





# $\nu_{\mu} CC1\pi^{+}$ interaction on Carbon (FGD1) with $4\pi$ acceptance

**Neutrino group meeting** 

Danaisis Vargas Oliva <u>dvargas@ifae.es</u> October 24th, 2019

# 15th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD19)





15th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD19)

Muography





#### **Software:**

✓ nd280Highland v2r35

#### Signal:

selecting events with a  $CC1\pi^+$  topology in FGD1:

- ✓ 1 muon (in  $4\pi$  acceptance)
- ✓ 1 positive pion in TPC
- ✓ with or without cut on the  $P_{\pi}$  in TPC
- ✓ with or without FGD  $\pi$  and ME tagging
- $\checkmark$  with or without the  $\pi^0$  ECal veto







## Momentum distribution for BWD based on true topology and true particle ID.

**Note:** In other to reduce the contribution of the  $CC0\pi$  (that one of the contribution is coming from protons identify as pions in the TPC) I applied the cut in the momentum of the particle when doing the TPC pion ID.



No momentum information of the ME or FGD pions!!!

| FGD π & ME | $P_{\pi}$ (TPC) cut | $\pi^0$ ECal veto | Results (topogy)                                                                              | Results (particle)                                   |                                                      |
|------------|---------------------|-------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| X          |                     |                   | $CC0\pi \sim 25\%$ $CC1\pi^{+} \sim 30\%$ $CCother \sim 25\%$ $BKG \sim 5\%$ $OOFV \sim 16\%$ | $\mu^- \sim 84\%$ $\pi^- \sim 11\%$ $\pi^+ \sim 4\%$ | $\pi^{+} \sim 58\%$ $p \sim 30\%$ $\mu^{+} \sim 7\%$ |
| X          |                     | X                 | $CC0\pi \sim 29\%$ $CC1\pi^{+} \sim 35\%$ $CCother \sim 16\%$ $BKG \sim 5\%$ $OOFV \sim 15\%$ | $\mu^- \sim 84\%$ $\pi^- \sim 10\%$ $\pi^+ \sim 4\%$ | $\pi^{+} \sim 55\%$ $p \sim 33\%$ $\mu^{+} \sim 8\%$ |
| X          | X                   | X                 | CC0π~ 13%<br>CC1π+~ 50%<br>CCother~ 18%<br>BKG~ 3%<br>OOFV~ 16%                               | $\mu^- \sim 86\%$ $\pi^- \sim 7\%$ $\pi^+ \sim 5\%$  | $\pi^{+} \sim 76\%$ $p \sim 12\%$ $\mu^{+} \sim 6\%$ |



**Template** 

**Correlation Matrix** 



# XI CPAN DAYS

#### • Theorical Physics:

- A Strong Scalar Weak Gravity Conjecture and Some Implications
- Charged Lepton Flavor Violation in low scale seesaw models

#### • Astrophysics:

• Light detection results in protoDUNE Dual-Phase at the CERN Neutrino Platform

#### • Plenary talks:

- The global 3-neutrino picture [before DUNE and Hyper-K]
- New physics searches with neutrino experiments





# XI CPAN DAYS

### New physics searches with neutrino experiments

#### Seesaw scales



### Summary

- New physics may be weakly interacting, and hiding at low energies
- Low-scale seesaws are theoretically well-motivated and lead to a very rich phenomenology
- They can be tested using a variety of experiments, including oscillations experiments and Icecube.
- Other portals may lead to additional effects observable in intensity frontier experiments such as MiniBooNE, LSND, and COHERENT.

P. Coloma - IFIC 2



WWW.BOSSYBOSON.COM

# Thank you!!!