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• three generations of neutrinos

• neutrino masses are very small

• mass hierarchy among neutrinos (possibly) much milder



Introduction

Summary of current knowledge about neutrino masses.

Their ordering is un-

known, although NO

seems preferred.

(NuFIT (’19))

Their absolute scale

is also unknown.

(Planck (’18))



Introduction

Neutrinos could be their own antiparticles.



Introduction

Dark Matter is another important component of our Universe.

Observations show

• the known particles cannot

account for Dark Matter

• there is five times more

Dark Matter than ordinary

matter

• Dark Matter shares several

properties with neutrinos:

no electric charge,

no strong interaction

(Planck (’13))



Introduction

Summary of current knowledge about lepton mixing.



Introduction

• form of PMNS mixing matrix at best fit point

(NuFIT (’19))

||UPMNS|| ≈







0.82 0.55 0.15

0.31 0.60 0.74

0.48 0.58 0.66






[NO]

and hint for CP violation: δ ≈ 222◦ , α = ? , β = ?

• lepton mixing is thus strikingly different from quark mixing



Introduction

Flavour violation among charged leptons ...

• ... is instead strongly constrained experimentally

Observable Upper bound

BR (µ→ eγ) 2.55 · 10−13

BR (τ → µγ) 4.4 · 10−8

BR (τ → eγ) 3.3 · 10−8

CRconv (Au) 7 · 10−13

CRconv (Ti) 4.3 · 10−12

• ... is expected to arise in many beyond SM theories

Also dipole moments of charged leptons are interesting.



Introduction

One can understand the smallness of neutrino masses ...

• ... by invoking a large new physics scale.

vN

YD
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Introduction

One can understand the smallness of neutrino masses ...

• ... by invoking a large new physics scale.

• ... by protecting them with an approximate symmetry.

• ... by generating them at loop level.



Introduction

About the flavour structure ...

• ... you can be agnostic.

• ... you can rely on some symmetry.



Example: 1-loop model

Let’s consider a "bottom-up" model

(H/Herrero-Garcia/Molinaro/Schmidt (’18))

• starting point: SM extended by

• global dark symmetry U(1)DM (could be gauged)

• two Higgs doublets Φ (Y = 1/2) and Φ′ (Y = −1/2)

• one Dirac fermion ψ that is a gauge singlet

• Φ, Φ′ and ψ are charged under U(1)DM



Example: 1-loop model

Let’s consider a "bottom-up" model

(H/Herrero-Garcia/Molinaro/Schmidt (’18))

• starting point: SM extended by

• global dark symmetry U(1)DM (could be gauged)

• two Higgs doublets Φ (Y = 1/2) and Φ′ (Y = −1/2)

• one Dirac fermion ψ that is a gauge singlet

• Φ, Φ′ and ψ are charged under U(1)DM

• purpose:

• generation of two

neutrino masses

(third one is massless)

• fermionic DM



Example: 1-loop model

Lagrangian

Lψ = i ψ /∂ ψ−mψ ψ ψ−
(

yαΦ ψ Φ̃† Lα+(yαΦ′)
∗
ψ Φ̃′†L̃α+H.c.

)

and

V =−m2

HH†H + λH (H†H)2 +m2

Φ
Φ†Φ+ λΦ(Φ

†Φ)2 +m2

Φ′Φ
′†Φ′ + λΦ′ (Φ′†Φ′)2

+ λHΦ(H
†H)(Φ†Φ) + λHΦ′ (H†H)(Φ′†Φ′) + λΦΦ′ (Φ†Φ)(Φ′†Φ′)

+ λHΦ,2(H
†Φ)(Φ†H) + λHΦ′,2(H

†Φ̃′)(Φ̃′† H) + λΦΦ′,2(Φ
†Φ̃′)(Φ̃′† Φ)

+ λHΦΦ′

[

(H†Φ̃′)(H†Φ) + H.c.
]



Example: 1-loop model

Lagrangian

Lψ = i ψ /∂ ψ−mψ ψ ψ−
(

yαΦ ψ Φ̃† Lα+(yαΦ′)
∗
ψ Φ̃′†L̃α+H.c.

)

and

mass eigenstates of scalars

• h with mass mh

• two charged scalars η+ ≡ φ+ and η′+ ≡ φ′+

• two neutral (complex) scalars

η0 = sθ φ0 + cθ φ
′
0 , η

′
0 = − cθ φ0 + sθ φ

′
0

with mη0 ≥ mη′
0

and

tan 2θ ∝ λHΦΦ′



Example: 1-loop model

Neutrino mass matrix

(Mν)αβ =
sin 2θmψ

32π2

(

yαΦ y
β
Φ′ + yαΦ′ y

β
Φ

)

F (mη0 ,mη′
0
,mψ)

with loop function

F (x, y, z) ≡ x2

x2 − z2
ln
x2

z2
− y2

y2 − z2
ln
y2

z2
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Example: 1-loop model

Neutrino mass matrix

(Mν)αβ =
sin 2θmψ

32π2

(

yαΦ y
β
Φ′ + yαΦ′ y

β
Φ

)

F (mη0 ,mη′
0
,mψ)

with loop function

F (x, y, z) ≡ x2

x2 − z2
ln
x2

z2
− y2

y2 − z2
ln
y2

z2

• two non-zero neutrino masses only

• both neutrino mass hierarchies, NO and IO, possible

• Yukawa couplings yαΦ and yαΦ′ , α = e, µ, τ , are traded for

lepton mixing angles θij ,

one Majorana phase γ and Dirac phase δ



Example: 1-loop model

Neutrino mass matrix

(Mν)αβ =
sin 2θmψ

32π2

(

yαΦ y
β
Φ′ + yαΦ′ y

β
Φ

)

F (mη0 ,mη′
0
,mψ)

with loop function

F (x, y, z) ≡ x2

x2 − z2
ln
x2

z2
− y2

y2 − z2
ln
y2

z2

• for NO

yµΦ ≈ yτΦ , yµΦ′ ≈ yτΦ′ and yeΦ, y
e
Φ′ smaller

• for IO

yµΦ ≈ −yτΦ , yµΦ′ ≈ −yτΦ′ and yeΦ, y
e
Φ′ similar



Example: 1-loop model

Charged lepton flavour violation: ℓα → ℓβγ

ℓα ℓβ
ψ

η(′)+ γ

BR(ℓα → ℓβ γ) =
48π3 αem

G2
F

[

∣

∣AL2
∣

∣

2
+
∣

∣AR2
∣

∣

2
]

×BR (ℓα → ℓβ να νβ)

with

AL2 = 0 and AR2 = − 1

32π2

[

yβ∗Φ yαΦ
m2
η+

f

(

m2
ψ

m2
η+

)

+
yβ∗Φ′ yαΦ′

m2
η′+

f

(

m2
ψ

m2
η′+

)]



Example: 1-loop model

Charged lepton flavour violation: ℓα → ℓβγ

ℓα ℓβ
ψ

η(′)+ γ

Use estimates for Yukawa couplings to estimate BRs

• for NO we find

BR(τ → e γ)

BR(µ→ e γ)
≈ 0.2 and

BR(τ → µ γ)

BR(µ→ e γ)
≈ 5

• for IO we get

BR(τ → e γ)

BR(µ→ e γ)
≈ BR(τ → µ γ)

BR(µ→ e γ)
≈ 0.2



Example: 1-loop model

Charged lepton flavour violation: ℓα → ℓβγ

ℓα ℓβ
ψ

η(′)+ γ

Numerical analysis



Example: 1-loop model

Charged lepton flavour violation: ℓα → ℓβℓγℓγ

This decay can have different contributions

ℓα ℓβ
ψ

η(′)+

γ

ℓγ
ℓγ

ℓα ℓβ
ψ

η(′)+

Z

ℓγ
ℓγ

ℓα ℓβ
ψ

ψ

ℓγ ℓγ

η(′)+η(′)+

ℓα ℓβ

ψ ψ

ℓγ ℓγ

η(′)+

η(′)+



Example: 1-loop model

Charged lepton flavour violation: ℓα → ℓβ ℓβ ℓβ

We get

BR(ℓα → ℓβ ℓβ ℓβ) =
6π2α2

em

G2
F

[

∣

∣AL1
∣

∣

2
+
∣

∣AR2
∣

∣

2
(

16

3
ln
mα

mβ
− 22

3

)

+
1

6
|B|2 − 4Re

(

AL∗1 AR2 − 1

6

(

AL1 − 2AR2
)

B∗

)

]

× BR (ℓα → ℓβ να νβ)

However, we find in the numerical analysis that

BR(µ→ 3e) ≈ αem

8π

(

16

3
ln
mµ

me
− 22

3

)

× BR(µ→ e γ)

≈ 0.006 × BR(µ→ e γ)



Example: 1-loop model

Charged lepton flavour violation: µ− e conversion in nuclei

µ

N

e

N

η(′)+η(′)+

ψ

γ

Other diagrams (with Z or SM Higgs) are suppressed.

In this case

ωconv = 4
∣

∣

∣

e

8
AR2 D + g̃

(p)
LV V

(p) + g̃
(n)
LV V

(n)
∣

∣

∣

2

with

g̃
(p)
LV ≈ e2AL1 and g̃

(n)
LV ≈ 0



Example: 1-loop model

Charged lepton flavour violation: µ− e conversion in nuclei

In addition, AL1 has a form similar to AR2

AL1 ≈ 2

3
rg/f A

R
2 with 1 . rg/f . 1.5

So, we get

CRconv ≡ ωconv

ωcapt

≈ G2
F

192π2 ωcapt

∣

∣

∣

∣

D +
16

3
rg/f e V

(p)

∣

∣

∣

∣

2

× BR(µ→ e γ)

≈ [0.0077, 0.011] ([0.010, 0.015]) {[0.013, 0.019]} × BR(µ→ e γ)

for Al (Au) {Ti}



Example: 1-loop model

Charged lepton flavour violation: µ− e conversion in nuclei



Example: 1-loop model

DM relic abundance: Different channels

annihilation
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Example: 1-loop model

DM relic abundance: Different channels

annihilation – constrained by charged lepton flavour violation

coannihilation – DM fermion and scalar/s masses are close

such a compressed spectrum affects the scalars’

lifetime



Example: 1-loop model

DM direct detection

• occurs at 1-loop level

• can be parametrised by magnetic (and electric) dipole

interactions

LDD = µψ
e

8π2
ψ̄σµνψF

µν + dψ
e

8π2
ψ̄σµνiγ5ψF

µν

with dψ = 0 at 1-loop



Example: 1-loop model

Further phenomenology considered

• lepton dipole moments

• electroweak precision tests

• production and decay of new scalars at colliders

• decays of Higgs boson

• decays of Z boson

• other regions of parameter space for DM

• variants of the model



Example: model with ∆(384) and CP

Let’s come to a "top-down" model of flavour (H/König (’18))

• starting point: supersymmetric extension of SM with

three RH neutrinos

• impose flavour and CP symmetry on this theory

which are both broken spontaneously

• choice of flavour (and CP) symmetry is driven by

• good agreement of lepton mixing angles and the CP

phase δ with global fit

• capturing of main features of quark mixing: Cabibbo

angle θC ≈ 0.2

see preceding studies

de Adelhart Toorop/Feruglio/H (’11), H/Meroni/Molinaro (’14)



Example: model with ∆(384) and CP

Flavour and CP symmetry

• we choose in the following ∆(384)

• furthermore, we use a CP symmetry which acts

non-trivially on flavour space



Example: model with ∆(384) and CP

Flavour and CP symmetry

• we choose in the following ∆(384)

• features of this symmetry

• it is a subgroup of SU(3)

• it has several (complex) irreps of dimension 3

• it is contained in the finite modular group Γ16

• it can be described with 4 generators a, b, c and d

a3 = e , b2 = e , c8 = e , d8 = e ,

(a b)2 = e , c d = d c ,

a c a−1 = c−1d−1 , a d a−1 = c ,

b c b−1 = d−1 , b d b−1 = c−1



Example: model with ∆(384) and CP

Flavour and CP symmetry

• we choose in the following ∆(384)

• furthermore, we use a CP symmetry which acts

non-trivially on flavour space (Grimus/Rebelo (’95))

• imagine a set of scalar fields φi

φi → Xij φ
⋆
j

with

XX† = XX⋆ = 1

• the most known example in neutrino model building is

the so-called

µ− τ reflection symmetry

exchanging muon neutrino with a tau antineutrino



Example: model with ∆(384) and CP

Flavour and CP symmetry

• we choose in the following ∆(384)

• furthermore, we use a CP symmetry which acts

non-trivially on flavour space (Grimus/Rebelo (’95))

• when considering such a theory, certain conditions have

to be fulfilled (ρ irrep of ∆(384))

(

X−1ρ(g)X
)⋆

= ρ(g′) with g, g′ ∈ ∆(384) , in general g 6= g′

(Feruglio/H/Ziegler (’12,’13), Holthausen et al. (’12), Chen et al. (’14))

• we use the CP symmetry that corresponds to the

automorphism

a → a , b → b , c → c−1 and d → d−1

conjugated with group transformation c4+s d2 s with s = 7



Example: model with ∆(384) and CP

Assignment of fermion generations

• LH fields are in 3-dim. irreps

(unification of generations, predictive power of approach)

• RH charged fermions are singlets

(mass hierarchy)

• RH neutrinos are in 3-dim. irrep

(relevant for lepton mixing)



Example: model with ∆(384) and CP

Breaking of flavour and CP symmetry

• spontaneously via gauge singlet fields/flavons

(disentangle flavour and electroweak symmetry breaking,

technically easier)

• to different residual symmetries

(predictive power of model, interpretation of mixing as

mismatch of residual groups)

• in different steps

(motivation for e.g. smallness of θ13)



Example: model with ∆(384) and CP

Breaking of flavour and CP symmetry

∆(384)× Z
(ext)
2 × Z

(ext)
3 × Z

(ext)
16 and CP

Gl = Z
(diag)
3

TB mixing

Gν,1 = Gu = Z
(diag),1
2 × Z

(diag),2
2 × CP Gd,1 = Z

(diag)
16

θC = sinπ/16



Example: model with ∆(384) and CP

Breaking of flavour and CP symmetry

∆(384)× Z
(ext)
2 × Z

(ext)
3 × Z

(ext)
16 and CP

Gl = Z
(diag)
3

Gl

TB mixing

Gν,1 = Gu = Z
(diag),1
2 × Z

(diag),2
2 × CP

Gν,2 = Z2 × CP

θ13 6= 0

Gu

Gd,1 = Z
(diag)
16

Gd,2 = Z8

|Vus| = 0.22452

θC = sinπ/16



Example: model with ∆(384) and CP

Breaking of flavour and CP symmetry

∆(384)× Z
(ext)
2 × Z

(ext)
3 × Z

(ext)
16 and CP

Gl = Z
(diag)
3

no residual

TB mixing

Gν,1 = Gu = Z
(diag),1
2 × Z

(diag),2
2 × CP

Gν,2 = Z2 × CP

no residual

θ13 6= 0

no residual

Gd,1 = Z
(diag)
16

Gd,2 = Z8

no residual

θq13 6= 0,

θq23 6= 0

|Vus| = 0.22452

θC = sinπ/16



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms at leading order

wl.o.l =
1

Λ
L τ c hd φl

+
ω2

Λ2
Lµc hd χl φl +

1

Λ2
Lµc hd φ

2
l

+
i ω2

Λ3
Lec hd χ

2
l φl +

i ω2

Λ3
Lec hd χl φ

2
l +

1

Λ3
Lec hd φ

3
l

where real couplings are suppressed (ω = e2π i/3)



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms at leading order

• VEVs for flavons χl and φl

〈χl〉 = xχl





0

1



 and 〈φl〉 = xφl









ω2

ω

1









with xχl
and xφl

complex

and orders of magnitude

|xχl
|

Λ
,
|xφl

|
Λ

≈ λ2 with λ ≈ 0.2



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms at leading order

• VEVs for flavons χl and φl

• charged lepton mass matrix

ml.o.
l =









cl λ
4 ω bl λ

2 ω2 al

cl λ
4 ω2 bl λ

2 ω al

cl λ
4 bl λ

2 al









λ2 〈hd〉

with al, bl and cl complex



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms at leading order

• VEVs for flavons χl and φl

• contribution to lepton mixing

U l.o.l =
1√
3









1 ω2 ω

1 ω ω2

1 1 1









• charged lepton masses

ml.o.
e =

√
3 |cl|λ6 〈hd〉 , ml.o.

µ =
√
3 |bl|λ4 〈hd〉 , ml.o.

τ =
√
3 |al|λ2 〈hd〉



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms at leading order

• VEVs for flavons χl and φl

• superpotential for VEV alignment

wl.o.fl,l = αl σ
0
l χ

2
l + βl σ̃

0
l φ

2
l + γl χ

0
l χ

2
l + ω δl χ

0
l φ

2
l

with real couplings

• assume breaking of flavour and CP symmetry at high

energy scale

∂wl.o.fl,l

∂σ0
l

= 0 ,
∂wl.o.fl,l

∂σ̃0
l

= 0 ,
∂wl.o.fl,l

∂χ0
l,i

= 0



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms beyond leading order

1

Λ4
L τ c hd φl η

3
u +

1

Λ5
L τ c hd χl η

4
u +

1

Λ5
L τ c hd φl η

4
u +

1

Λ4
L τ c hd η

2
u ζ

2

+
1

Λ5
Lµc hd χl φl η

3
u +

1

Λ5
Lµc hd φ

2
l η

3
u +

1

Λ4
Lµc hd φl ηu ζ

2

+
1

Λ5
Lec hd φd η

3
u ξu +

1

Λ6
Lec hd φd κ

2
u η

3
u +

1

Λ5
Lec hd χd φu κu ηu ξu

+
1

Λ6
Lec hd χd φu κ

3
u ηu



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms beyond leading order

• corrections to the VEV alignment

〈χl〉 =





δxχl,1

xχl
+ δxχl,2



 , 〈φl〉 =











ω2
(

xφl
+ δxφl,1

)

ω
(

xφl
+ δxφl,2

)

xφl











with
|δxχl,i|

Λ
,
|δxφl,j |

Λ
≈ λ5



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms beyond leading order

• corrections to the VEV alignment

• charged lepton mass matrix with corrections









cl λ
4 ω bl λ

2 ω2 al

cl λ
4 ω2 bl λ

2 ω al

cl λ
4 bl λ

2 al









λ2 〈hd〉+









xl,11 λ
5 xl,12 λ

5 xl,13 λ
3

−xl,11 λ5 xl,22 λ
5 xl,23 λ

3

xl,31 λ
5 0 0









λ2 〈hd〉



Example: model with ∆(384) and CP

To get some idea: look at charged leptons

• superpotential with Yukawa terms beyond leading order

• corrections to the VEV alignment

• charged lepton mass matrix with corrections









cl λ
4 ω bl λ

2 ω2 al

cl λ
4 ω2 bl λ

2 ω al

cl λ
4 bl λ

2 al









λ2 〈hd〉+









xl,11 λ
5 xl,12 λ

5 xl,13 λ
3

−xl,11 λ5 xl,22 λ
5 xl,23 λ

3

xl,31 λ
5 0 0









λ2 〈hd〉

• charged lepton masses get slightly corrected

• contribution to lepton mixing changes by

θh.o.l,12 ≈ O(λ3) , θh.o.l,13 ≈ O(λ3) and θh.o.l,23 ≈ O(λ3)



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• at leading order

wl.o.ν,D =
1

Λ
Lνc hu ζ and wl.o.,1νc = νc νc ξu+

1

Λ
νc νc κ2u

giving rise to

ml.o.,1
ν = ω10

16









aν cν 0

cν aν 0

0 0 ω10
16 bν









λ2
〈hu〉2
Λ

with real parameters and ω16 = e2π i/16



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• at leading order

wl.o.ν,D =
1

Λ
Lνc hu ζ and wl.o.,1νc = νc νc ξu+

1

Λ
νc νc κ2u

giving rise to light neutrino masses

ml.o.,1
1 = |aν + cν | λ2

〈hu〉2
Λ

,

ml.o.,1
2 = |bν | λ2

〈hu〉2
Λ

,

ml.o.,1
3 = |aν − cν | λ2

〈hu〉2
Λ



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• at leading order

wl.o.ν,D =
1

Λ
Lνc hu ζ and wl.o.,1νc = νc νc ξu+

1

Λ
νc νc κ2u

giving rise to light neutrino masses and a contribution

to lepton mixing

U l.o.,1ν =
ω10
16√
2









ω16 0 −ω16

ω16 0 ω16

0
√
2 0











Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• at leading order

wl.o.ν,D =
1

Λ
Lνc hu ζ and wl.o.,1νc = νc νc ξu+

1

Λ
νc νc κ2u

• at next-to-leading order

wl.o.,2νc =
1

Λ
νc νc ηu ξu +

1

Λ2
νc νc κ2u ηu



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• at leading order

wl.o.ν,D =
1

Λ
Lνc hu ζ and wl.o.,1νc = νc νc ξu+

1

Λ
νc νc κ2u

• at next-to-leading order

wl.o.,2νc =
1

Λ
νc νc ηu ξu +

1

Λ2
νc νc κ2u ηu

giving rise to

ml.o.
ν = ω10

16
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• we find for the lepton mixing angles

sin2 θ13 =
1

3
sin2 θν and sin2 θ12 =

cos2 θν
2 + cos2 θν

=
1

3

(

1− 3 sin2 θ13

1− sin2 θ13

)

sin2 θ23 =
1

2

(

1 +

(

2
√
6 sin 2 θν

5 + cos 2 θν

)

sin
(π

8

)

)

with

tan 2 θν = − 2
√
2 dν

ãν + b̃ν − c̃ν
λ



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• we find for the lepton mixing angles

sin2 θ13 =
1

3
sin2 θν and sin2 θ12 =

cos2 θν
2 + cos2 θν

=
1

3

(

1− 3 sin2 θ13

1− sin2 θ13

)

sin2 θ23 =
1

2

(

1 +

(

2
√
6 sin 2 θν

5 + cos 2 θν

)

sin
(π

8

)

)

for θν ≈ 0.26 we get

sin2 θ13 ≈ 0.022 , sin2 θ12 ≈ 0.318 and sin2 θ23 ≈ 0.579



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... let’s summarise the neutrino sector

• for θν ≈ 0.26 we get

sin2 θ13 ≈ 0.022 , sin2 θ12 ≈ 0.318 and sin2 θ23 ≈ 0.579

• we get predictions for all leptonic CP phases

sin δ ≈ −0.936 , sinα = sinβ = − 1√
2



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the up quark sector

• at leading order

wl.o.u =
1

Λ
Qtc hu φu +

1

Λ3
Qcc hu φu κu ξu

giving rise to

ml.o.
u = ω5

16
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the up quark sector

• at leading order

wl.o.u =
1

Λ
Qtc hu φu +

1

Λ3
Qcc hu φu κu ξu

• we find for the up quark masses

ml.o.
u = 0 , ml.o.

c =
√
2 |bu| λ4 〈hu〉 and ml.o.

t = |au| λ 〈hu〉

and as contribution to quark mixing

U l.o.u =
1√
2
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√
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the up quark sector

• at leading order

wl.o.u =
1

Λ
Qtc hu φu +

1

Λ3
Qcc hu φu κu ξu

• at higher order there are many more terms, but

phenomenologically relevant is

1

Λ4
Quc hu χd φl ξu ψ

which generates the up quark mass of order

mh.o.
u ∝ λ8 〈hu〉



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

giving rise to

ml.o.,1
d =
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

• we find for the down quark masses

ml.o.,1
d = 0 , ml.o.,1

s =
√
2 |bd| λ4 〈hd〉 and ml.o.,1

b = |ad| λ2 〈hd〉

and as contribution to quark mixing

U l.o.,1d =
1√
2
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

• quark mixing at leading order is

∣

∣

∣V
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CKM

∣
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∣ =
∣

∣
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

• at next-to-leading order

wl.o.,2d =
1

Λ3
Qsc hd χd ψ

2

giving rise to

ml.o.,2
d = ω6

16
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Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

• at next-to-leading order

wl.o.,2d =
1

Λ3
Qsc hd χd ψ

2

• this mainly corrects the result for the Cabibbo angle by

tan 2 θd ≈ 2 sin
(π

8

)

∣

∣

∣

∣

cd
bd

∣

∣

∣

∣

λ2



Example: model with ∆(384) and CP

Instead of going through all details of the model ...

• ... a summary of the down quark sector

• at leading order

wl.o.,1d =
1

Λ
Qbc hd φd +

1

Λ2
Qsc hd φd χd

• at next-to-leading order

wl.o.,2d =
1

Λ3
Qsc hd χd ψ

2

• at even higher order there are many terms, but only a

few are of phenomenological relevance



Example: model with ∆(384) and CP

• at even higher order there are many terms, but only a few

are of phenomenological relevance

• ... the term
1

Λ3
Qdc hd φl ζ ψ

leads to non-zero down quark mass of order λ6 〈hd〉
• ... the terms

1

Λ2
Qbc hd ψ

2 +
1

Λ3
Qbc hd ηu ψ

2

generate the quark mixing angles θq23 and θq13,

respectively

θq23 ≈
√
2

∣

∣

∣

∣

dd
ad

∣

∣

∣

∣

λ2 and θq13 ≈
√
2

∣

∣

∣

∣

ed
ad

∣

∣

∣

∣
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Example: model with ∆(384) and CP

• at even higher order there are many terms, but only a few

are of phenomenological relevance

• ... the term
1

Λ3
Qdc hd φl ζ ψ

• ... the terms

1

Λ2
Qbc hd ψ

2 +
1

Λ3
Qbc hd ηu ψ

2

• we find for the Jarlskog invariant

(Jq
CP

)l.o. ≈ sin
(π

8

) dd ed
|ad|2

λ5



Example: model with ∆(384) and CP

• at even higher order there are many terms, but only a few

are of phenomenological relevance

• ... the term
1

Λ3
Qdc hd φl ζ ψ

• ... the terms

1

Λ2
Qbc hd ψ

2 +
1

Λ3
Qbc hd ηu ψ

2

• ... the term
1

Λ4
Qbc hd χd φ

2
u ψ

corrects the Jarlskog invariant at order λ6



Outlook

Future directions for loop models

• endow them with flavour and CP symmetries

• embed them into (partially) unified theories

• consider ways to generate baryon asymmetry of the

Universe

• chart them according to phenomenology



Outlook

Future directions for flavour models

• embed them into (partially) unified theories

• realise them in alternatives to MSSM-like models

• use modular invariance

• chart them according to phenomenology

• extend flavour systematically to dark sector

• study impact of flavour on different types of leptogenesis



Outlook

Surprises might be around the corner ...

• ... anomaly in g − 2 of muon persists

• ... one of the B meson anomalies is confirmed

• ... charged lepton flavour violation is observed

• ... positive signal of neutrinoless double beta decay

• ... sterile neutrino is found

• ... searches for long-lived particles are successful

• ... lepton number and/or flavour violation at next run of LHC

Thank you for your attention.
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