay of new scalars at colliders
® decays of Higgs boson

® decays of Z boson

® other regions of parameter space for DM

® variants of the model



Example: model with A(384) and CP

| Let'scome to a "top-down" model of flavour (H/Kénig (*18))

® gstarting point: supersymmetric extension of SM with
three RH neutrinos

® impose flavour and CP symmetry on this theory
which are both broken spontaneously

® choice of flavour (and CP) symmetry is driven by

® good agreement of lepton mixing angles and the CP
phase ¢ with global fit

® capturing of main features of quark mixing: Cabibbo
angle 6 ~ 0.2

see preceding studies
de Adelhart Toorop/Feruglio/H (°11), H/Meroni/Molinaro (’14)



Example: model with A(384) and CP

Flavour and CP symmetry

* we choose in the following A(384)

® furthermore, we use a CP symmetry which acts
non-trivially on flavour space



Example: model with A(384) and CP

Flavour and CP symmetry

* we choose in the following A(384)

* features of this symmetry
® it is a subgroup of SU(3)
® it has several (complex) irreps of dimension 3
® it is contained in the finite modular group I'(¢

® it can be described with 4 generators a, b, c and d
ad=e, b>’=e, ®=e, d®=ce,
(ab)? =e, cd=dc,

aca '=c'd ', adat=c,

bebl=d-', bdb ! =c!



Example: model with A(384) and CP

-~ Flavour and CP symmetry
* we choose in the following A(384)
® furthermore, we use a CP symmetry which acts
non-trivially on flavour space (Grimus/Rebelo (°95))
® imagine a set of scalar fields ¢,

¢i — Xij @3
with
XXT=XXx*=1
® the most known example in neutrino model building is
the so-called

1 — 7 reflection symmetry
exchanging muon neutrino with a tau antineutrino



Example: model with A(384) and CP

Flavour and CP symmetry

* we choose in the following A(384)

® furthermore, we use a CP symmetry which acts
non-trivially on flavour space (Grimus/Rebelo (°95))

® when considering such a theory, certain conditions have
to be fulfilled (p irrep of A(384))

(X 'p(9)X)" = plg") with g,¢" € A(384), ingeneral g# g

(Feruglio/H/Ziegler (’12,'13), Holthausen et al. (’'12), Chen et al. (°’14))

* we use the CP symmetry that corresponds to the
automorphism
a —>a,b—-5b,c—ctandd — d!
conjugated with group transformation c*** d%* with s = 7



Example: model with A(384) and CP

Assignment of fermion generations

® LH fields are in 3-dim. irreps
(unification of generations, predictive power of approach)

®* RH charged fermions are singlets
(mass hierarchy)

® RH neutrinos are in 3-dim. irrep
(relevant for lepton mixing)



Example: model with A(384) and CP

Breaking of flavour and CP symmetry

® spontaneously via gauge singlet fields/flavons
(disentangle flavour and electroweak symmetry breaking,
technically easier)

® to different residual symmetries
(predictive power of model, interpretation of mixing as
mismatch of residual groups)

® In different steps
(motivation for e.g. smallness of 6,3)



Example: model with A(384) and CP

Breaking of flavour and CP symmetry

[A(384) x 25 o Z8eY) o 71 ang CP}

TB mixing 0c = sinm/16

[Gz _ Zédiag)j [Gy,l =@, =zl gie2 o PJ [Gd,l _ Z§c611ag)J




Breaking of flavour and CP symmetry

Example: model with A(384) and CP

[A(384) x 25 o Z8eY) o 71 ang CP}

TB mixing

0c = sinm/16

[Gz _ Zédiag)j [Gy,l =@, =zl gie2 o PJ [Gd,l _ Z%iag)J

(G) (Gu2 = 7> x CP)

013 # 0

V,s| = 0.22452

Gua=7




Example: model with A(384) and CP

Breaking of flavour and CP symmetry

[A(384) x 25 o Z8eY) o 71 ang CPJ

TB mixing 0c = sinm/16

[Gz _ Zédiag)] [Gy,l _q, - Zédiag),l " Zédiag),Q b CPJ [Gd,l _ Z£c611ag)J

013 # (/ Vis| = 0.22452
[G%Q = ZQ X CP] [Gd’g = Zg]
015 7# 0,
035 # 0

[no residual] [no residual] [no residual] [no residual]




Example: model with A(384) and CP

To get some idea: look at charged leptons

® superpotential with Yukawa terms at leading order

1

wy” = KLTCthbl
w? 1
+ AQLM thz¢z+A2 L € ha &7
i w? w? 1 3
i e Lef hgx? gbl+ e Lefhgxi o7 +A3L€ ha @)

where real couplings are suppressed (w = e27#/3)



Example: model with A(384) and CP

To get some idea: look at charged leptons
® superpotential with Yukawa terms at leading order

* VEVs for flavons y; and ¢,

with z,, and z,, complex
and orders of magnitude

"CUX1| |$¢l| 2 :
~ \° with A\~ 0.2
A A A~ 0



Example: model with A(384) and CP

To get some idea: look at charged leptons
® superpotential with Yukawa terms at leading order
* VEVs for flavons y; and ¢,

® charged lepton mass matrix

g\t wh N2 Wa
m%.o. _ aXt WA wa A2 (hq)

C| )\4 bl )\2 aj

with a;, b; and ¢; complex



Example: model with A(384) and CP

To get some idea: look at charged leptons
® superpotential with Yukawa terms at leading order
* VEVs for flavons y; and ¢,

¢ contribution to lepton mixing

1 w w

l.o. 1 2
Ul — ﬁ 1 W W
1 1 1

® charged lepton masses

me” = V3al A (ha) , my® = V3o X (ha) . mi® = V3| A* (ha)



Example: model with A(384) and CP

- To get some idea: look at charged leptons
® superpotential with Yukawa terms at leading order
* VEVs for flavons y; and ¢,

® superpotential for VEV alignment
Wity = o] Xi + Bl of + i Xi w6

with real couplings
® assume breaking of flavour and CP symmetry at high
energy scale
awl.o. awl.o.
fé?l — O : fé?l — : 07 —
do, 0o, X ;




Example: model with A(384) and CP

To get some idea: look at charged leptons

® superpotential with Yukawa terms beyond leading order

1

1 1 1
A A5LT thlnu+A5LT hdq5l77u—|—A4L7' ha UUC
1

1 1
+ A5L” thl¢lUu+A5 L p€ hg ¢ 773+A4 L p® hg ¢y ¢

1
+ 13 L e hgdamn, & +
1

+ A6L€ thdgbu/i Ty

L7°hg ¢y m; +

1 1
A6L6 hg ¢4 H2772+A5 L e hgXd Pubiunu Su



Example: model with A(384) and CP

To get some idea: look at charged leptons
® superpotential with Yukawa terms beyond leading order

® corrections to the VEV alignment

( 0Ty, .1 ) ( W <x¢l +5%“1) )
(1) = e = | w (e + G s)
| \ e

with




Example: model with A(384) and CP

To get some idea: look at charged leptons
® superpotential with Yukawa terms beyond leading order
® corrections to the VEV alignment

® charged lepton mass matrix with corrections

g\t wh N2 Wla T 11 \° x1,12 \° 1,13 A3
C| )\4 w2 bl )\2 w aj )\2 <hd>‘|‘ —,11 )\5 Xy 22 )\5 X 23 )\3 )\2 <hd>
C| )\4 bl )\2 aj L1 31 )\5 0 0



Example: model with A(384) and CP

To get some idea: look at charged leptons

® superpotential with Yukawa terms beyond leading order
® corrections to the VEV alignment

® charged lepton mass matrix with corrections

g\t wh N2 Wla T 11 \° x1,12 \° 1,13 A3
C| )\4 w2 bl )\2 w aj >\2 <hd>‘|‘ —,11 )\5 Xy 22 )\5 X 23 )\3 >\2 <hd>
C| )\4 bl )\2 aj L1 31 )\5 0 0

® charged lepton masses get slightly corrected

® contribution to lepton mixing changes by

95 12 &~ 0()\3) ; 95 13 ~ O()‘g) and 95 23 ~ 0()‘3)



Example: model with A(384) and CP

Instead of going through all details of the model ...

* ... let’'s summarise the neutrino sector
® at leading order

1 1
w,l/‘b =% Lvfh,¢ and w ot =vere €U+K VeVe K2
giving rise to
a, Cyu 0 ,
hy,
miet =l | e a0 |22

0 0 wigh,

with real parameters and wyg = €27 /16



Example: model with A(384) and CP

Instead of going through all details of the model ...

* ... let’'s summarise the neutrino sector
® at leading order

1 1
w,l/‘b =% Lv°h,¢ and who' =wveue €U+K VeV KL

giving rise to light neutrino masses

l.o.,1 2 <hu>2
, — v v A ;
ml |a’ +C ‘ A
.0. <hu>2
ml2 1 — |b,/‘ )\2 A :
By )2
mé.o.,l _ |aV o CI/‘ )\2 < >




Example: model with A(384) and CP

Instead of going through all details of the model ...

* ... let’'s summarise the neutrino sector
® at leading order

1 1

wh = —Lvth,¢ and w ot =+ vtk
’ A A

giving rise to light neutrino masses and a contribution

to lepton mixing

wig 0 —wie
l.o.,1 w%g
U, ﬁ wie 0  wie
0 V2 0



Example: model with A(384) and CP

Instead of going through all details of the model ...

* ... let’'s summarise the neutrino sector
® at leading order

1
w,l/"‘jj:KLV ho ¢ and who ' =10, + —y Ve K2

® at next-to-leading order

1 1
l.o.,2
wl/c — K Vc VC /r]'UI g’U, _|_ A2

veve K2,



Example: model with A(384) and CP

Instead of going through all details of the model ...

* ... let’'s summarise the neutrino sector

® at leading order

1 2

1
wh = —Lvth,¢ and w ot =+ vtk
’ A A
® at next-to-leading order
1 1
w,l/.co"2 = K Vcl/cnugu + F chcffinu
giving rise to
&1/ 61/ wie d,/ A
l.o. 10 ~ ~ 2 <hu>2
m, = Wig Cp a, —W16 d,/ A A A

10 7,
Wie d,/ A —W1e6 d,/ A Wi b,/



Example: model with A(384) and CP

Instead of going through all details of the model ...
* ... let's summarise the neutrino sector

* we find for the lepton mixing angles

1 cos? 6 1 /1—3sin%6
.92 .2 £ 2 Z =
013 = = 0, and 012 = — 3
sin” 013 3 S11 SHL V12 2+ cos?6, 3 ( 1 — sin® 63 >
1 2/6 sin2 6 m
. 9 Y ]
_ Ly (%)
sin” O3 5 ( +<5+cos29,/> o 8 )
with
2v2d,
tan260, = — v2d A



Example: model with A(384) and CP

Instead of going through all details of the model ...
* ... let's summarise the neutrino sector

* we find for the lepton mixing angles

1 cos2 6 1 /1—3sin’0

.92 .2 £ 2 — = =
015 = 6, and 0 3

sin” t43 3 S11 S G12 2 +cos?0, 3 ( 1 — sin? 013 >

1 2+/6 sin26 T
. 9 _ 4 v . T
sin 923—2 <1+<5+00829y> Sm<8)>

for 8, ~ 0.26 we get

sin? 013 ~ 0.022 ., sin? 65 ~ 0.318 and sin®fy3 ~ 0.579



Example: model with A(384) and CP

Instead of going through all details of the model ...
* ... let's summarise the neutrino sector

® forf, ~ 0.26 we get
sin? 013 ~ 0.022 ., sin? 65 ~ 0.318 and sin®fy3 ~ 0.579

® we get predictions for all leptonic CP phases

sind ~ —0.936 , sina =sinf = —

Sl



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the up quark sector
® at leading order

1 1
l.o. C c
giving rise to
0 by N3 0
my” =wig | 0 b A 0 A ()

0 0 Wie Qq



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the up quark sector
® at leading order

1

1
l.o. c c

® we find for the up quark masses
ml.o. — 0 : ml.o. — \/5 |bu| )\4 <hu> and ml.o. — la, A hu
u c t

and as contribution to quark mixing

-1 1
1 1
0 0

0
0

V2

l.o. _
U,” =

Sl



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the up quark sector
® at leading order

1

1
l.o. c c

® at higher order there are many more terms, but
phenomenologically relevant is

1
FQUCthd¢l§u¢
which generates the up quark mass of order

mZ'O‘ x \® (hy)



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the down quark sector
® at leading order

l.O.,l 1 C ]‘ C
W, :KQb hd¢d+FQ3 ha ¢a Xd
giving rise to

0 by \? 0
mi]:o"l = 0 wig by A2 0 A <hd>
0 0 aq



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the down quark sector
® at leading order

l.O.,l 1 C 1 C
Wy :KQb hd¢d‘|‘FQ3 ha ®a Xd
* we find for the down quark masses
m.ot =0, mboot = V2 |bg| M (hg) and my %t = Jag| A2 (hg)
and as contribution to quark mixing

—wig wie 0
1 1 0
0 0 2



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the down quark sector
® at leading order

l.O.,l 1 C 1 C
w, :KQb hd¢d‘|'FQ3 ha ¢a Xd
® quark mixing at leading order is

cosw/16 sinw/16 0
‘Vélel‘ = ‘(Uzlio')T Ucli'o"l‘ = | sinw/16 cosw/16 O
0 0 1



Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the down quark sector
® at leading order
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® at next-to-leading order
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w(ljo'Q =13 Q5 hgxq?

giving rise to
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Example: model with A(384) and CP

Instead of going through all details of the model ...

® ... asummary of the down quark sector
® at leading order

(0] 1 C 1 &
w,lj = KQb hd¢d+FQ3 ha ®d Xd

® at next-to-leading order

1
w(lfﬂ =13 Q5 hgxq?

® this mainly corrects the result for the Cabibbo angle by

7

tan260, ~ 2 sin (g) Cd

21 \2
ba
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l.O.,l 1 C 1 C
w, :KQb hd¢d‘|‘FQ3 ha ¢a Xd
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® at even higher order there are many terms, but only a
few are of phenomenological relevance



Example: model with A(384) and CP

® at even higher order there are many terms, but only a few
are of phenomenological relevance

¢ ...theterm

QU by dr (Y

leads to non-zero down quark mass of order A% (h,)
¢ ...the terms

1 1
Echhd¢2+Fchhdnu¢2

generate the quark mixing angles 63, and 67,
respectively

€d

%)

dg

%)

04, ~ V2 A2 and 0%, ~ V2 %




Example: model with A(384) and CP

® at even higher order there are many terms, but only a few
are of phenomenological relevance

® ... theterm
QU by dr (Y
¢ ...theterms
1 c 2 1 c 2
EQb ha ¥* + FQb ha M Y
® we find for the Jarlskog invariant

g oo o (T dd€d |5
(Jop) ” = sin (§> PE A




Example: model with A(384) and CP

® at even higher order there are many terms, but only a few
are of phenomenological relevance

¢ ...theterm

1

15 QA hadi G
¢ ...theterms

1 1
Echhd¢2+Fchhdnu¢2

¢ ...theterm
1
Ad Qb hgxq P2 Y

corrects the Jarlskog invariant at order \°



Outlook

Future directions for loop models
® endow them with flavour and CP symmetries
* embed them into (partially) unified theories

® consider ways to generate baryon asymmetry of the
Universe

® chart them according to phenomenology



Outlook

Future directions for flavour models
* embed them into (partially) unified theories
® realise them in alternatives to MSSM-like models
® use modular invariance
¢ chart them according to phenomenology
* extend flavour systematically to dark sector

® study impact of flavour on different types of leptogenesis



Outlook

Surprises might be around the corner ...
® ... anomaly in g — 2 of muon persists
® ... one of the B meson anomalies is confirmed
® ... charged lepton flavour violation is observed
® ... positive signal of neutrinoless double beta decay
¢ ... sterile neutrino is found
® ... searches for long-lived particles are successful

® ... lepton number and/or flavour violation at next run of LHC

Thank you for your attention.
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