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FIRS T-ORDER
PHASE TRANSITION & GWS

Rough sketch of |st-order phase transition & GWV production

Bubbles nucleate, expand, collide and disappear, accompanying fluid dynamics
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FIRS T-ORDER

PHASE TRANSITION & GWS

10~ IHz GWs correpond to electroweak physics and beyond
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BUIBBEE 1T INARHCS
BEFORE COLLISION

"Pressure vs. friction” determines behavior of bubbles

- Two main players : scalar field and plasma

<+— cosmological scale —»
- Walls want to expand ("pressure")

false pvac

ressure
’ Parametrized by a =

pplasma

e - Walls are pushed back by plasma (“friction”)

dynamics

friction Parametrized by coupling # btwn. scalar and plasma

true

- Let's see how bubbles behave for different &

(with fixed coupling 7)
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BUIBBEE P INARICS « s L
BEFORE COLLISION e e

Small a (say, a S 6(0.1)) Temperature
iRy E TR
“deflagration” 12
1.0 \
0.8
0.6 o
| wall position

005 0:2% 504 068 0.8 40

Fluid outward velocity

O.V5ﬂuid

0.4
0.3
0.2
0.1

wall p¢

0000 OR06 - 08t a0

Ryusuke Jinno / 1905.00899 & 1707.03111 06 /29



BUBBLE DYNAMICS « s L
BEFORE COLLISION e e
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AR E RS ARG FEREZHNG
THE TRANSITION

Definition Properties
a Ok T Strength of the transition
Bubble nucleation rate Bubbles collide At ~ 1/ after nucleation
Taylor-expanded around
p Y P O At
the transition time f. O O ;
B(t—t:) I
e Typical bubble size ~ Vv,,At ~ v, /[
. Determined by the balance
129 Wall velocity
btwn. pressure & friction
T Transition temperature
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L NAPHCS AR TER COLEISIONN

[ Bubbles nucleate & expand ]

- Nucleation rate (per unit time & vol)

[(f) o et

- Released energy is mostly carried

by fluid motion, not by the scalar field,

unless @ is extremely large [Bodeker & Moore'17]

- Collision occurs At ~ 1/f after nucleation
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L NAPHCS AR TER COLEISIONN

G

e .
[ Bubbles collide )

199

- Scalar field damps soon after collision

— the system becomes fluid-only after this

_ -Forsmall a (< ©(0.1)), plasma motion is
well described by linear approximation:
D a0 DN e
(at _CsV )Vﬂuid ~ ()
called 'sound waves' or 'compression waves'

Notes : |) Vorticity is neglected

2) Bubbles deviate from sphere after collision

3) Fluid shell thickness is fixed at the time of collision
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L NAPHCS AR TER COLEISIONN

G

i

( Turbulence develops j

95

- Fluid nonlinarity and magnetic field become

important at late times
'turbulence’

- Different modeling of turbulence gives

different GWV spectrum

see e.g. Gogoberidze, Kahniashvili, Kosowsky PRD76 (2007)
Caprini, Durrer, Servant JCAP 0912(2009)
Niksa, Schlederer, Sigl CQG35(2018)

Mandal, Brandenburg, Kahniashvili, Kosowsky 1903.08585
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SCILIRC S Lo (VS 1IN
FIRST-ORDER PHASE TRANSITION

Time evolution of the system

Bubble nucleation & expansion — Collision — Sound waves — Turbulence

Resulting GW spectrum is classified accordingly: e.g. [ Caprini et al,1512.01236 ]
[ Caprini etal. 1910.13125 ]

_ ((coll) (sw) (turb)

< >
from scalar walls from fluid motion

Typlca”y Qg\‘){/) iS the IargESt (_’ |atel‘) [ Hindmarsh, Huber, Rummukainen,Weir '13,'15,'17 ]
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SCILIRC S Lo (VS 1IN
FIRST-ORDER PHASE TRANSITION

Time evolution & resulting GW spectrum

Bubble nucleation & expansion — Collision — Sound waves — Turbulence

[QGW 3 Q(Coll) + Q(SW) + Q(turb)j

Typically Q&%) is the largest because of different parameter dependence:

2 -2 'B
K a i 1-5
Q(COH) (from scalar walls) o [ =22 ﬂ Note S med Oeni 0
1 +a H. H:
0 parametrizes the duration
(sw) g @\~ [ &
QGW (from sound waves) X of the transition
l+a H.
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CaVV ENEFIANGEMENT
BY SOUND WAVES

Reason for different dependence on f/H. ®) o
O|—»
Bubble collision O
Bubbles collide and disappear within timescale At ~ 1/f
[ However, see R, Takimoto 1707.0311 I, RJ, Takimoto, Konstandin 1906.02588 ] ¢ 2 -2
Qaw X hij x [
GWs are sourced during this preiod #; o At
Sound waves [ Hindmarsh PRL120(2018), Hindmarsh, Hijazi 1909.10040 ]
: S S SO end € O ST 04
Shell overlap continuously creates 14 %u)id il e e
. : . EVLE
new velocity field during Hubble time fluid

— GW spectrum is enhanced by f/H.
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UL ERACSUIPERC I EL)
FRANSHICINS e i i

[ Harling & Servant 'l 7, Bruggisser, Harling, Matsedonskyi, Servant '18 ]

a >> 1 occurs in a certain class of models (‘almost scale invariant’ models)

Energy release

Zero-temerature potential:

B

Thermal trap
X T2¢2 persists

almost scale invariant

~ Ap)p*
- Thermal trap persists even at low temperatures = a > 1
- These models often give small #/H. (i.e.large bubbles)

So, at least naively, large amplitude of GWs is expected

2 —1
QBW) e P
GW 1 +a H*

However, the story is not so simple
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LI RASURPERCLIC) -

Large a (> 1)

“strong detonation”

Ryusuke Jinno / 1905.00899 & 1707.03111
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EINERCTY. DO AL LZATICIN [N
JLIRASUPERCLIO EL FRAINSEEICHNS

Energy profile before collision is sharply localized around the wall for a > 1

goo (00-component of EM tensor) 790 (00-component of EM tensor)

? 500
4j i

f 400?
: s
2 200
1 e 100 J'

&= Rt

S e T e 5 0. ‘ ‘ ‘ )

8_0 02 04 06 08 1.0 Gt 00 02 04 06 08 1.0
=04 =Y a=10, v, =0.995

- In realistic ultra-supercooled transitions, & can be much larger;e.g. a ~ 10'?

- As a result, huge hierarchy appears between bubble size and energy localization

— Hard to simulate fluid dynamics after bubble collisions numerically

Ryusuke Jinno / 1905.00899 & 1707.03111 | 4%/:29



GW ENHANCEMENT CONDITION
BY SOUNDWAVES

Necessary conditions to have GW enhancement by sound waves
- Delayed onset of turbulence

- Sound shell overlap

In order to have shell overlap, the energy localization has to break up:

mostly, unoverlapped mostly overlapped
with other shells withfother shells
or I

® =
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SUMMARY CIF MOTFINVATICOIN

Ultra-supercooled transitions (¢ >> 1) occur in a certain class of models,

and they are interesting both theoretically and observationally

Does GW enhancement by sound waves occur in these transitions?

More precisely: When does the energy localization break up and shell overlap start?

Numerically difficult to study because of hierarchy in scales

What can we do!?

Ryusuke Jinno / 1905.00899 & 1707.03111 16 /29



B

FCIRE
GW SP

PICVIING O,

=0 ERUAY IINCERHINES L L IMGEE

If the fluid shells remain thin, the story is relatively simple

because the GWV spectrum in thin-shell limit is known analytically

Y te ty 1 1 2
/ dr / dten / dtym / dt i / dt,; / don / deyn / dbonyn
, 0 —00 —0o0 ten tyn -1 -1 0
esp (xia yn)esp (xny y‘i)e_l(m. y-)F(tzn)F(t'yn)
\ K Jl(kﬂ jalkr)

Qaw(k) o« AOK) + AD (k)
=L / o o Jo e o

o)
J1(kr) Jo(kr)
k (k‘r)Z ’CQ(n.’L‘nX)nynx)

X Otz [1B(tais tn)* D(ta: tai)] Ouyi [T (tyis tn) Dty tyi)] cos(ktay)

/dt/dt

? X {jO(k‘r)’CO(nznx nynx) + ’Cl( Nanx s nynx) +

— | x 72 {jo(kr)mo(nzn;nyn) +

3 )Cl( Nzn, yn) + (k:r)2 ’CZ(nmn; nyn)]

X Ouzi [T8(tei ton)  D(ts, tai)] aty [7B(tyi, tyn)* D(ty, tyi)] cos(ktzy)
[ R), Takimoto 1707.03111 ]
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BEECIRE MOVINGE CIN
GW SPECTRUM IN THIN-SHELL LIMIT

If the fluid shells remain thin, the story is relatively simple

because the GWV spectrum in thin-shell limit is known analytically

And indeed this spectrum does NOT have fp/H. enhancement,

because shell overlapping does not occur

a 2 ﬂ —2 1074} . ’:» 7
6w
l+a H. 107

1078
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REDUCING I HE FROBE P

oA . ; ; uv - __
After collision, the system is fluid-only: 0ﬂTﬂuid ="0
(we assume relativistic ideal gas T" = (p + p)u*u® + pn**, p = p/3)

However, nonlinearity and discontinuities (i.e. shocks — later) complicate the analysis

Let's devide the problem into small pieces:
“ : Propagation
(1) propagation of relativistic fluid
m . Collision
(2) collision of relativistic fluid L0\
Even (1) is nontrivial. We study the effect of (1) o pos !
on the deformation of fluid profile. 4 4
00 02 04 06 08 10 12 T/t 00 02 04 06 08 10 12 T/t
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STRATEGY

Our strategy:

(1) Develop an effective description of fluid propagation valid in highly relativistic regime

(2) Check the theory against simulation in mildly-relativistic regime

(3) Study implications to GW production

J fﬁ:ective tﬁeory ]

(1N L

(H-1(3)
>
Relativisticity

[‘]\fumerica[ simulation

(or simply the transition strength )

Ryusuke Jinno / 1905.00899 & 1707.03111 [9%/729



SELUP

The setup we study : propagation of fluid profile after collision

© nucleation (D just before collision (@ just after collision
S or BN 7
n Time|evolution
- 2 — .7
collision point

(D Fluid profile just before collision: calculated from [ Espinosa, Konstandin, No, Servant 10

l Assumption: the first fluid collision does not change the profile significantly

(2 Fluid profile just after collision: our interest is in the time evolution from here

Ryusuke Jinno / 1905.00899 & 1707.03111 2051729



SlE Bl

D PRO

SRRV § SO RIE R N

PAGATION

)
N

: ‘Pro}aagation

. Collision

Before constructing a theory, let's see the result of numerical simulation

in the intermediate relativisticity

|

NS

/

rit;

p/poo . . 2 o« e s
50, fluid energy density V relativistic ¥ factor squared
' 10|
10 i
5 / 5
1! 4// /
i ~ Y/ 2
0.5: :jéég%/
* rit; 1 —
Cs 1 2 Cs

nucleation collision
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SREBCHIVE PIESCRIPHCIIN . (I
OF FLUID PROPAGATION

: ‘Pro])agau'on

>

. Collision

)
N

Before constructing a theory, let's see the result of numerical simulation

in the intermediate relativisticity

SpO/:poo fluid energy density Yz relativistic ¥ factor squared
|
S (HHHTITTF I— Lt 1
A
1 | , ‘ r/t;
Cs 1 2

- Initial fluid profile (blue) propagates inside the other bubble (red)
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SRRV § SO RIE R N
OF FLUID PROPAGATION

: ‘Pro])agau'on

. Collision

)
AN

Before constructing a theory, let's see the result of numerical simulation

in the intermediate relativisticity

. . 2 e e e
;’O’Pw fluid energy density ¥" relativistic ¥ factor squared
' ‘} 10 f ’
10| |
1 // / |
: g 4 2
| A | ) /5 ) ///
rit ' ‘ ri/t,
Cs 1 2 Cs 1 2

- Initial fluid profile (blue) propagates inside the other bubble (red)

- Peaks rearrange to new initial values, and gradually become less energetic
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SRRV § SO RIE R N
OF FLUID PROPAGATION

: ‘Pro}aagation

. Collision

)
N

Before constructing a theory, let's see the result of numerical simulation

in the intermediate relativisticity

50,

13 // : ////

%

AN
NN

NN
AN
A\N

|

N
—
\N

A

\

P/P= fluid energy density ¥ relativistic ¥ factor squared

/

rit;

- Initial fluid profile (blue) propagates inside the other bubble (red)

- Peaks rearrange to new initial values, and gradually become less energetic

- Strong shocks (i.e. discontinuities) persist during propagation
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SREBCHIVE D ESCRIFPIC N
OF FLUID PROPAGATION

|

: ‘Propagau'on

Can we construct an effective description!?

- From the viewpoint of GW production, we are interested only in PEAKS, not TAILS

- Then how about describing the system with peak-related quantities?

|) Shock velocity: v,

2
2) Peak values: Ppeaio Vpeak (equivalently Ppeas }’Seak ) : f
d dv
3) Derivatives at the peak: p;eak, ;eak @ peak
r r

- Can we construct a closed system for these quantities?

Ryusuke Jinno / 1905.00899 & 1707.03111 20%/729




RO OIS RUIC @
Akl CISELD S 5 1Y

S5 o) ) dp peak dygeak
Closed system for 5 quantities 7y, Ppeai> Ypear: r y
r r

9

- First, there are strict equations:

a) Rankine-Hugoniot conditions across the shock : 2 constraints

(corresponding to energy and momentum conservation across the shock)

b) Time evolution equations : 2 evolution equations

(corresponding to temporal & spatial part of 9,7%* = 0 behind the shock)

- Still we have less equations (4 egs.) than the number of quantities (5).
This is natural, because the original system has infinite # of dof (i.e. # of spacial grids),

while we are trying to describe it with finite # of dof.

Ryusuke Jinno / 1905.00899 & 1707.03111 2351729



RO OIS RUIC @
Akl CISELD S 5 1Y

The last equation!?

- The last equality will be an approximate relation which characterizes the system

- What makes this system distinct from others is energy domination by the peak

Imposing energy domination by the peak

- Any relation like "(peak T%) x (width of the peak) = const" will work.

For example, approximating p and y* to be exponential in r, we have

1) ) (1 ) ) d=1]|:planar
o~ t )X /d?‘ gp’y2 =<t p X 3 lppfa_l'iylpcakz, for d = 2 3| : cylindical
n n
t*, G P ! d = 3 )| : spherical

Ryusuke Jinno / 1905.00899 & 1707.03111 24529



THECIRT PRGN

The resulting system can be solved analytically (5 =10/13)

|
|) Shock velocity: .
) 4 15(t)
0 _
/)pcak(t)
2) Peak values: |
’}[f(‘dk(f) B

3) Derivatives at the peak:

8 (/’0) 3 t\’ 3 t
iy ORI () —
87 \ o t, ' Lo
- s
Lyl ()]s (L)
29 \ o J te ‘ /)p( dk 2
1_6 (@) —f-‘ L 6,&3- i (S
87 \ o '. te ‘ ’) pe dk 2
1448 /py | 247 ear(t)
l / f SN s— ( )fz 4 f pe :
np (t) 17 Vpeak () + 13 ¢
o/ 128 /)() , 24 ’)"2 2 k(f)
l 2 t — cm— ( )fz 4 f . pea ,
117 ( ) 30 p ’}p(dk( ) 13 f
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COMPARISON WITH
NUMERICAL SIMULATION

Analytic (red) vs. Numerical (blue)

with initial condition « =10, y,.; = 10 /s

2
Ppeak> ypeak

Qualitatively
OK!

dppeak dy;%eak
dr. " idr
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IMPLICATIONS OF
THE EFFECTIVE DESCRIPTION

What can we learn?

- All quantities have time dependence like

po 1 ( 0

Ppeak (f) 29

)
) \5 = 10/13

effect of increase in the surface area effect of nonlinearity in fluid equation

- Surface area effect wins (3 > 10/13).
In other words, nonlinearity is not effective in breaking up the energy localization.

- Timescale for breaking up is controlled by 7 = (0/,00)1/3

Ryusuke Jinno / 1905.00899 & 1707.03111 251729



PLIC AL ICOINS 10)
GW PRODUC THON

- Fluid profile remains to be thin, if we consider fluid propagation alone

- So, we have to see fluid collisions next: Time from bubble nucleation to collision

108

1) If the fluid profile still remains thin,

104
the thin-shell spectrum will apply, 108 - I

and there will be no f/H, enhancement

- == - . e e e e e - - -

104+

2) If the fluid profile successfully breaks up,

Effective :
{ Ay Al o Al s 10" |7
p/H, enhancement will occur 10° / description - o0
(until the onset of turbulence) Numerical 102 103 10%
simulation Ywall
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SUMEIARY

GW production in ultra-supercooled transitions a > 1 is interesting

both theoretically and observationally, but they are hard to simulate numerically

We reduced the problem into (1) propagation and (2) collision, and studied (I):

- We constructed an effective description of fluid propagation
- We discussed implications to GW production:

The fluid profile remains to be thin, so GW enhancement might be somewhat delayed

Still we have to address: Effect of fluid collision / Effect of turbulence

Ryusuke Jinno / 1905.00899 & 1707.03111 2951729
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ACIRE A I AL LN
Gy EINETARNCGEMEN BT SCILINEI VAV ES

GW spectrum is convoluted unequal-time correlator <T T>

Qaw(k) ~ Jdtxjdty cos(k(z, — 1)) 1(z,, 1, k) = (projection) X <T,-j(tx, %) Tkz(ty,7)>

ens

Why? 1) GW is given by Green function £,(¢) ~ Jdt’ Green(t, 1) T,()

2) GW spectrum is two-point correlator of h,-j(t)

Shell overlap creates correlation in the diagonal direction

tyA

8 ((; k) % effective in sound waves

X° y9

effective in bubble collisions

ﬁ—l H*—l & tx

Ryusuke Jinno / 1905.00899 & 1707.03111 /29



RO OIS RUIC @
Akl CISELD S 5 1Y

el 2 ) dp peak dygeak
Closed system for 5 quantities 7y, fpeas Ypeak: S y
r r

9

- Rankine-Hugoniot conditions across the shock : 2 constraints

(corresponding to energy and momentum conservation across the shock)

Po + P0Upeak Us o (ppeak + ppeak)vpeak

UpeakUs ppeakvpeak Ppeak Po vpeak

Ppeak —

Ryusuke Jinno / 1905.00899 & 1707.0311 | /29



RO OIS RUIC @
Akl CISEID ST S Y

aia o) o) dp peak dygeak
Closed system for 5 quantities 7y, fpeas Ypeak: S y
r r

9

- Rankine-Hugoniot conditions across the shock : 2 constraints

(corresponding to energy and momentum conservation across the shock)

- Time evolution equations : 2 evolution equations

(corresponding to temporal & spacial part of 6ﬂTg§id = (0 behind the shock)

S ﬁOC Eﬁont

Advanced note

Easily derived from the conservation of

C+
<
C Arac 97{

t Riemann invariants along C, & C_
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RO OIS RUIC @
Akl CISELD S 5 1Y

el 2 o) dppeak dygeak
Closed system for 5 quantities 7y, fpeas Ypeak: S y
r r

9

- Rankine-Hugoniot conditions across the shock : 2 constraints

(corresponding to energy and momentum conservation across the shock)

- Time evolution equations : 2 evolution equations

(corresponding to temporal & spacial part of 0, T#*.. = 0 behind the shock)

K fluid
V3 2v/3-3 1 |3 J (V3—=1)(d-1)
7(2 In ppeax + 0 In 7;2)0ak = — 1 ﬁeak 5 Inp +1Iny* | — .
3 0W3+3 1 | V3 1 (VB+1)d-1
— £0t In ppeax + 0 In 72eak = V3 + 5 —£ Inp' +1In v+ (\/_ + 1) )
2 p 4 Y eax 2 t

Ryusuke Jinno / 1905.00899 & 1707.0311 | /29
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