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FIRST-ORDER 
PHASE TRANSITION & GWS

Rough sketch of 1st-order phase transition & GW production

03

Bubbles nucleate, expand, collide and disappear, accompanying fluid dynamics
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FIRST-ORDER 
PHASE TRANSITION & GWS

Rough sketch of 1st-order phase transition & GW production
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FIRST-ORDER 
PHASE TRANSITION & GWS

04

10   ~ 1Hz GWs correpond to electroweak physics and beyond-3
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[http://rhcole.com/apps/GWplotter/]
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scalar+plasma
dynamics
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BUBBLE DYNAMICS 
BEFORE COLLISION

05

"Pressure vs. friction" determines behavior of bubbles

- Two main players : scalar field and plasma
cosmological scale

- Walls want to expand ("pressure")

- Walls are pushed back by plasma ("friction")

Parametrized by α ≡
ρvac

ρplasma

- Let's see how bubbles behave for different α

Ryusuke Jinno  /  1905.00899 & 1707.03111

Parametrized by coupling     btwn. scalar and plasmaη

(with fixed coupling    )η
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BUBBLE DYNAMICS 
BEFORE COLLISION

06
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[ Espinosa, Konstandin, No, Servant ’10 ]

α ≡
ρvac

ρplasma

α α ≲ 𝒪(0.1)
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Temperature
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BUBBLE DYNAMICS 
BEFORE COLLISION [ Espinosa, Konstandin, No, Servant ’10 ]

α ≡
ρvac

ρplasma
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∼ vwΔt ∼ vw /βTypical bubble size

PARAMETERS CHARACTERIZING
THE TRANSITION

07

Definition

α

vw Wall velocity

T* Transition temperature

β

Γ(t) ∝ eβ(t−t*)

Bubbles collide                 after nucleationΔt ∼ 1/β

Strength of the transition

Properties

ρvac/ρplasma

Determined by the balance

btwn. pressure & friction

Taylor-expanded around

Bubble nucleation rate

the transition time t*
Δt
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DYNAMICS AFTER COLLISION

Bubbles nucleate & expand

08

- Nucleation rate (per unit time & vol) 

- Released energy is mostly carried

by fluid motion, not by the scalar field,

Γ(t) ∝ eβ(t−t*)

- Collision occurs                   after nucleationΔt ∼ 1/β

unless      is extremely largeα [ Bodeker & Moore ’17 ]
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DYNAMICS AFTER COLLISION

Bubbles nucleate & expand

08

- Nucleation rate (per unit time & vol) 

Γ(t) ∝ eβ(t−t*)

- Collision occurs                   after nucleationΔt ∼ 1/β

unless      is extremely largeα

- Released energy is mostly carried

by fluid motion, not by the scalar field,

[ Bodeker & Moore ’17 ]
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DYNAMICS AFTER COLLISION

Bubbles collide

- Scalar field damps soon after collision

GWs ⇤hij ⇠ Tij

called 'sound waves' or 'compression waves'

well described by linear approximation:

(∂2
t − c2

s ∇2) ⃗v fluid ≃ 0

- For small     (                ), plasma motion isα ≲ 𝒪(0.1)

Notes : 1) Vorticity is neglected

08Ryusuke Jinno  /  1905.00899 & 1707.03111

2) Bubbles deviate from sphere after collision

3) Fluid shell thickness is fixed at the time of collision

→ the system becomes fluid-only after this
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DYNAMICS AFTER COLLISION

Turbulence develops

- Fluid nonlinarity and magnetic field become

'turbulence'

GWs ⇤hij ⇠ Tij

08

important at late times

- Different modeling of turbulence gives

different GW spectrum

Gogoberidze, Kahniashvili, Kosowsky PRD76 (2007)

Caprini, Durrer, Servant JCAP 0912(2009)

Niksa, Schlederer, Sigl CQG35(2018)

Mandal, Brandenburg, Kahniashvili, Kosowsky 1903.08585

see e.g. 
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SOURCES OF GWS IN 
FIRST-ORDER PHASE TRANSITION

Time evolution of the system

09

Bubble nucleation & expansion  →  Collision  →  Sound waves  →  Turbulence

Resulting GW spectrum is classified accordingly:

Typically           is the largest (→ later)Ω(sw)
GW

ΩGW = Ω(coll)
GW + Ω(sw)

GW + Ω(turb)
GW

from scalar walls from fluid motion

[ Caprini et al.,1512.01236 ]

[ Caprini et al. 1910.13125 ]

[ Hindmarsh, Huber, Rummukainen, Weir '13, '15, '17 ]

e.g. 
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TALK PLAN
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Effective description of fluid propagation  &  Implications to GW production

✔
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SOURCES OF GWS IN 
FIRST-ORDER PHASE TRANSITION

Time evolution & resulting GW spectrum

10

Bubble nucleation & expansion  →  Collision  →  Sound waves  →  Turbulence

Typically           is the largest because of different parameter dependence:Ω(sw)
GW

(from scalar walls)Ω(coll)
GW ∝ ( κscalar α

1 + α )
2

( β
H* )

−2

(from sound waves)Ω(sw)
GW ∝ ( κfluid α

1 + α )
2

( β
H* )

−1

ΩGW = Ω(coll)
GW + Ω(sw)

GW + Ω(turb)
GW

Note :
β

H*
∼ 101−5 ≫ 1

parametrizes the duration

of the transition
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⃗v fluid = ⃗v (1)
fluid + ⃗v (2)

fluid

⃗v (1)
fluid

⃗v (2)
fluid

Reason for different dependence on β/H*

GW ENHANCEMENT 
BY SOUND WAVES

11

Bubble collision

Bubbles collide and disappear within timescale Δt ∼ 1/β

GWs are sourced during this preiod hij ∝ Δt

Shell overlap continuously creates

Δt

Sound waves

ΩGW ∝ h2
ij ∝ β−2

β/H*→ GW spectrum is enhanced by

new velocity field during Hubble time

[ Hindmarsh PRL120(2018), Hindmarsh, Hijazi 1909.10040 ]

[ However, see RJ, Takimoto 1707.03111, RJ, Takimoto, Konstandin 1906.02588 ]
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ULTRA-SUPERCOOLED 
TRANSITIONS

12

          occurs in a certain class of models ('almost scale invariant' models)α ≫ 1

So, at least naively, large amplitude of GWs is expected

However, the story is not so simple

Ω(sw)
GW ∝ ( α

1 + α )
2

( β
H* )

−1

∼ λ(ϕ)ϕ4

Zero-temerature potential: 

almost scale invariant

∝ T2ϕ2
Thermal trap

persists

Energy release

- Thermal trap persists even at low temperatures  →  α ≫ 1

- These models often give small            (i.e. large bubbles)β/H*

[ Randall & Servant '07, Konstandin & Servant '11 ]

[ Harling & Servant '17,  Bruggisser, Harling, Matsedonskyi, Servant '18 ]

e.g. [ RJ, Takimoto '16 ]
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BUBBLE EXPANSION IN
ULTRA-SUPERCOOLED TRANSITIONS
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ENERGY LOCALIZATION IN
ULTRA-SUPERCOOLED TRANSITIONS

Energy profile before collision is sharply localized around the wall for α ≫ 1

α = 0.4, vw = 0.9 α = 10, vw = 0.995
0.0 0.2 0.4 0.6 0.8 1.0

ξ = r / t0
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T00
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ξ = r / t0

100
200
300
400
500
T00(00-component of EM tensor) (00-component of EM tensor)

- In realistic ultra-supercooled transitions,      can be much larger, e.g. α ∼ 1012α

- As a result, huge hierarchy appears between bubble size and energy localization

→ Hard to simulate fluid dynamics after bubble collisions numerically
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GW ENHANCEMENT CONDITION
BY SOUND WAVES

15

Necessary conditions to have GW enhancement by sound waves

- Delayed onset of turbulence

- Sound shell overlap

In order to have shell overlap, the energy localization has to break up:

or

😄😢

Ryusuke Jinno  /  1905.00899

mostly overlappedmostly unoverlapped
with other shellswith other shells
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GW ENHANCEMENT CONDITION
BY SOUND WAVES

15

- Delayed onset of turbulence

- Sound shell overlap

or

😄😢

Ryusuke Jinno  /  1905.00899

Necessary conditions to have GW enhancement by sound waves

In order to have shell overlap, the energy localization has to break up:
mostly overlapped
with other shellswith other shells

mostly unoverlapped
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SUMMARY OF MOTIVATION

16

What can we do?

Ultra-supercooled transitions (          ) occur in a certain class of models,α ≫ 1

and they are interesting both theoretically and observationally

Does GW enhancement by sound waves occur in these transitions?

More precisely:  When does the energy localization break up and shell overlap start?

Numerically difficult to study because of hierarchy in scales
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BEFORE MOVING ON...
GW SPECTRUM IN THIN-SHELL LIMIT

17

If the fluid shells remain thin, the story is relatively simple

because the GW spectrum in thin-shell limit is known analytically

ΩGW(k) ∝ Δ(s)(k) + Δ(d)(k)

[ RJ, Takimoto 1707.03111 ]
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If the fluid shells remain thin, the story is relatively simple

because the GW spectrum in thin-shell limit is known analytically

And indeed this spectrum does NOT have         enhancement,β/H*

ΩGW ∝ ( α
1 + α )

2

( β
H* )

−2

because shell overlapping does not occur

ΩGW

BEFORE MOVING ON...
GW SPECTRUM IN THIN-SHELL LIMIT
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Let's devide the problem into small pieces:

REDUCING THE PROBLEM

18

(1) propagation of relativistic fluid

(2) collision of relativistic fluid

After collision, the system is fluid-only: ∂μTμν
fluid = 0

Tμν = (ρ + p)uμuν + pημν, p = ρ/3(we assume relativistic ideal gas                                                    )

However, nonlinearity and discontinuities (i.e. shocks → later) complicate the analysis

Even (1) is nontrivial.  We study the effect of (1)

on the deformation of fluid profile.
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STRATEGY

19

Our strategy:

(1) Develop an effective description of fluid propagation valid in highly relativistic regime

(2) Check the theory against simulation in mildly-relativistic regime 

(or simply the transition strength    )α

(3) Study implications to GW production

(1), (3)(2)
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The setup we study : propagation of fluid profile after collision

SETUP

20

① Fluid profile just before collision:  calculated from 

② Fluid profile just after collision:  our interest is in the time evolution from here

Assumption:  the first fluid collision does not change the profile significantly

[ Espinosa, Konstandin, No, Servant ’10 ]

ρ or γ2

⓪ nucleation ① just before collision

Time evolution

② just after collision

collision point
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EFFECTIVE DESCRIPTION
OF FLUID PROPAGATION

21

Before constructing a theory, let's see the result of numerical simulation

fluid energy density relativistic    factor squaredγ

nucleation collision propagation

in the intermediate relativisticity
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fluid energy density relativistic    factor squaredγ

- Initial fluid profile (blue) propagates inside the other bubble (red)

Before constructing a theory, let's see the result of numerical simulation

EFFECTIVE DESCRIPTION
OF FLUID PROPAGATION

in the intermediate relativisticity



Ryusuke Jinno  /  1905.00899 & 1707.03111 / 2921

fluid energy density relativistic    factor squaredγ

- Peaks rearrange to new initial values, and gradually become less energetic

Before constructing a theory, let's see the result of numerical simulation

- Initial fluid profile (blue) propagates inside the other bubble (red)

EFFECTIVE DESCRIPTION
OF FLUID PROPAGATION

in the intermediate relativisticity
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fluid energy density relativistic    factor squaredγ

- Strong shocks (i.e. discontinuities) persist during propagation

- Peaks rearrange to new initial values, and gradually become less energetic

Before constructing a theory, let's see the result of numerical simulation

- Initial fluid profile (blue) propagates inside the other bubble (red)

EFFECTIVE DESCRIPTION
OF FLUID PROPAGATION

in the intermediate relativisticity
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Can we construct an effective description?

- From the viewpoint of GW production, we are interested only in PEAKS, not TAILS

- Then how about describing the system with peak-related quantities?

vs1) Shock velocity:

2) Peak values:                    (equivalently                 )ρpeak, vpeak ρpeak, γ2
peak

3) Derivatives at the peak:                         @ peak
dρpeak

dr
,

dvpeak

dr

1

2

3

- Can we construct a closed system for these quantities?

EFFECTIVE DESCRIPTION
OF FLUID PROPAGATION
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HOW TO CONSTRUCT 
A CLOSED SYSTEM

23

a) Rankine-Hugoniot conditions across the shock :  2 constraints

b) Time evolution equations :  2 evolution equations

Closed system for 5 quantities γ2
s , ρpeak, γ2

peak,
dρpeak

dr
,

dγ2
peak

dr

(corresponding to energy and momentum conservation across the shock)

1

2

3

(corresponding to temporal & spatial part of                   behind the shock)∂μTμν
fluid = 0

- First, there are strict equations:

- Still we have less equations (4 eqs.) than the number of quantities (5).

This is natural, because the original system has infinite # of dof (i.e. # of spacial grids),

while we are trying to describe it with finite # of dof.
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HOW TO CONSTRUCT 
A CLOSED SYSTEM

- The last equality will be an approximate relation which characterizes the system

The last equation?

1

2

3

24

- What makes this system distinct from others is energy domination by the peak

- Any relation like "(peak      ) × (width of the peak) = const" will work.T00

For example, approximating     and       to be exponential in   , we haveρ γ2 r

Imposing energy domination by the peak

: planar

: cylindical

: spherical
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THEORY PREDICTION

The resulting system can be solved analytically  (             )

25

δ = 10/13

1) Shock velocity:

2) Peak values:

3) Derivatives at the peak:
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COMPARISON WITH 
NUMERICAL SIMULATION

Analytic (red)  vs.  Numerical (blue)

γ2
s

ρpeak, γ2
peak

dρpeak

dr
,

dγ2
peak

dr

26

Qualitatively

OK!

with initial condition α = 10, γwall = 10
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IMPLICATIONS OF 
THE EFFECTIVE DESCRIPTION

What can we learn?

27

- All quantities have time dependence like

- Surface area effect wins (3 > 10/13).

effect of increase in the surface area effect of nonlinearity in fluid equation

δ = 10/13

In other words, nonlinearity is not effective in breaking up the energy localization.

- Timescale for breaking up is controlled by τ ≡ (σ/ρ0)1/3



Ryusuke Jinno  /  1905.00899 & 1707.03111 / 29

IMPLICATIONS TO
GW PRODUCTION

28

- Fluid profile remains to be thin, if we consider fluid propagation alone

Effective
description

Numerical
simulation

Time from bubble nucleation to collision- So, we have to see fluid collisions next:

1) If the fluid profile still remains thin,

the thin-shell spectrum will apply,

and there will be no           enhancementβ/H*

2) If the fluid profile successfully breaks up, 

enhancement will occurβ/H*

(until the onset of turbulence)
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SUMMARY

29

GW production in ultra-supercooled transitions             is interestingα ≫ 1

We reduced the problem into (1) propagation and (2) collision,  and studied (1):

- We constructed an effective description of fluid propagation

- We discussed implications to GW production: 

Still we have to address:   Effect of fluid collision   /   Effect of turbulence

both theoretically and observationally, but they are hard to simulate numerically

The fluid profile remains to be thin, so GW enhancement might be somewhat delayed



Back up
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GW spectrum is convoluted unequal-time correlator <T T>

MORE DETAIL ON
GW ENHANCEMENT BY SOUND WAVES

ΩGW(k) ∼ ∫ dtx ∫ dty cos(k(tx − ty)) Π(tx, ty, ⃗k ) = (projection) × ⟨Tij(tx, ⃗x ) Tkl(ty, ⃗y )⟩ens

Why?   1)  GW is given by Green function hij(t) ∼ ∫ dt′� Green(t, t′�) Tij(t′�)

2) GW spectrum is two-point correlator of hij(t)

Shell overlap creates correlation in the diagonal direction

Π(tx, ty, ⃗k ) ∼

tx

ty

effective in sound waves

β−1 H−1
*

effective in bubble collisions
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HOW TO CONSTRUCT 
A CLOSED SYSTEM

- Rankine-Hugoniot conditions across the shock :  2 constraints

Closed system for 5 quantities γ2
s , ρpeak, γ2

peak,
dρpeak

dr
,

dγ2
peak

dr

(corresponding to energy and momentum conservation across the shock)

1

2

3
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HOW TO CONSTRUCT 
A CLOSED SYSTEM

- Rankine-Hugoniot conditions across the shock :  2 constraints

- Time evolution equations :  2 evolution equations

Closed system for 5 quantities γ2
s , ρpeak, γ2

peak,
dρpeak

dr
,

dγ2
peak

dr

(corresponding to energy and momentum conservation across the shock)

(corresponding to temporal & spacial part of                   behind the shock)∂μTμν
fluid = 0

1

2

3

Advanced note

Easily derived from the conservation of 

Riemann invariants along      &C+ C−



Ryusuke Jinno  /  1905.00899 & 1707.03111 / 29

HOW TO CONSTRUCT 
A CLOSED SYSTEM

- Rankine-Hugoniot conditions across the shock :  2 constraints

- Time evolution equations :  2 evolution equations

Closed system for 5 quantities γ2
s , ρpeak, γ2

peak,
dρpeak

dr
,

dγ2
peak

dr

(corresponding to energy and momentum conservation across the shock)

1

2

3

(corresponding to temporal & spacial part of                   behind the shock)∂μTμν
fluid = 0




