A DISPERSIVE ANALYSIS OF THE DECAYS $au o u_{ au}(2\pi/2K/3\pi)$

Sergi Gonzàlez-Solís

INDIANA UNIVERSITY

DEPARTMENT OF PHYSICS, INDIANA UNIVERSITY BLOOMINGTON, IN 47405, USA

BASED ON:

S. GONZÀLEZ-SOLÍS AND P. ROIG; EUR. PHYS. J. C79 (2019) 436,

A. Strickland, S. Gonzàlez-Solís and E. Passemar; to appear soon.

INSTITUT DE FÍSICA D'ALTES ENERGIES, SEPTEMBER 26, 2019

OUTLINE

1 Introduction

- 2 The Pion Vector Form Factor: a bottom-up approach
- 3 The Kaon Vector Form Factor
- 4 $au
 ightarrow 3\pi
 u_{ au}$ (preliminary results)

INTRODUCTION

QUANTUM CHROMODYNAMICS

asymptotic freedom:

"like QED", but only at high energies

confinement:

at low energies the gluons bind the quarks together to form the hadrons

- 1. Lattice QCD simulations: determination of SM fundamental parameters from first principles (quark masses, α_s)
- 2. Chiral Perturbation theory
- 3. S-matrix theory: based on analyticity and unitarity arguments (dispersion relations)

0.5

 $\alpha_{s}(Q)$

April 2012

τ decays (N³LO)

TEST OF QCD AND ELECTROWEAK INTERACTIONS

■ Inclusive decays: $\tau^- \rightarrow (\bar{u}d, \bar{u}s)\nu_{\tau}$ Full hadron spectra (precision physics)

Exclusive decays: $\tau^- \rightarrow (PP, PPP, ...)\nu_{\tau}$

Fundamental SM parameters: $\alpha_{s}(m_{\tau}), m_{s}, |V_{us}|$

specific hadron spectrum (approximate physics)

Hadronization of QCD currents, study of Form Factors, resonance parameters (M_R, Γ_R)

- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$: Pion vector form factor, $\rho(770), \rho(1450), \rho(1700)$
- $\tau^- \rightarrow K^- K_S \nu_{\tau}$: Kaon vector form factor, $\rho(770), \rho(1450), \rho(1700)$
- $\tau^- \rightarrow K_{\mathsf{S}} \pi^- \nu_{\tau}$: $K\pi$ form factor, K^* (892), K^* (1410), K_{ℓ_3} , V_{us}
- $\tau^- \rightarrow K^- \eta^{(\prime)} \nu_{\tau}$: K*(1410), V_{us}
- \blacksquare $\tau^- \to \pi^- \eta^{(\prime)} \nu_{\tau}$: isospin violation

The pion vector form factor: Motivation

Enters the description of many physical processes

Belle measurement of the pion vector form factor (0805.3773)

• high-statistics data until de τ mass • sensitive to $\rho(1450)$ and $\rho(1700)$ • our aim: to improve the description of the $\rho(1450)$ and $\rho(1700)$ region

The pion vector form factor: Motivation

Enters the description of many physical processes

BaBar measurement of $au^- o K^- K_{
m S}
u_{ au}$ (1806.10280)

- good quality data
- sensitive to $\rho(1450)$ and $\rho(1700)$
- our aim: to improve the description of the ρ (1450) and ρ (1700) region

THE PION VECTOR FORM FACTOR: A BOTTOM-UP APPROACH

The Pion vector form factor $F_V^{\pi}(s)$

• How to determine $F_V^{\pi}(s)$ experimentally?

•
$$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$$
 and $e^+ e^- \rightarrow \pi^+ \pi^-$

What do we know theoretically on the form factor?

- Its low-energy behaviour: given by ChPT (Gasser&Leutwyler'85)
- Its high-energy behaviour (~ 1/s): given by pQCD (Brodsky&Lepage'79)
- For the intermediate energy region: models

PION VECTOR FORM FACTOR: CHPT $\mathcal{O}(p^4)$

$$F_V^{\pi}(s)|_{\mathrm{ChPT}} = 1 + rac{2L_9'(\mu)}{F_{\pi}^2}s - rac{s}{96\pi^2 F_{\pi}^2}\left(A_{\pi}(s,\mu^2) + rac{1}{2}A_K(s,\mu^2)
ight),$$

$$A_{P}(s,\mu^{2}) = \log \frac{m_{P}^{2}}{\mu^{2}} + \frac{8m_{P}^{2}}{s} - \frac{5}{3} + \sigma_{P}^{3}(s) \log \left(\frac{\sigma_{P}(s) + 1}{\sigma_{P}(s) - 1}\right), \sigma_{P}(s) = \sqrt{1 - 4\frac{m_{P}^{2}}{s}}$$

PION VECTOR FORM FACTOR: CHPT WITH RESONANCES

$$F_V^{\pi}(\mathsf{s}) = \mathsf{1} + rac{F_V G_V}{F_\pi^2} rac{\mathsf{s}}{\mathsf{M}_
ho^2 - \mathsf{s}} \stackrel{F_V G_V = F_\pi^2}{\Longrightarrow} rac{\mathsf{M}_
ho^2}{\mathsf{M}_
ho^2 - \mathsf{s}} \,,$$

Expansion in s and comparing ChPT and $R\chi T$

$$F_{V}^{\pi}(s) = 1 + \frac{2L_{9}^{r}(\mu)}{F_{\pi}^{2}}s - \frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s,\mu^{2}) + \frac{1}{2}A_{K}(s,\mu^{2})\right)$$
$$F_{V}^{\pi}(s) = 1 + \left(\frac{s}{M_{\rho}^{2}}\right) + \left(\frac{s}{M_{\rho}^{2}}\right)^{2} + \cdots$$

• Chiral coupling estimate: $L_9^r(M_\rho) = \frac{F_V G_V}{2M_\rho^2} = \frac{F_\pi^2}{2M_\rho^2} \simeq 7.2 \times 10^{-3}$

• Combining ChPT and $R\chi T$

$$F_V^{\pi}(s) = rac{M_{
ho}^2}{M_{
ho}^2 - s} - rac{s}{96\pi^2 F_{\pi}^2} \left[A_{\pi}(s,\mu^2) + rac{1}{2} A_K(s,\mu^2)
ight] \, ,$$

DISPERSIVE REPRESENTATION

Dispersive approach

disc $F_V(s) = 2i\sigma_{\pi}(s)F_V(s)T_1^{1*}(s) = 2iF_V(s)\sin\delta_1^1(s)e^{-i\delta_1^1(s)}$,

$$F_{V}(\mathbf{s}) = \frac{1}{2i\pi} \int_{4M_{\pi}^{2}}^{\infty} d\mathbf{s}' \frac{\operatorname{disc} F_{V}(\mathbf{s}')}{\mathbf{s}' - \mathbf{s} - i\varepsilon},$$

Analytic solution (Omnès equation)

$$F_{V}(s) = P(s)\Omega(s), \quad \Omega(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s')}{s'(s'-s-i\varepsilon)}\right\},$$

$$= \underbrace{\pi}_{\pi} \underbrace{\pi}_{\pi}$$

Resummation of final-state interactions to all orders (Omnès)

$$F_{V}^{\pi}(\mathbf{s}) = P_{n}(\mathbf{s}) \exp\left\{\frac{\mathbf{s}^{n}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{d\mathbf{s}'}{(\mathbf{s}')^{n}} \frac{\delta_{1}^{1}(\mathbf{s}')}{\mathbf{s}' - \mathbf{s} - i\varepsilon}\right\},$$

Get a model for the phase from $\pi\pi \to \pi\pi$ scattering at $\mathcal{O}(p^2)$

$$T(s) = \frac{s - m_{\pi}^2}{F_{\pi}^2} \to T_1^1(s) = \frac{s\sigma_{\pi}^2(s)}{96\pi F_{\pi}^2} \to \delta_1^1(s) = \sigma_{\pi}(s)T_1^1(s) = \frac{s\sigma_{\pi}^3(s)}{96\pi F_{\pi}^2},$$

Omnès exponentiation of the full loop function

$$F_V^{\pi}(s) = \frac{M_{
ho}^2}{M_{
ho}^2 - s} \exp\left\{-\frac{s}{96\pi^2 F_{\pi}^2}A_{\pi}(s,\mu^2)
ight\}.$$

Incorporatation of the (off-shell) ρ width

 $\Gamma_{\rho}(s) = -\frac{M_{\rho}s}{96\pi^{2}F_{\pi}^{2}} \operatorname{Im}\left[A_{\pi}(s) + \frac{1}{2}A_{K}(s)\right] = \frac{M_{\rho}s}{96\pi F_{\pi}^{2}} \left[\sigma_{\pi}(s)^{3}\theta(s - 4m_{\pi}^{2}) + \sigma_{K}(s)^{3}\theta(s - 4m_{K}^{2})\right].$

$$F_V^{\pi}(s)|_{\mathrm{expo}}^{\mathrm{1\,res}} = \frac{M_\rho^2}{M_\rho^2 - s - iM_\rho\Gamma_\rho(s)} \exp\left\{-\frac{s}{96\pi^2 F_\pi^2} \mathrm{Re}\left[A_{\pi}(s,\mu^2) + \frac{1}{2}A_K(s,\mu^2)\right]\right\}.$$

■ Incorporation of the $\rho'(1450), \rho''(1700)$

$$\begin{split} F_{V}^{\pi}(s)|_{\exp o}^{3 \operatorname{res}} &= \frac{M_{\rho}^{2} + s\left(\gamma e^{i\phi_{1}} + \delta e^{i\phi_{2}}\right)}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{\operatorname{Re}\left[-\frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s) + \frac{1}{2}A_{K}(s)\right)\right]\right] \\ &- \gamma \frac{s \, e^{i\phi_{1}}}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} \exp\left\{-\frac{s\Gamma_{\rho'}(M_{\rho'}^{2})}{\pi M_{\rho'}^{3}\sigma_{\pi}^{3}(M_{\rho'}^{2})}\operatorname{Re}A_{\pi}(s)\right\} \\ &- \delta \frac{s \, e^{i\phi_{2}}}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)} \exp\left\{-\frac{s\Gamma_{\rho''}(M_{\rho''}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(s)\right\}, \end{split}$$

where

$$\Gamma_{\rho',\rho''}(s) = \Gamma_{\rho',\rho''} \frac{M_{\rho',\rho''}}{\sqrt{s}} \frac{\sigma_{\pi}^{3}(s)}{\sigma_{\pi}^{3}(M_{\rho',\rho''}^{2})} \, .$$

DISPERSIVE REPRESENTATION

- Drawbacks: Constraints from analyticity, unitarity and chiral symmetry not fully respected
- Dispersion relation with subtractions:

$$F_V^{\pi}(s) = \exp\left[\alpha_1 s + \frac{\alpha_2}{2}s^2 + \frac{s^3}{\pi}\int_{4m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\phi(s')}{(s')^3(s'-s-i\varepsilon)}\right],$$

Low-energy observables

$$\begin{split} F_{V}^{\pi}(\mathbf{s}) &= 1 + \frac{1}{6} \langle r^{2} \rangle_{V}^{\pi} \mathbf{s} + c_{V}^{\pi} s^{2} + d_{V}^{\pi} s^{3} + \cdots, \\ \langle r^{2} \rangle_{V}^{\pi} |_{\mathrm{ChPT}}^{\mathcal{O}(p^{4})} &= \frac{12 L_{9}^{\prime}(\mu)}{F_{\pi}^{2}} - \frac{1}{32\pi^{2} F_{\pi}^{2}} \left[2 \log \left(\frac{M_{\pi}^{2}}{\mu^{2}} \right) + \log \left(\frac{M_{K}^{2}}{\mu^{2}} \right) + 3 \right] \\ \langle r^{2} \rangle_{V}^{\pi} &= 6\alpha_{1}, \quad c_{V}^{\pi} = \frac{1}{2} \left(\alpha_{2} + \alpha_{1}^{2} \right), \quad \alpha_{R} = \frac{k!}{\pi} \int_{4m_{\pi}^{2}}^{S_{\mathrm{cut}}} ds' \frac{\phi(s')}{s'^{R+1}}. \end{split}$$

► s_{cut}: cut-off to check stability

DISPERSIVE REPRESENTATION

Dispersion relation with subtractions:

$$F_V^{\pi}(s) = \exp\left[\alpha_1 s + \frac{\alpha_2}{2}s^2 + \frac{s^3}{\pi}\int_{4m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\phi(s')}{(s')^3(s'-s-i\varepsilon)}\right],$$

Form Factor phase $\phi(s)$

•
$$1 < s < m_{\tau}^2$$
: "Pheno" phase shift

$$an \phi(\mathbf{s}) = rac{\mathrm{Im} F_V^\pi(\mathbf{s})|_{\mathrm{expo}}^{3\,\mathrm{res}}}{\mathrm{Re} F_V^\pi(\mathbf{s})|_{\mathrm{expo}}^{3\,\mathrm{res}}}\,,$$

▶ $m_{ au}^2 < s$: phase guided smoothly to π

DISPERSIVE FITS TO THE PION VECTOR FORM FACTOR

\blacksquare Fits for different values of $s_{\rm cut}$ and matching at 1 GeV

	Darameter				
Fits	Falameter	m_{τ}^2	4 (reference fit)	10	∞
Fit 1	α_1 [GeV ⁻²] 1.87(1) 1.8		1.88(1)	1.89(1)	1.89(1)
	α_2 [GeV ⁻⁴]	4.40(1)	4.34(1)	4.32(1)	4.32(1)
	$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)	= 773.6(9)
	$M_{ ho}$ [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$
	$M_{ ho'}$ [MeV]	1365(15)	1376(6)	1313(15)	1311(5)
	$\Gamma_{\rho'}$ [MeV]	562(55)	603(22)	700(6)	701(28)
	$M_{\rho^{\prime\prime}}$ [MeV]	1727(12)	1718(4)	1660(9)	1658(1)
	$\Gamma_{\rho^{\prime\prime}}$ [MeV]	278(1)	465(9)	601(39)	602(3)
	γ	0.12(2)	0.15(1)	0.16(1)	0.16(1)
	ϕ_1	-0.69(1)	-0.66(1)	-1.36(10)	-1.39(1)
	δ	-0.09(1)	-0.13(1)	-0.16(1)	-0.17(1)
	ϕ_2	-0.17(5)	-0.44(3)	-1.01(5)	-1.03(2)
	χ^2 /d.o.f	1.47	0.70	0.64	0.64

 \blacksquare Form Factor phase shift for different values of $s_{
m cut}$

The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph]

The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph]

VARIANT (I)

 \blacksquare Fits for different matching point and with $s_{\rm cut} = 4~\text{GeV}$

	Paramotor	Matching point [GeV]				
Fits	Falameter	0.85	0.9	0.95	1 (reference fit)	
Fit I	α_1 [GeV ⁻²]	1.88(1)	1.88(1)	1.88(1)	1.88(1)	
	α_2 [GeV ⁻⁴]	4.35(1)	4.35(1)	4.34(1)	4.34(1)	
	$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)	= 773.6(9)	
	M_{ρ} [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$	
	$M_{ ho'}$ [MeV]	1394(6)	1374(8)	1351(5)	1376(6)	
	$\Gamma_{ ho'}$ [MeV]	592(19)	583(27)	592(2)	603(22)	
	$M_{ ho^{\prime\prime}}$ [MeV]	1733(9)	1715(1)	1697(3)	1718(4)	
	$\Gamma_{ ho^{\prime\prime}}$ [MeV]	562(3)	541(45)	486(7)	465(9)	
	γ	0.12(1)	0.12(1)	0.13(1)	0.15(1)	
	ϕ_1	-0.44(3)	-0.60(1)	-0.80(1)	-0.66(1)	
	δ	-0.13(1)	-0.13(1)	-0.13(1)	-0.13(1)	
	ϕ_2	-0.38(3)	-0.51(2)	-0.62(1)	-0.44(3)	
	χ^2 /d.o.f	0.75	0.74	0.68	0.70	

Variant (II): intermediate states other than $\pi\pi$

• Fit A: $\rho' \to K\bar{K}$ and $\rho'' \to K\bar{K}$

 $\blacksquare \ {\rm Fit} \ {\rm B:} \ \rho' \to {\it K}\bar{\it K} \ {\rm +} \ \rho' \to \omega\pi$

Daramotor	${\sf S}_{ m cut}=$ 4 GeV ²					
Falameter	Fit A Fit B		reference fit			
α_1 [GeV ⁻²]	1.87(1)	1.88(1)	1.88(1)			
α_2 [GeV ⁻⁴]	4.37(1)	4.35(1)	4.34(1)			
$m_ ho$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)			
M_{ρ} [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$			
$M_{\rho'}$ [MeV]	1373(5)	1441(3)	1376(6)			
$\Gamma_{\rho'}$ [MeV]	462(14)	576(33)	603(22)			
$M_{ ho^{\prime\prime}}$ [MeV]	1775(1)	1733(9)	1718(4)			
Γ _{ρ''} [MeV]	412(27)	349(52)	465(9)			
γ	0.13(1)	0.15(3)	0.15(1)			
ϕ_1	-0.80(1)	-0.53(5)	-0.66(1)			
δ	-0.14(1)	-0.14(1)	-0.13(1)			
ϕ_2	-0.44(2)	-0.46(3)	-0.44(3)			
χ^2 /d.o.f	0.93	0.70	0.70			

Dispersive representation: singularities at $s=s_{\rm cut}$

VARIANT (III)

Dispersive representation of the pion vector form factor

$$F_{V}^{\pi}(\mathbf{s}) = \exp\left[\frac{\mathbf{s}}{\pi}\int_{4m_{\pi}^{2}}^{\mathbf{s}_{\mathrm{cut}}} d\mathbf{s}' \frac{\delta_{1}^{1}(\mathbf{s}')}{(\mathbf{s}')(\mathbf{s}'-\mathbf{s}-i\varepsilon)} + \frac{\mathbf{s}}{\pi}\int_{\mathbf{s}_{\mathrm{cut}}}^{\infty} d\mathbf{s}' \frac{\delta_{\mathrm{eff}}(\mathbf{s}')}{(\mathbf{s}')(\mathbf{s}'-\mathbf{s}-i\varepsilon)}\right] \Sigma(\mathbf{s})$$

Properties for $\delta_{\text{eff}}(\mathsf{s})$

• $\delta_{\text{eff}}(s_{\text{cut}}) = \delta_1^1(s_{\text{cut}})$ and $\delta_{\text{eff}}(s) \to \pi$ for large s to recover 1/s

$$\delta_{\text{eff}}(\mathbf{S}) = \pi + \left(\delta_1^1(\mathbf{S}_{\text{cut}}) - \pi\right) \frac{\mathbf{S}_{\text{cut}}}{\mathbf{S}}$$

• Integrating the piece with $\delta_{\text{eff}}(s)$

$$F_{V}^{\pi}(s) = e^{1-\frac{\delta_{1}^{1}(s_{\text{cut}})}{\pi}} \left(1-\frac{s}{s_{\text{cut}}}\right)^{\left(1-\frac{\delta_{1}^{1}(s_{\text{cut}})}{\pi}\right)\frac{s_{\text{cut}}}{s}} \left(1-\frac{s}{s_{\text{cut}}}\right)^{-1}$$

$$\times \exp\left[\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{s_{\text{cut}}} ds'\frac{\delta_{1}^{1}(s')}{(s')(s'-s-i\varepsilon)}\right]\Sigma(s)$$

$$\Sigma(s) = \sum_{i=1}^{\infty}a_{i}\omega^{i}(s), \quad \omega(s) = \frac{\sqrt{s_{\text{cut}}}-\sqrt{s_{\text{cut}}}-s}{\sqrt{s_{\text{cut}}}+\sqrt{s_{\text{cut}}}-s}$$

VARIANT (III)

The resulting fit parameters are found to be

 $a_1 = 2.99(12)$. $M_{\rho'} = 1261(7) \,\mathrm{MeV}\,, \quad \Gamma_{\rho'} = 855(15) \,\mathrm{MeV}\,,$ $M_{\rho''} = 1600(1) \,\mathrm{MeV}, \quad \Gamma_{\rho''} = 486(26) \,\mathrm{MeV},$ $\gamma = 0.25(2), \quad \phi_1 = -1.90(6),$ $\delta = -0.15(1), \quad \phi_2 = -1.60(4),$ with a χ^2 /d.o.f = 32.3/53 \sim 0.61 for the one-parameter fit, and $a_1 = 3.03(20), \quad a_2 = 1.04(2.10),$ $M_{\rho'} = 1303(19) \,\mathrm{MeV}\,, \quad \Gamma_{\rho'} = 839(102) \,\mathrm{MeV}\,,$ $M_{a''} = 1624(1) \,\mathrm{MeV}, \quad \Gamma_{a''} = 570(99) \,\mathrm{MeV}$ $\gamma = 0.22(10), \quad \phi_1 = -1.65(4),$ $\delta = -0.18(1), \quad \phi_2 = -1.34(14),$ with a χ^2 /d.o.f = 35.6/52 \sim 0.63 for the two-parameter fit.

Form Factor phase shift for different parametrizations

The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph]

material in 1902.02273 [hep-ph]

CENTRAL RESULTS

Fit results (central value \pm stat fit error \pm syst th. error) $\alpha_1 = 1.88(1)(1) \text{ GeV}^{-2}, \alpha_2 = 4.34(1)(3) \text{ GeV}^{-4},$ $M_o \doteq 773.6 \pm 0.9 \pm 0.3 \text{ MeV}$, $M_{\rho'} = 1376 \pm 6^{+18}_{-73} \text{ MeV}, \quad \Gamma_{\rho'} = 603 \pm 22^{+236}_{-141} \text{ MeV},$ $M_{\rho''} = 1718 \pm 4^{+57}_{-94} \text{ MeV}, \quad \Gamma_{\rho''} = 465 \pm 9^{+137}_{-53} \text{ MeV},$ $\gamma = 0.15 \pm 0.01^{+0.07}_{-0.03}, \quad \phi_1 = -0.66 \pm 0.01^{+0.22}_{-0.99},$ $\delta = -0.13 \pm 0.01^{+0.00}_{-0.05}, \quad \phi_2 = -0.44 \pm 0.03^{+0.06}_{-0.00},$ Physical pole mass and width $M_{a}^{\text{pole}} = 760.6 \pm 0.8 \text{ MeV}, \quad \Gamma_{a}^{\text{pole}} = 142.0 \pm 0.4 \text{ MeV},$ $M_{a'}^{\text{pole}} = 1289 \pm 8^{+52}_{-143} \text{ MeV}, \quad \Gamma_{a'}^{\text{pole}} = 540 \pm 16^{+151}_{-111} \text{ MeV},$ $M_{a''}^{\text{pole}} = 1673 \pm 4_{-125}^{+68} \text{ MeV}, \quad \Gamma_{a''}^{\text{pole}} = 445 \pm 8_{-49}^{+117} \text{ MeV},$

ho(1450) and ho(1700) resonance parameters

	Reference	Model parameters	Pole parameters	Data
		$M_{ ho'}, \Gamma_{ ho'}$ [MeV]	$M^{ m pole}_{ ho'}, \Gamma^{ m pole}_{ ho'}$ [MeV]	
	ALEPH	1328 \pm 15, 468 \pm 41	$1268 \pm 19,429 \pm 31$	au
	ALEPH	1409 \pm 12, 501 \pm 37	1345 \pm 15, 459 \pm 28	τ &е
	Belle (fixed $ F_V^{\pi}(0) ^2$)	1446 \pm 7 \pm 28, 434 \pm 16 \pm 60	1398 \pm 8 \pm 31, 408 \pm 13 \pm 50	au
	Belle (all free)	1428 \pm 15 \pm 26, 413 \pm 12 \pm 57	1384 \pm 16 \pm 29, 390 \pm 10 \pm 48	au
	Dumm et. al.	-	1440 \pm 80, 320 \pm 80	au
	Celis et. al.	1497 \pm 7, 785 \pm 51	1278 \pm 18, 525 \pm 16	au
	Bartos et. al.	-	1342 \pm 47, 492 \pm 138	e^+e^-
	Bartos et. al.	-	1374 \pm 11, 341 \pm 24	au
	This work	1376 \pm 6 $^{+18}_{-73}$, 603 \pm 22 $^{+236}_{-141}$	1289 \pm 8 $^{+52}_{-143}$, 540 \pm 16 $^{+151}_{-111}$	au
	Reference	Model parameters	Pole parameters	Data
		$(M_{ ho^{\prime\prime}},\Gamma_{ ho^{\prime\prime}})$ [MeV]	$(M^{ m pole}_{ ho^{\prime\prime}}, \Gamma^{ m pole}_{ ho^{\prime\prime}})$ [MeV]	
	ALEPH	= 1713, = 235	1700, 232	au
	ALEPH	1740 \pm 20, $=$ 235	1728 \pm 20, 232	τ&e
	Belle (fixed $ F_V^{\pi}(0) ^2$)	1728 \pm 17 \pm 89, 164 \pm 21 $^{+89}_{-26}$	1722 \pm 18, 163 \pm 21 $^{+88}_{-27}$	au
	Belle (all free)	1694 \pm 41, 135 \pm 36 $^{+50}_{-26}$	1690 \pm 94, 134 \pm 36 $^{+49}_{-28}$	au
	Dumm et. al.	-	1720 \pm 90, 180 \pm 90	au
	Celis et. al.	1685 \pm 30, 800 \pm 31	1494 \pm 37, 600 \pm 17	au
	Bartos et. al.	-	1719 \pm 65, 490 \pm 17	e^+e^-
	Bartos et. al.	-	1767 \pm 52, 415 \pm 120	au
_	This work	1718 \pm 4 $^{+57}_{-94}$, 465 \pm 9 $^{+137}_{-53}$	1673 \pm 4 $^{+68}_{-125}$, 445 \pm 8 $^{+117}_{-49}$	au

LOW-ENERGY OBSERVABLES

References	$\langle r^2 \rangle_V^{\pi}$ (GeV ⁻²)	c_{V}^{π} (GeV ⁻⁴)	Sum rule	s _{cut} (Ge	(V ²)	Fit Eq. (42)	
Colangelo et al. [55]	11.07 ± 0.66	3.2 + 1.03		4	10	∞	
Bijnens et al. [32]	11.22 ± 0.41	3.85 ± 0.60	α_1	1.52	1.66	1.75	$1.88 \pm 0.01 \pm 0.01$
Pich et al. [6]	11.04 ± 0.30	3.79 ± 0.04	α2	4.26	4.30	4.31	$4.34 \pm 0.01 \pm 0.03$
Bijnens et al. [33]	11.61 ± 0.33	4.49 ± 0.28					
de Troconiz et al. [56]	11.10 ± 0.03	3.84 ± 0.02					
Masjuan et al. [57]	11.43 ± 0.19	3.30 ± 0.33					
Guo et al. [58]	-	4.00 ± 0.50					
Lattice [59]	10.50 ± 1.12	3.22 ± 0.40					
Ananthanarayan et al. [60]	11.17 ± 0.53	[3.75, 3.98]					
Ananthanarayan et al. [61]	[10.79, 11.3]	[3.79, 4.00]					
Schneider et al. [48]	10.6	3.84 ± 0.03					
Dumm et al. [7]	10.86 ± 0.14	3.84 ± 0.03					
Celis et al. [8]	11.30 ± 0.07	4.11 ± 0.09					
Ananthanarayan et al. [62]	11.10 ± 0.11	-					
Hanhart et al. [63]	$11.34 \pm 0.01 \pm 0.01$	-					
Colangelo et al. [39]	11.02 ± 0.10	-					
PDG [42]	11.61 ± 0.28	-					
This work	11.28 ± 0.08	3.94 ± 0.04					

THE KAON VECTOR FORM FACTOR

KAON VECTOR FORM FACTOR

$$\frac{d\Gamma(\tau^- \to K^- K^0 \nu_\tau)}{d\sqrt{s}} = \frac{G_F^2 |V_{ud}|^2}{768\pi^3} M_\tau^3 \left(1 - \frac{s}{M_\tau^2}\right)^2 \left(1 + \frac{2s}{M_\tau^2}\right) \sigma_K^3(s) |F_V^K(s)|^2 \,,$$

• Chiral Perturbation Theory $\mathcal{O}(p^4)$

$$\begin{split} F_{K^+K^-}(s)|_{\mathrm{ChPT}} &= 1 + \frac{2L_9'}{F_\pi^2} - \frac{s}{192\pi^2 F_\pi^2} \left[A_\pi(s,\mu^2) + 2A_K(s,\mu^2) \right] \,, \\ F_{K^0\bar{K}^0}(s)|_{\mathrm{ChPT}} &= -\frac{s}{192\pi^2 F_\pi^2} \left[A_\pi(s,\mu^2) - A_K(s,\mu^2) \right] \,. \end{split}$$

• Extract the I = 1 component

$$F_V^K(s)|_{ ext{ChPT}} = F_{K^+K^-}(s) - F_{K^0ar{K}^0}(s) = 1 + rac{2L_9'}{F_\pi^2} - rac{s}{96\pi^2F_\pi^2} \left[A_\pi(s,\mu^2) + rac{1}{2}A_K(s,\mu^2)
ight]$$

- At $\mathcal{O}(p^4)$, the pion and kaon vector form factor are the same
- Assumption: we consider that both are also the same at higher energies

Kaon vector form factor: Omnès exponential representation

Different resonance mixing contribution than $F_V^{\pi}(s)$

$$\begin{split} F_{V}^{K}(\mathbf{s}) &= \frac{M_{\rho}^{2} + \mathbf{s}\left(\tilde{\gamma}e^{i\tilde{\phi}_{1}} + \tilde{\delta}e^{i\tilde{\phi}_{2}}\right)}{M_{\rho}^{2} - \mathbf{s} - iM_{\rho}\Gamma_{\rho}(\mathbf{s})} \exp\left\{\operatorname{Re}\left[-\frac{\mathbf{s}}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(\mathbf{s}) + \frac{1}{2}A_{K}(\mathbf{s})\right)\right]\right\} \\ &- \tilde{\gamma}\frac{\mathbf{s}\,e^{i\tilde{\phi}_{1}}}{M_{\rho'}^{2} - \mathbf{s} - iM_{\rho'}\Gamma_{\rho'}(\mathbf{s})} \exp\left\{-\frac{\mathbf{s}\Gamma_{\rho'}(M_{\rho'}^{2})}{\pi M_{\rho'}^{3}\sigma_{\pi}^{3}(M_{\rho'}^{2})}\operatorname{Re}A_{\pi}(\mathbf{s})\right\} \\ &- \tilde{\delta}\frac{\mathbf{s}\,e^{i\tilde{\phi}_{2}}}{M_{\rho''}^{2} - \mathbf{s} - iM_{\rho''}\Gamma_{\rho''}(\mathbf{s})} \exp\left\{-\frac{\mathbf{s}\Gamma_{\rho''}(M_{\rho''}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(\mathbf{s})\right\}, \\ r_{\rho''}(\mathbf{s}) &= \Gamma_{\rho',\rho''}\frac{\mathbf{s}}{M_{\rho',\rho''}^{2}}\frac{\sigma_{\pi}^{3}(\mathbf{s})}{\sigma_{\pi}^{3}(M_{\rho',\rho''}^{2})}\theta(\mathbf{s} - 4m_{\pi}^{2}). \end{split}$$

• Extract the phase $\tan \phi_{KK}(s) = \operatorname{Im} F_V^K(s) / \operatorname{Re} F_V^K(s)$

 $\Gamma_{\rho'}$

Use a three-times subtracted dispersion relation

Fit results to BaBar $au^- o {\it K}^- {\it K}_{\it S} u_{ au}$ data

Combined analysis of $F_V^\pi(s)$ and $au^- o K^- K_S u_ au$

Parameter	$S_{\rm cut} = 4 [GeV^2]$			
rarameter	Fit a	Fit b	Fit c	Belle data (2008)
α1	1.88(1)	1.89(1)	1.87(1)	10 Fita
α_2	4.34(2)	4.31(2)	4.38(3)	Fit b
$\tilde{\alpha}_1$	$= \alpha_1$	$= \alpha_1$	1.88(24)	1
$\tilde{\alpha}_2$	$= \alpha_2$	$= \alpha_2$	4.38(29)	
$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)	
M_{ρ} [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$	
$M_{\rho'}$ [MeV]	1396(19)	1453(19)	1406(61)	
Γ _{ρ′} [MeV]	507(31)	499(51)	524(149)	0.001
M _{o''} [MeV]	1724(41)	1712(32)	1746(1)	0.0 0.5 1.0 1.5 2.0 2.5 3.0
Γ _{ρ''} [MeV]	399(126)	284(72)	413(362)	s [GeV ²]
γ	0.12(3)	0.15(3)	0.11(11)	100 I • BaBar (2018)
$\tilde{\gamma}$	0.11(2)	$=\gamma$	0.11(5)	Fita
ϕ_1	-0.23(26)	0.29(21)	-0.27(42)	80 Fit b
$\tilde{\phi}_1$	-1.83(14)	-1.48(13)	-1.90(67)	
δ	-0.09(2)	-0.07(2)	-0.10(5)	म् ⁶⁰
$\tilde{\delta}$	= 0	= 0	-0.01(4)	
ϕ_2	-0.20(31)	0.27(29)	-1.15(71)	
$\tilde{\phi}_2$	= 0	= 0	0.40(3)	20
χ^2 /d.o.f	1.52	1.19	1.25	
				$-$ 1.0 1.2 1.4 1.6 m_{KK_c} [GeV]

$au ightarrow 3\pi u_{ au}$ (preliminary results)

Form Factors of the Nucleon

Nucleon matrix element

$$\langle N(p')|J_{em}^{\mu}|N(p)\rangle = \bar{u}(p')\left[\gamma^{\mu}F_{1}(t) + \frac{i}{2m_{N}}\sigma^{\mu\nu}(p'-p)_{\nu}F_{2}(t)\right]u(p),$$

$$\langle N(p')|J_{A}^{\mu a}|N(p)\rangle = \bar{u}(p')\frac{\tau^{a}}{2}\gamma_{5}\left[\gamma^{\mu}F_{A}(t) + \frac{(p'-p)^{\mu}}{2m_{N}}F_{P}(t)\right]u(p),$$

- Four Form Factor to determine $(t = (p' p)^2)$
 - F₁(t) and $F_2(t)$: Dirac and Pauli Form Factors
 - $G_E(t)$ and $G_M(t)$: electric and magnetic (Sachs) FFs, well-known $G_E(t) = F_1(t) + \frac{t}{4m_N^2}F_2(t)$, $G_M(t) = F_1(t) + F_2(t)$
 - F_A(t): Axial Form Factor: main unkown
 - Fruction $F_{P}(t)$: Pseudo-scalar Form Factor. It can be related to the Axial FF using PCAC or pion-pole approximation

$$F_P(t) = \frac{2m_N^2}{m_\pi^2 - t}F_A(t)$$

ELECTROMAGNETIC FORM FACTORS: TIME-LIKE

ELECTROMAGNETIC FORM FACTORS: SPACE-LIKE

 $Q^2 \equiv -t \geq 0$

AXIAL VECTOR FORM FACTOR

 \blacksquare $F_A(t)$: Main Unknown

• Motivation: How to determine $F_A(t)$ experimentally?

Objective: Theoretical effort to improve F_A(t)

Our proposal:

- To investigate the axial-vector weak hadronic current through the $\tau \rightarrow 3\pi\nu_{\tau}$ axial-vector spectral function
- 3π system (predominantly) in $J^{PC} = 1^{++}$ produced through the $a_1(1260)$

To see what can be learned for the low-Q² behavior of the axial form factor of the nucleon

$\tau^- ightarrow (PPP)^- u_{ au}$: Basics

 \blacksquare Generic Amplitude for a 3-meson decay of the τ

$$\mathcal{M}(\tau^- \to (PPP)^- \nu_{\tau}) = \frac{\mathsf{G}_F}{\sqrt{2}} |V_{ij}| \bar{u}_{\nu_{\tau}} \gamma_{\mu} (1 - \gamma_5) u_{\tau} \langle (PPP)^- | (V - A)^{\mu} | \mathsf{O} \rangle \,,$$

Hadronic matrix element in terms of four form factors

$$\begin{split} \langle (P(p_1)P(p_2)P(p_3))^- | (V-A)^{\mu} | 0 \rangle &= V_1^{\mu} F_1^A(Q^2,s_1,s_2) + V_2^{\mu} F_2^A(Q^2,s_1,s_2) \,, \\ &+ Q^{\mu} F_3^A(Q^2,s_1,s_2) + i V_4^{\mu} F_4^V(Q^2,s_1,s_2) \,, \end{split}$$

where

$$\begin{split} V_{1}^{\mu} &= \left(g^{\mu\nu} - \frac{Q^{\mu}Q^{\nu}}{Q^{2}}\right) \left(p_{1} - p_{3}\right)_{\nu} , \quad V_{2}^{\mu} = \left(g^{\mu\nu} - \frac{Q^{\mu}Q^{\nu}}{Q^{2}}\right) \left(p_{2} - p_{3}\right)_{\nu} , \\ V_{4}^{\mu} &= \varepsilon^{\mu\alpha\beta\gamma} p_{1\alpha} p_{2\beta} p_{3\gamma} , \quad Q^{\mu} = \left(p_{1} + p_{2} + p_{3}\right)^{\mu} , \quad s_{i} = \left(Q - p_{i}\right)^{2} , \end{split}$$

$\tau^- ightarrow (PPP)^- u_{ au}$: Basics

 \blacksquare Generic Amplitude for a 3-meson decay of the τ

$$\mathcal{M}(\tau^- \to (PPP)^- \nu_{\tau}) = \frac{\mathsf{G}_F}{\sqrt{2}} |V_{ij}| \bar{u}_{\nu_{\tau}} \gamma_{\mu} (1 - \gamma_5) u_{\tau} \langle (PPP)^- | (V - A)^{\mu} | \mathsf{O} \rangle \,,$$

hadronic matrix element in terms of four form factors

$$\begin{split} \langle (P(p_1)P(p_2)P(p_3))^- | (V-A)^{\mu} | 0 \rangle &= V_1^{\mu} F_1^A(Q^2,s_1,s_2) + V_2^{\mu} F_2^A(Q^2,s_1,s_2) \,, \\ &+ Q^{\mu} F_3^A(Q^2,s_1,s_2) + i V_4^{\mu} F_4^V(Q^2,s_1,s_2) \,, \end{split}$$

- ► $F_{1,2}^A(Q^2, s_1, s_2)$: $J^P = 1^+$ transition (axial-vector form factors)
- ► $F_3^A(Q^2, s_1, s_2)$: $J^P = O^-$ transition (pseudoscalar form factor)
- ► $F_4^V(Q^2, s_1, s_2)$: $J^P = 1^-$ transition (vector form factor)

$\tau \to \pi^- \pi^+ \pi^- \nu_\tau$

- Bose symmetry: $F_1^A(Q^2, s_1, s_2) = F_2^A(Q^2, s_2, s_1) \equiv F_A(Q^2, s_1, s_2)$
- Conservation of J^{μ}_A in the chiral limit: $F_3^A(Q^2, s_1, s_2)$ must vanish with m^2_{π}
- G-parity conservation: $F_4^V(Q^2, s_1, s_2) = 0$
- The axial-vector hadronic current takes the form

$$J^{\mu}_{A} = F_{A}(Q^{2}, s_{1}, s_{2})V^{\mu}_{1} + F_{A}(Q^{2}, s_{2}, s_{1})V^{\mu}_{2}$$

Decay rate

$$\frac{d\Gamma(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)}{dQ^2} = \frac{G_F^2 |V_{ud}|^2}{32\pi^2 M_\tau} \left(M_\tau^2 - Q^2\right)^2 \left(1 + \frac{2Q^2}{M_\tau^2}\right) \mathbf{a}_1(Q^2) \,,$$

$$\tau \to \pi^- \pi^+ \pi^- \nu_\tau$$

Spectral function

$$\mathbf{a_1}(Q^2) = \frac{1}{768\pi^3} \frac{1}{Q^4} \int_{S_{1,\min}}^{S_1^{\max}} dS_1 \int_{S_{2,\min}}^{S_2^{\max}} dS_2 W_A \, .$$

where

$$\begin{split} W_A &= - \left[V_1^{\mu} F_A(Q^2,s_1,s_2) + V_2^{\mu} F_A(Q^2,s_2,s_1) \right] \times \\ & \left[V_{1\mu} F_A(Q^2,s_1,s_2) + V_{2\mu} F_A(Q^2,s_2,s_1) \right] \,, \end{split}$$

■ For comparison of theory and experiment

$$\frac{\Gamma(\tau^- \to (3\pi)^- \nu_\tau)}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_\tau)} \frac{1}{N_{\rm events}} \frac{dN_{\rm events}}{dQ^2} = \frac{6\pi |V_{ub}|^2 S_{EW}}{M_\tau^2} \left(1 - \frac{Q^2}{M_\tau^2}\right)^2 \left(1 + 2\frac{Q^2}{M_\tau^2}\right) \frac{a_1(Q^2)}{Q_\tau^2}$$

EVALUATION OF THE AXIAL-VECTOR FORM FACTOR

Factorization ansatz:
$$\tau \rightarrow \nu_{\tau} a_1 \rightarrow \nu_{\tau} \rho \pi \rightarrow 3\pi$$

 $F_A(Q^2, s_1, s_2) = F_{a_1}(Q^2)F_{\rho}(s_2)$, \otimes =

- F_{*a*₁}(Q^2) accounts for the *a*₁(1260)-resonance production
- $F_{\rho}(s_i) = \Omega(s_i)$ (Omnès): line-shape of the ρ -meson ($\rho \rightarrow \pi\pi$)

$$F_{\rho}(\mathbf{S}_i) \rightarrow \mathbf{1}, \quad \mathbf{S}_i \rightarrow \mathbf{0}.$$

Axial-vector current

$$J^{\mu}_{A} = F_{a_{1}}(Q^{2}) \left[F_{\rho}(s_{2}) V_{1\mu} + F_{\rho}(s_{1}) V_{2\mu} \right] \,,$$

$$F^{A}(Q^{2}, s_{1}, s_{2}) = -F^{A}_{\pi^{o}\pi^{o}\pi^{-}}(Q^{2}, s_{1}, s_{2}),$$

EVALUATION OF THE AXIAL-VECTOR FORM FACTOR

• ChPT prediction at $\mathcal{O}(p^2)$

$$J^{\mu}_{A}|_{\rm ChPT}^{{\cal O}(p^2)} = -\frac{2\sqrt{2}}{3F_{\pi}}\left(V_{1\mu}+V_{2\mu}\right)\,,$$

• Normalization of $F_{a_1}(Q^2)$

$$F_{a_1}(Q^2) = -rac{2\sqrt{2}}{3F_\pi} f_{a_1}(Q^2)\,, \quad f_{a_1}(Q^2 o 0) o 1\,,$$

■ In this framework, the axial spectral function reads:

$$a_{1}(Q^{2}) = \frac{1}{768\pi^{3}} \left(-\frac{2\sqrt{2}}{3F_{\pi}}\right)^{2} |f_{a_{1}}(Q^{2})|^{2} \frac{g(Q^{2})}{Q^{2}},$$

where

$$g(Q^2) = \frac{1}{Q^2} \int_{s_{1,\min}}^{s_1^{\max}} ds_1 \int_{s_{2,\min}}^{s_2^{\max}} ds_2 \left\{ -V_1^2 |F_{\rho}(s_2)|^2 - V_2^2 |F_{\rho}(s_1)|^2 \right\}$$

 $- 2V_1V_2 \text{Re} \left[F_{\rho}(S_1)(F_{\rho}(S_2))^*\right] \Big\},$

BREIT-WIGNER EVALUATION OF THE AXIAL-VECTOR F.F.

■ Breit-Wigner (non-dispersive): *a*₁(1260)

$$f_{a_1}(Q^2)|_{
m BW}^{
m 1\,res} = rac{m_{a_1}^2}{m_{a_1}^2 - Q^2 - im_{a_1}\Gamma_{a_1}(Q^2)}\,, \quad \Gamma_{a_1}(Q^2) = \gamma_{a_1}rac{g(Q^2)}{g(m_{a_1}^2)}$$

Breit-Wigner (dispersive)

$$f_{a_1}(Q^2)|_{\mathrm{BW\,disp}}^{\mathrm{1\,res}} = rac{m_{a_1}^2 + \mathrm{Re}\Pi_{a_1}(\mathsf{O})}{m_{a_1}^2 - Q^2 + \mathrm{Re}\Pi_{a_1}(Q^2) - im_{a_1}\Gamma_{a_1}(Q^2)},$$

 $\operatorname{Re}\Pi_{a_1}(Q^2) = \mathcal{H}_{a_1}(Q^2) - \mathcal{H}_{a_1}(m_{a_1}^2) \,, \quad \mathcal{H}_{a_1}(Q^2) = -\frac{Q^2}{\pi} \int_{gm_\pi^2}^{s_{\mathrm{cut}}} ds' \frac{m_{a_1} \Gamma_{a_1}(s')}{(s')(s'-Q^2)} \,,$

Breit-Wigner (dispersive): $a_1(1260) + a_1(1640)$

$$f_{a_1}(Q^2)|_{\rm BW\,disp}^{2\,{\rm res}} = \frac{1}{1+|\kappa|e^{i\phi}} \left[\frac{m_{a_1}^2 + {\rm Re}\Pi_{a_1}(O)}{m_{a_1}^2 - Q^2 + {\rm Re}\Pi_{a_1}(Q^2) - im_{a_1}\Gamma_{a_1}(Q^2)} \right]$$

+
$$|\kappa|e^{i\phi}rac{m_{a_1'}^2+\operatorname{Re}\Pi_{a_1'}(O)}{m_{a_1'}^2-Q^2+\operatorname{Re}\Pi_{a_1'}(Q^2)-im_{a_1'}\Gamma_{a_1'}(Q^2)}
ight],$$

FITS TO THE $\tau \to \pi^{o} \pi^{o} \pi^{-} \nu_{\tau}$ AXIAL SPECTRAL FUNCTION

Breit-Wigner $m_{a_1} = 1271(13)$ MeV, $\gamma_{a_1} = 523(18)$ MeV, $\mathcal{N} = 1.59(7)$, $\chi^2_{dof} = 1.16$ $m_{a_1} = 1293(10)$ MeV, $\gamma_{a_1} = 501(11)$ MeV, $\mathcal{N} = 0.88(2)$, $\chi^2_{dof} = 1.01$

 $m_{a_1}=$ 1293(6) MeV , $\gamma_{a_1}=$ 485(10) MeV , $|\kappa|=$ 0.12(4) , $\mathcal{N}=$ 0.97(5) , $\chi^2_{
m dof}=$ 0.86

Fits to the $au o \pi^+\pi^-\pi^u_ au$ axial spectral function

Breit-Wigner: $m_{a_1} = 1243(6)$ MeV, $\gamma_{a_1} = 480(8)$ MeV, $\mathcal{N} = 1.43(3)$, $\chi^2_{dof} = 3.11$ $m_{a_1} = 1259(6)$ MeV, $\gamma_{a_1} = 474(8)$ MeV, $\mathcal{N} = 0.81(2)$, $\chi^2_{dof} = 1.51$

 $m_{a_1}=$ 1260(5) MeV , $\gamma_{a_1}=$ 467(8) MeV , $|\kappa|=$ 0.05(2) , $\mathcal{N}=$ 0.85(2) , $\chi^2_{
m dof}=$ 1.43

48

Running $a_1(1260)$ mass and width

Dispersive description

$$\begin{split} f_{a_1}(Q^2) &= & \exp\left[\alpha_1 Q^2 + \frac{Q^4}{\pi} \int_{9m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\delta(s')}{(s')^2 (s' - Q^2 - i\varepsilon)}\right],\\ &\tan \delta(Q^2) &= & \frac{{\rm Im} f_{a_1}(Q^2)|_{\rm BW\,disp}^{1\,{\rm res}}}{{\rm Re} f_{a_1}(Q^2)|_{\rm BW\,disp}^{1\,{\rm res}}},\\ &\alpha_k^{\rm s.r.} &= & \frac{k!}{\pi} \int_{9m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\delta(s')}{s'^{k+1}}. \end{split}$$

• α_1 : fit parameter that absorbs other production mechanism

Fits to the $\tau \to \pi^{o} \pi^{o} \pi^{-} \nu_{\tau}$ axial spectral function

Dispersive: $m_{a_1} = 1302(8)$ MeV, $\gamma_{a_1} = 493(11)$ MeV, $\alpha_1 = 0.59(1)$, $\alpha_1^{\text{s.r.}} = 0.64(1)$, $\chi^2_{\text{dof}} = 0.96$ $m_{a_1} = 1296(6)$ MeV, $\gamma_{a_1} = 483(10)$ MeV, $\alpha_1 = 0.60(1)$, $\alpha_1^{\text{s.r.}} = 0.62(1)$, $|\kappa| = 0.10(4)$, $\chi^2_{\text{dof}} = 0.88$

Fits to the $au ightarrow \pi^+\pi^-\pi^u_ au$ axial spectral function

Dispersive: $m_{a_1} = 1277(5)$ MeV, $\gamma_{a_1} = 475(8)$ MeV, $\alpha_1 = 0.58(1)$, $\alpha_1 = 0.66(1)$, $\chi^2_{dof} = 1.49$ $m_{a_1} = 1273(5)$ MeV, $\gamma_{a_1} = 466(8)$ MeV, $\alpha_1 = 0.59(1)$, $\alpha_1^{s.r.} = 0.64(1)$, $|\kappa| = 0.06(2)$, $\chi^2_{dof} = 1.39$

Fits to $au ightarrow 3\pi u_{ au}$: Low- Q^2 region

AXIAL-VECTOR FORM FACTOR

AXIAL-VECTOR FORM FACTOR

Ουτιοοκ

- Tau physics is a very rich field to test QCD and EW
- Important experimental activities: Belle (II), BaBar, LHCb, BESIII
- Form Factors from dispersion relations with subtractions
 - $F_V^{\pi}(s)$: important for testing QCD dynamics and the SM
 - Determination of the ρ (1450) and ρ (1700) properties limited by theoretical uncertainties
 - Higher-quality data on $\tau^- \rightarrow K_S K^- \nu_\tau$: improve $\rho(1450)$ and $\rho(1700)$ parameters
 - $\blacktriangleright \ \tau \to 3 \pi \nu_\tau$ decays: input for the axial-vector form factor of the nucleon
- A lot of interesting physics to be done in the tau sector

VARIANT (IV)

\blacksquare Fits for different s_{cut} and allowing the ho-mass to float

	Daramotor	s _{cut} [GeV ²]					
Fits		$m_{ au}^2$	4 (reference fit)	10	∞		
Fit 1- ρ	α_{1} [GeV ⁻²]	1.88(1)	1.88(1)	1.89(1)	1.88(1)		
	α_2 [GeV ⁻⁴]	4.37(3)	4.34(1)	4.31(3)	4.34(1)		
	$m_ ho$ [MeV]	773.9(3)	773.8(3)	773.9(3)	773.9(3)		
	$M_{ ho}$ [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$		
	$M_{\rho'}$ [MeV]	1382(71)	1375(11)	1316(9)	1312(8)		
	$\Gamma_{\rho'}$ [MeV]	516(165)	608(35)	728(92)	726(26)		
	$M_{\rho^{\prime\prime}}$ [MeV]	1723(1)	1715(22)	1655(1)	1656(8)		
	$\Gamma_{\rho^{\prime\prime}}$ [MeV]	315(271)	455(16)	569(160)	571(13)		
	γ	0.12(13)	0.16(1)	0.18(2)	0.17(1)		
	ϕ_1	-0.56(35)	-0.69(1)	-1.40(19)	-1.41(8)		
	δ	-0.09(3)	-0.13(1)	-0.17(4)	-0.17(3)		
	ϕ_2	-0.19(69)	-0.45(12)	-1.06(10)	-1.05(11)		
	χ^2 /d.o.f	1.09	0.70	0.63	0.66		

SPECTRAL FUNCTION: INDIVIDUAL CONTRIBUTIONS

SPECTRAL FUNCTION: INDIVIDUAL CONTRIBUTIONS

