

Stefania BORDONI

Pizza Seminar, 11 June 2014

Intro

- T2K has recently published the conclusive observation (7.5 σ) of the appearance of a electron neutrino starting from a beam of muon-neutrinos
- The results and the details of the oscillation analysis procedure have been fully described few months ago in the contest of a colloquium
- Today I will focus on how the T2K results address the question of the determination of CP violation in the lepton sector (determination of the value of δ_{CP})

Menu del día :

- Neutrino oscillations in a nutshell
- Short reminder of the T2K experiment
- Observation of the ν_{e} appearance
 - review of the published results
 - constraints on δ_{CP}
- T2K future sensitivity to δ_{CP}

Menú del Día 2 PRIMEROS 2 SEGUNDOS (a elegir) POSTRE O CAFÉ fan y belida 10 €

- Two independent squared masse differences (Δm^2_{21} , Δm^2_{32})
- 1 CP-violating phase
- Each one of this parameter has an accuracy dominated by a specific class of experiment

Parameter	Value	
$\sin^2 2 heta_{12}$	0.857 ± 0.024	solar
$\sin^2 2 heta_{23}$	> 0.95	LBL (T2K) + atmospherics (SK)
$\sin^2 2 heta_{13}$	0.095 ± 0.010	SBL reactors (Daya Bay, RENO)
Δm^2_{21}	$(7.5 \pm 0.20) \times 10^{-5} \ { m eV^2}$	LBL reactors (KamLAND)
$ \Delta m^2_{32} $	$(2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2$	LBL + atmospherics
δ_{CP}	unknown	-

Stefania Bordoni (IFAE)

CP violation term in the leptonic sector

- Similarly to the quark sector, also in the lepton sector we could have CP violation
- A direct measurement of CP violation could be performed by measuring the asymmetry, if any, between the neutrino and anti-neutrino oscillation probability

$$a = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu_{\mu}} \to \overline{\nu_{e}})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu_{\mu}} \to \overline{\nu_{e}})}$$

- However neutrino oscillation experiment offer the possibility to investigate CP violation in the lepton sector through measuring the CP phase $\delta_{\rm CP}$
- The relatively large value of ϑ_{13} has enhanced the physics potential of LBL accelerator experiment (T2K !).
- The sensitivity to discover δ_{CP} depends to the other oscillation parameters. Nevertheless within certain parameters phase space ranges, δ_{CP} as become accessible to the current LBL experiment \rightarrow T2K already put some constraints

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan (Tokai to Kamioka)
- muon neutrinos produced from a 30GeV proton beam (JPARC)
- neutrinos detected in 2 points
 - at the near detector (ND280) at 280 m
 - at the far detector (Super-Kamiokande) at 295 Km

Two main goals :

- v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu})$: measure Δm^{2}_{32} and 9_{23}
- Ve appearance $P(\nu_{\mu} \rightarrow \nu_{e})$: measure 9_{13} and constrain δ_{CP}

Japan Proton

V_e appearance

CCQE candidates at SK selected looking for "one-electron-only" events

- fully contained single electron-like ring
- $p_e > 100$ MeV and no decay e^- (Michel electrons)
- \bullet E_{ν} reconstructed using the QE approximation
- π^0 background rejection

Ve appearance

21.6 expected events @ $\sin^2 2\vartheta_{13} = 0.1 \delta CP = 0$, $\sin^2 2\vartheta_{23} = 0.5$ **4.92 ± 0.55 expected background** events Stefania Bordoni (IFAE)

Ve appearance

9_{13} best fit values

- To extract the best fit values for $\boldsymbol{9}_{13}$ we need to make some assumptions on the other oscillation parameters.
- Let's take :
 - sin²**9**₁₂=0.306,
 - $\Delta m^2_{21} = 7.6 \times 10^{-5} eV^2$

from solar experiment

• sin²**9**₂₃=0.5,

from T2K disappearance measurement

• $|\Delta m^2_{32}| = 2.4 \times 10^{-3} eV^2$

• $\delta_{CP} = 0$

Best fit value for Normal Hierarchy $\sin^2 \theta_{13} = 0.140^{+0.038}_{-0.032}$

Best fit value for Inverted Hierarchy $\sin^2\theta_{13} = 0.170^{+0.045}_{-0.037}$

Constraining δ_{CP}

- We repeat the same exercise for each value of $\,\delta_{CP}$ to extract the allowed region of sin^22 $heta_{13}$
- Comparing the results from reactor data we observe a better overlap for negative values of δ_{CP}

Constraining δ_{CP}

- By the T2K appearance analysis constraint on δ_{CP} can be extracted considering other measurements (SBL reactors data) to constrain the values of 9_{13}
 - Addition of a further constraint term in the likelihood function

$$\mathcal{L} = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{syst} \times \mathcal{L}_{const}$$

Excluded regions @ 90% CL

Normal hierarchy ($\Delta m^2_{32} > 0$): 0.19 $\pi < \delta_{CP} < 0.80 \pi$

Inverted hierarchy ($\Delta m^2_{32} < 0$): - $\pi < \delta_{CP} < -0.97 \pi$ -0.04 < $\delta_{CP} < \pi$

Regions above the lines are excluded @90% CL

T2K future sensitivity $\boldsymbol{\delta}_{CP}$

T2K+Nova Future sensitivity δ_{CP}

Assuming true values : $\sin^2 2\theta_{13} = 0.1$, $\Delta m^2_{32} = 2.4 \times 10^{-3} eV^2$

Conclusions

- T2K has provided for the first time some constraints to the still unknown oscillation parameter, δ_{CP}
- T2K results show a preference for a non-zero CP violation term and this tendency is confirmed and increasingly pronounced while performing global fits
- Running in anti-neutrino mode and combining the results with Nova will enhance the power of T2K
- The data taken has recently restarted. This year pilot run in anti-neutrino mode

Back up

Mass Hierarchy

measuring $\boldsymbol{9}_{13}$: accelerator vs reactors

Compilation from Soeren Jetter (HEP), NuFact 2013

Nota Bene: plots are 1D contour, showing the allowed region of sin²2 θ_{13} for each value of δ_{CP}

Normal hierarchy

Inverted hierarchy

Best fit value :

 $\sin^2 \theta_{13} = 0.140^{+0.038}_{-0.032}$

Best fit value :

 $\sin^2 \theta_{13} = 0.170^{+0.045}_{-0.037}$

Stefania Bordoni (IFAE)

Ve appearance

Global fits

Bounds on δ_{CP} parameter are given in standard deviation away from the best fit

$$N \sigma = \sqrt{\chi^2 - \chi^2_{min}}$$

Sensitivity vs POT

Ι00% ν

T2K sensitivity to reject the null hypothesis (sin $\delta_{CP} = 0$) as a function of POT

50% v + 50% anti-v

The sensitivity is computed for δ_{CP} = +90° and Inverted Hierarchy

Future sensitivities studies

- using signal efficiency, background and systematics from 2012 analyses
 - fits are performed by calculation dchi2 using a binned likelihood method for the appearance and disappearance reconstructed energy spactra
 - when performing fits, all oscillation parameters but sin22theta_12 and Deltam2_12 are considered unknown
 - when reactor constraints are used the error is fixed at 0.005 (error from Daya Bay 2012 analyses)

Parameter	$\sin^2 2 heta_{13}$	δ_{CP}	$\sin^2 heta_{23}$	Δm^2_{32}	Hierarchy	$\sin^2 2 heta_{12}$	Δm^2_{12}
Nominal	0.1	0	0.5	$2.4 imes10^{-3}$	normal	0.8704	$7.6 imes10^{-5}$
Value				eV^2			eV^2