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Introduction  
•Inflation leading candidate for theory of early Universe

•Explains why Universe is big, old and smooth 

•Gives prediction of initial spectrum of density fluctuations, 
almost scale invariant

a period of exponential expansion in the very early universe, is believed to have taken place some
10−34 seconds after the Big Bang singularity. Remarkably, inflation is thought to be responsible
both for the large-scale homogeneity of the universe and the small fluctuations that were the seeds
for the formation of structures like our own galaxy.

The central focus of this lecture series will be to explain in full detail the physical mechanism
by which inflation transformed microscopic quantum fluctuations into macroscopic fluctuations in
the energy density of the universe. In this sense inflation provides the most dramatic example
for the theme of TASI 2009: the connection between the ‘physics of the large and the small’.
We will calculate explicitly the statistical properties and the scale dependence of the spectrum of
fluctuations produced by inflation. This result provides the input for all studies of cosmological
structure formation and is one of the great triumphs of modern theoretical cosmology.

1.2 Structure and Evolution of the Universe

There is undeniable evidence for the expansion of the universe: the light from distant galaxies is
systematically shifted towards the red end of the spectrum, the observed abundances of the light
elements (H, He, and Li) matches the predictions of Big Bang Nucleosynthesis (BBN), and the only
convincing explanation for the CMB is a relic radiation from a hot early universe.
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Figure 2: History of the universe. In this schematic we present key events in the history of the
universe and their associated time and energy scales. We also illustrate several cos-
mological probes that provide us with information about the structure and evolution
of the universe. Acronyms: BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Struc-
ture), BAO (Baryon Acoustic Oscillations), QSO (Quasi-Stellar Objects = Quasars),
Lyα (Lyman-alpha), CMB (Cosmic Microwave Background), Ia (Type Ia supernovae),
21cm (hydrogen 21cm-transition).

Two principles characterize thermodynamics and particle physics in an expanding universe: i)
interactions between particles freeze out when the interaction rate Γ drops below the expansion
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Introduction  
•Tested by WMAP and Planck

•Recently BICEP2 also claimed observation of B-mode 
polarization of CMB explained via primordial gravitational 
waves



BICEP2 results

•BICEP2  results:   



Large field inflation?  
•If BICEP2 results hold, suggests large field inflation

• Potential should remain very flat during inflation, but difficult 
to do since potentially large quantum corrections

•One potential approach: inflaton is pseudo-Goldstone boson
Inflaton ~ axion, shift symmetry protects potential

•Not so easy to get large field displacements (inflaton is a 
phase, need to wind around many times).  

1 Introduction

Inflation is the leading contender for the explanation of why the Universe is so big, old, and

smooth [1–3]. It gives a fully controlled prediction of the initial spectrum of almost scale

invariant density fluctuations at superhorizon scales, which are required to seed the cosmic

structures observed in the late Universe [4]. These fluctuations are directly tested by the

cosmic microwave background (CMB) measured by the WMAP and Planck experiments,

and the fit to the inflationary predictions is excellent. Very recently the BICEP2 experi-

ment claimed an observation of CMB polarization [5] which fit the spectrum of primordial

gravity waves [6], that can also be created during inflation. The BICEP2 results, if due

to primordial gravity waves, point towards large field models of inflation, to explain the

claimed large tensor-to-scalar ratio. Such models have large field excursions ∆ϕ > MP l

during inflation, and the potential remains very flat and small in Planck units [3]. They

are difficult to realize because at large field values the quantum corrections can be large.

However, there are setups using a pseudo-Goldstone boson of some weakly broken sym-

metry as the inflaton [7], whose approximate shift symmetry protects the potential from

large corrections [9–11]. In these constructions the inflaton’s shift symmetry is a ‘phase

rotation’, and the inflaton is necessarily a pseudo-scalar (essentially a type of axion).

A natural question to ask, assuming that the BICEP2 results are verified, is whether

it pins down the inflaton to be a pseudo-scalar. Here we argue that an alternative is to use

a scalar Goldstone boson for a non-compact, spontaneously broken global scale symmetry,

the dilaton, as the inflaton. This automatically accommodates large field variations since

the symmetry and the vacuum manifold are non-compact. The underlying scale symmetry

naturally gives rise to an effective shift symmetry of the dynamical inflaton, which protects

its potential in exactly the same way as the axion shift symmetry. The relevant low-

energy degrees of freedom are the metric gµν , the dilaton field Φ and the matter degrees

of freedom, containing the Standard Model, to which they couple. Scale invariance forbids

a direct Einstein-Hilbert term in the action, so the leading operator controlling graviton

dynamics is a dilaton-graviton coupling Φ2R. The Planck scale arises from the dilaton

VEV �Φ� ∼ MP l. A fully scale invariant theory allows only a quartic dilaton self coupling,

without a non-trivial minimum. Scale invariance will protect the inflaton potential from

any loop corrections. An inclusion of small explicit breaking terms allows for a non-trivial

dilaton VEV at large but finite values O(MP l) with a very flat potential. All corrections to

the inflaton potential will be suppressed by the small parameters characterizing the sizes

of the explicit breaking terms.

In detail, the Einstein frame potential is a combination of exponentials of the form

e�ϕ/MPl , where ϕ is the canonically normalized inflation and � � 1. The parameter �, which
ensures that the potential is shallow, is controlled by the anomalous scaling dimensions

of the explicit breaking terms. Since the β-functions of classically marginal operators

usually do not vanish at loop level, one generically expects the β-functions to provide small

perturbative contributions to the parameter � controlling the breaking. Thus the explicit
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12.4 The Lyth Bound

Note from equations (197) and (210) that the tensor-to-scalar ratio relates directly to the evolution

of the inflaton as a function of e-folds N

r =
8

M
2
pl

�
dφ

dN

�2

. (213)

The total field evolution between the time when CMB fluctuations excited the horizon at Ncmb and

the end of inflation at Nend can therefore be written as the following integral
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During slow-roll r(N) (or ε) doesn’t evolve much and one may obtain the following approximate

relation [18]

∆φ
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0.01

�1/2
(215)

where r� ≡ r(Ncmb) is the tensor-to-scalar ratio on CMB scales. r > 0.01 therefore correlates with

∆φ > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are
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where

ε = −d lnH

dN
. (218)

The horizon crossing condition k = aH makes (216) and (217) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is

r ≡ ∆2
t

∆2
s

= 16 ε� . (219)

13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices

ns − 1 ≡ d ln ∆2
s

d ln k
, nt ≡

d ln ∆2
t

d ln k
. (220)

We split this into two factors

d ln ∆2
s

d ln k
=

d ln ∆2
s

dN
× dN

d ln k
(221)
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Part III

Lecture 2: Quantum Fluctuations
during Inflation

Abstract

In this lecture we present the famous calculation of the primordial fluctuation spectra
generated by quantum fluctuations during inflation. We present the calculation in full
detail and try to avoid ‘cheating’ and approximations. After a brief review of funda-
mental aspects of cosmological perturbation theory, we first give a qualitative summary
of the basic mechanism by which inflation converts microscopic quantum fluctuations
into macroscopic seeds for cosmological structure formation. As a pedagogical intro-
duction to quantum field theory in curved spacetime we then review the quantization of
the simple harmonic oscillator. We emphasize that a unique vacuum state is chosen by
demanding that the vacuum is the minimum energy state. We then proceed by giving
the corresponding calculation for inflation in all detail. We calculate the power spectra
of both scalar and tensor fluctuations and discuss their dependence on scale.

In the last lecture we studied the classical (� = 0) dynamics of a scalar field rolling down a
potential with speed φ̇ (see Fig. 11). In this lecture we study the effects of quantum (� �= 0)
fluctuations around the classical background evolution φ̄(t). These fluctuations lead to a local time
delay in the time inflation ends, i.e. different parts of the universe will end inflation at slightly
different times. For instance, for the potential shown in Fig. 11 regions acquiring a negative frozen
fluctuations δφ remain potential-dominated longer than regions with positive δφ. Different parts of
the universe therefore undergo slightly different evolutions. This induces relative density fluctuations
δρ(t,x).

reheating

Figure 11: Quantum fluctuations δφ(t,x) around the classical background evolution φ̄(t).
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Dilaton as inflaton?  

•Could the inflaton be a scalar (rather than pseudo-scalar)? 

•Should be Goldstone not of an internal symmetry (phase) but 
rather of a space-time symmetry (real exponential)

•Scale transformations provide such a candidate, dilaton

•Goldstone boson of broken scale invariance

•Non-compact symmetry - accommodates large 

•Scale invariance → shift symmetry → protection of potential 
like for axion case  

∆φ



Dilaton basics  
2 Scaling and Dilaton basics

In this section we summarize the basic properties of scale transformations and dilaton cou-

plings. Scale transformations [28] are given by (for x → x�
= e−αx)

O(x) → O
�
(x) = e

α∆
O(e

α
x) , (2.1)

where ∆ is the matrix of dimensions (including classical and quantum effects) for the oper-

ators O. The action changes under scale transformations as

S =

�

i

�
d
4
x giOi(x) −→ S

�
=

�

i

�
d
4
xe

α(∆i−4)
giOi(x) , (2.2)

which implies the well-known result that all operators must have dimension ∆i = 4 for all

Oi in order for the action to be scale invariant. The linearized transformation of the action

is then

S −→ S +

�

i

�
d
4
xαgi(∆i − 4)Oi(x) . (2.3)

Let us assume that scale invariance is broken spontaneously by the VEV of a dimension-

ful operator �O� = fn
where n is the classical dimension of O. The spontaneous breaking of

scale invariance will imply the existence of a Goldstone boson for scale transformations, the

dilaton, which transforms inhomogeneously under scale transformations:

σ(x) → σ(eαx) + αf . (2.4)

The low-energy effective theory can be obtained by replacing the VEV with the non-linear

realization

f → f χ ≡ f e
σ/f

, (2.5)

and requiring that it is invariant under scale transformations:

Leff =

�

n,m�0

an,m

(4π)2(n−1) f 2(n−2)

∂2nχm

χ2n+m−4
(2.6)

= −a0,0 (4π)
2
f
4χ4

+
f 2

2
(∂µχ)

2
+

a2,4

(4π)2
(∂χ)4

χ4
+ . . . (2.7)

where an,m ∼ O(1), and a1,1 = 1/2 corresponds to canonical normalization, and a2,4 is

determined by the proof of the a-theorem [29]. The complete set of dilaton couplings within

the scale-invariant sector can be obtained by the replacement in (2.5). However, a more

systematic way is to take advantage of the (approximate) scale invariance of the Lagrangian

at high energies, in order to build an effective Lagrangian for energies below Λ ∼ 4πf where

scale invariance is preserved by means of insertions of the dilaton field as defined in Eq. (2.5).

The general assumption we will be making is that there is a conformal sector which is

spontaneously broken, which we will refer to as the “composite sector”, and that there is
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•Scale transformations

•Operators transform

•Δ is full dimension, classical plus quantum corrections

•Change in action:

•Assume spontaneous breaking of scale inv.  (SBSI)
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Dilaton basics  

•Dilaton: Goldstone of SBSI, σ, transforms non-linearly under
scale transf.:

•Restore scale invariance by replacing VEV

•Effective dilaton Lagrangian is then (using NDA for coeffs)
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where an,m ∼ O(1), and a1,1 = 1/2 corresponds to canonical normalization, and a2,4 is

determined by the proof of the a-theorem [29]. The complete set of dilaton couplings within

the scale-invariant sector can be obtained by the replacement in (2.5). However, a more

systematic way is to take advantage of the (approximate) scale invariance of the Lagrangian

at high energies, in order to build an effective Lagrangian for energies below Λ ∼ 4πf where

scale invariance is preserved by means of insertions of the dilaton field as defined in Eq. (2.5).

The general assumption we will be making is that there is a conformal sector which is

spontaneously broken, which we will refer to as the “composite sector”, and that there is
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Dilaton dynamics  
•Main point of dilaton: effective action can have non-derivative 
χ4 term - just the cosmological constant in the composite 
sector

• Generically a≠0. Will make SBSI difficult: 

•Need to add additional almost-marginal operator to generate
dilaton potential
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All the rates scale as v2/f 2, and the inclusive modes as well, since all coefficients in Eq. (4.1)
for the dilaton are proportional to v/f , and likewise for |Ctot|. Paying attention to the
individual channels one can gain information on the anomalous dimensions. We show in
Fig. 1 the constraints from the present measurements of three different rates: inclusive higgs
production and decay to ZZ or to γγ, Rincl.,ZZ andRincl.,γγ respectively, and associated vector
boson production and decay to bb̄, RV h,bb. From the left panel one can see the preference of the
data for values of v/f very close to one, as was already suggested by EWPT (also shown as a
vertical strip). This is driven by the measurement of RV H,bb, since we assumed no deviations
in the coupling to the bottom except for the v/f factor. The inclusive measurements Rincl.,ZZ

and Rincl.,γγ are instead sensitive to the β-function coefficients. In particular, as shown in

the right panel of Fig. 1, Rincl.,ZZ delimits the preferred values for b(3)
UV

, while the overlap

with Rincl.,γγ does this for b(EM)
UV

. We also show in Fig. 2 the prediction for these three

rates as a function of b(3)
UV

= b(EM)
UV

/2 (this choice correspond to the symmetric scenario

b(1)
UV

= b(2)
UV

= b(3)
UV

), and its overlap with current measurements at 1σ CL. Enhancement of
the ZZ and γγ rates are easily obtained for both v/f = 1 (left panel) and v/f = 0.8 (right

panel). The difference between negative and positive values of b(3)
UV

is due to the difference
in sign of the SM contribution to ĉg and ĉγ. Finally, notice that the bb̄ rate from associated
production is generically suppressed, due to the lack of enhancement in the production cross
section. This conclusion would not be changed by turning on γb �= 0, since the bb̄ channel
already dominates the decay of the higgs for γb = 0.

5 General considerations for the dilaton mass

The main difference between a standard Goldstone boson arising from an internal global
symmetry and the dilaton is that scale invariance allows for a non-derivative quartic self
coupling, which plays a crucial role in the discussion of the SBSI:

S =

�
d4x

f 2

2
(∂χ)2 − af 4χ4 + higher derivatives (5.1)
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•a>0: VEV at f=0, no SBSI

•a<0: runaway vacuum f→∞

•a=0 arbitrary f

dilaton potential

a > 0

a < 0

a = 0

f = 0

f =∞

f =?

σ(x) −→ σ(eαx) + αf

χ(x) = feσ/f −→ eαχ(eαx)

dilaton

V (π) = 0standard Goldstones have no potential

V (χ) = aχ4



Dilaton dynamics  
•Perturbation:

•Dilaton potential:                                       vacuum energy in
units of f 

•To have a VEV: 

•Dilaton mass: 
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Figure 2: Dilaton predictions for the rates Rincl.,ZZ (green line), Rincl.,γγ (orange), and RV H,bb

(blue) as a function of b(3)
UV,CFT

= b(EM)
UV,CFT

/2 for v/f = 1 (left panel) and v/f = 0.8 (right).
Also shown as horizontal bands the current experimental intervals at 1σ CL (same color
code).

The presence of this term will make it very difficult to achieve the SBSI. When a �= 0 the
theory is either forced to f → ∞ for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the effective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| � 1, so that the broken phase �χ� = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

δS =

�
d4xλ(µ)O (5.2)

gives rise, in general, to an effective potential for the dilaton of the form

V (χ) = f 4F (λ(f)) , (5.3)

where F is a function of λ which parametrizes the explicit breaking of scale invariance as
a non-trivial function of χ. This potential is of the Coleman-Weinberg type when λ is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Zaffaroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while λ remains perturbative over the relevant
range of renormalization group running. In this case F (λ(f)) can have a minimum at a
scale f � Λs, where Λs is the scale where λ would become non-perturbative. Because
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f � Λs, λ stays perturbative and the dilaton remains light, that is scale invariance can be

spontaneously broken. The stationary condition of V is

V �
= f 3

[4F (λ(f)) + βF �
(λ(f))] = 0 (5.4)

which results in a dilaton mass

m2
dil = f 2β [βF ��

+ 4F �
+ β�F �

] � 4f 2βF �
(λ(f)) = −16f 2F (λ(f)) (5.5)

where β�
= dβ/dλ. In the second equality we have also assumed that β� � 1. An explicit

(supersymmetric) example illustrating how this mechanism can work will be presented in

the next section. The Goldberger-Wise stabilization mechanism for the RSI model is also

an example for this mechanism, as we will discuss in detail in Sec. 7.

The main questions related to the naturalness of this mechanism are then why is F � 1

at the minimum (or, for a perturbative expansion in λ, a � 1) along with β � 1, and why

are we allowing only almost marginal perturbations. Let us start with F � 1. The case

F = 0 corresponds to a situation with no potential for the dilaton, and thus an arbitrary

value of f is allowed. This means that there is a flat direction in the theory. The presence of

flat directions is quite natural in supersymmetric theories, however no non-supersymmetric

example of physically inequivalent flat directions is known.
7
The closest anyone has been able

to get to this situation were the so-called orbifold gauge theories obtained via projecting out

some of the fields and couplings of an N = 4 SUSY gauge theory [43]. In this case the large-

N limit of the β-functions agrees with those of the SUSY theories, however 1/N corrections

lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are

the only ones that would allow for a light dilaton. This part of the naturalness problem is

thus rephrased in terms of what relevant deformations the CFT supports. If it turns out

that only marginal perturbations are possible then a light dilaton is a natural possibility

(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),

especially chiral ones, give a handle on this because of the non-renormalization theorem:

the relevant deformations (if there are any) can be made naturally small. For the case of

non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a

chance of giving a naturally light dilaton, but even those face the question of the origin of a

flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-

mization condition (5.4) says that for β � 1 the quartic F must almost vanish. In turn this

ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other

words, if we start with an almost flat direction, F � 1, then we can easily stabilize it by a

small breaking controlled by β. However, the starting assumption of almost flatness is itself

plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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dilaton potential

f

LCFT + λO

V = χ4F (λ(χ))

af4 → f4F (λ(f))

β =
dλ

d logµ



Dilaton-graviton system

•Assume scale invariant Lagrangian for      dilaton and                  
  graviton

•Dilaton VEV will set Planck scale (EH term would violate 
scale invariance)

•Assume dilaton initially displaced far from VEV, rolling to 
minimum will lead to inflation

•Lagrangian:

•Scale invariant potential just a quartic 

Φ gµν
for setting the scale of symmetry breaking. Global scale transformations are given by
xµ → x̄µ = e−λxµ, or equivalently gµν → e−2λgµν . These have the effect R → e2λR on the
scalar curvature, while generic operators transform as O → eλ∆O, where ∆ is the scaling
dimension of the operator. A Lagrangian is scale invariant if all operators have dimension
4. The spontaneous breaking of such scale invariance is parameterized by the dilaton field
Φ, which is the Goldstone boson for broken scale invariance, and which will also serve
as the inflaton in this setup. Once the dilaton is stabilized due to the presence of small
explicit breaking terms, its VEV will give rise to the effective Planck scale. However, we
will assume that at an initial time the dilaton is displaced far from its minimum, and the
process of the dilaton rolling to its minimum will be the cause of inflation.

The general scale invariant Lagrangian that we will be considering is given by

L =
√
−g

�
ξ̃Φ2R− 1

2
(∇Φ)2 − V (Φ)

�
+∆L(gµν ,Φ) + LM(gµν ,Φ,Ψ) . (2.1)

where R is the Ricci scalar1 and ξ̃ is a dimensionless parameter.2 Note, that scale invari-
ance forbids the presence of the usual Einstein-Hilbert term. The potential V (Φ) will be
specified below, but exact scale invariance would require V (Φ) = α2Φ4, with a constant
α. Scale invariance forbids large corrections to the dilaton potential, hence eliminating the
η-problem. This remains valid even after including the loop corrections from the inter-
actions with other fields, as long as these fields do not violate scale invariance explicitly.
This will be the case if the masses of the fields interacting with the dilaton originate from
the dilaton VEV itself, in which case the resulting corrections will just renormalize the
coefficient of the Φ4 coupling. In the presence of small explicit breaking terms (which will
be necessary to obtain a non-trivial VEV) the corrections to the dilaton potential will be
suppressed by the small parameter characterizing the magnitude of the explicit breaking.
As we will note below, this follows since the theory — including the regulator — has a
manifest (non-linearly realized) shift symmetry, which arises from scale invariance after
field redefinitions. In turn this also guarantees that all the perturbative graviton loop cor-
rections are completely under control, much like in the case of axion monodromy [11] (see
also [16]).3

In order to recover Einstein gravity, the potential must give rise to a non-vanishing
VEV for Φ, �Φ�2 = M2

P l/2ξ̃. ∆L(gµν ,Φ) contains operators with extra derivatives and
inverse powers of Φ, for example the Weyl term involving R2 would be in this part of

1We use the mostly plus signature ηµν = diag(−1, 1, 1, 1), and Rα
βγδ = ∂γΓα

βδ + Γα
λγΓ

λ
βδ − (γ ↔ δ),

Rµν = Rα
µαν .

2The additional requirement of conformal invariance would fix the parameter ξ̃ = 1/12. We will not
impose this assumption in this paper. Naive dimensional analysis (NDA) suggests ξ̃ = O(16π2).

3Note, that our philosophy is quite different from [17], even if the inflationary dynamics is determined
by a small explicit breaking of scale invariance: the Lagrangian Eq. (2.1) describes the low-energy effective
theory for the spontaneous breaking of scale invariance, parametrized by Φ, which does not correspond to
an elementary scalar. The effects of higher-dimensional operators are systematically included, and we do
not neglect quadratically divergent mass terms.
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Dilaton-graviton system
•We treat this as a low-energy effective theory, won’t try to 
UV complete

•Since MPl appears dynamically, suspect that graviton 
dynamics also arises dynamically

•Possibilities: induced gravity? Start with no kinetic term for 
graviton...

•Composite gravity? Weinberg-Witten thm. says can not have 
a globally conserved stress tensor that becomes local in IR. 

•May not have conserved stress tensor in UV
•Composite sector has its own conserved stress tensor and 
all matter couples to that (like Seiberg duality for gauge 
groups)



Dilaton-graviton system

•Conformal invariance would fix                    . Will not fix that, 
instead assume NDA size  

•Dilaton VEV will set Planck scale (EH term would violate 
scale invariance)

•Assume dilaton initially displaced far from VEV, rolling to 
minimum will lead to inflation
 
•                          contains additional derivative interactions 
that are scale invariant (for example       would be there)

•                            contains interactions with matter (could 
violate scale invariance) 
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the Lagrangian. LM(gµν ,Φ,Ψ) contains any other dynamics involving fields collectively

denoted by Ψ (such as the Standard Model (SM) fields), which may or may not be coupled

to Φ (but they certainly couple to the metric in order to preserve Lorentz invariance). We

will discuss the role of these two terms later. We do not consider at this point any violation

of Lorentz covariance, even if Lorentz invariance itself is only a symmetry of the low-energy

and not of the underlying UV theory.

In order to understand the inflationary dynamics of this system, it is convenient to

perform a Weyl transformation of the metric and go to the Einstein frame:

gµν → Ω2gµν , (2.2)

where Ω = Ω(x) satisfies

Ω2ξ̃Φ2
=

M2
P

2
. (2.3)

The rescaled Lagrangian is given by

L =
√
−g

�
M2

P l

2
R− 1

2
(∇ϕ)2 − V (ϕ)

�
+∆L

�
Ω2

(ϕ)gµν ,Φ(ϕ)
�
+ LM

�
Ω2

(ϕ)gµν ,Φ(ϕ),Ψ
�
,

(2.4)

where

V (ϕ) =
M4

P l

4ξ̃2
V (Φ(ϕ))

Φ4(ϕ)
. (2.5)

The relation between the original dilaton and the Einstein frame inflaton ϕ is given by

(given the boundary condition Φ(ϕ = 0) = �Φ�)

Φ(ϕ) = �Φ� exp
�√

ξϕ

MP l

�
,

1

ξ
=

1

2ξ̃
+ 6 . (2.6)

In this frame the original scale invariance of the theory will manifest itself in a shift sym-

metry for the inflaton

ϕ → ϕ̄ = ϕ+
MP l√

ξ
λ . (2.7)

Thus Eq. (2.4) can be thought of as the non-linearly realized Lagrangian for the sponta-

neously broken non-compact group of scale transformations, where the above shift sym-

metry is the remnant of the original scale invariance. The Einstein-Hilbert term is shift

symmetric, since it does not contain ϕ. The kinetic term for the scalar is shift symmetric

because it contains only derivatives. The scalar potential term V (ϕ) becomes a constant

(if we started out with a quartic Φ4
in the Jordan frame, as required in the absence of

explicit breaking terms). The terms in ∆L already contain derivatives of ϕ only, and thus

will be obviously shift invariant. The only non-trivial terms are those that involve matter

fields coupled to ϕ in LM : here explicit powers of e
√
ξϕ/MPl will appear from the Weyl

transformation of the metric, seemingly giving rise to non-derivative interactions. The im-

portant point is that such factors will also be present in the kinetic terms of the matter
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fields: once the matter fields are suitably redefined in order to canonically normalize their
kinetic terms, the inflaton will again appear only derivatively coupled, obeying the shift
symmetry. Hence all the terms in Eq. (2.4) which were originally exactly scale invariant
remain invariant under the shift symmetry.

Notice also that, given ϕ = (MP l/
√
ξ) log(Φ/�Φ�), if the dilaton field starts out at small

values Φ0 ∼ 0 far from the minimum of the potential and moves out to �Φ� ∼ MP l, the
field space range for ϕ can be larger than MP l without ever leaving the regime of validity of
the effective theory. For example assuming Φ0 ∼ 10−15�Φ� ∼ TeV, we find |∆ϕ| ∼ 15MP l,
a seemingly super-Planckian field excursion in the Einstein frame.4

The scale invariant α2Φ4 dilaton potential, yields a completely flat constant potential
independent of ϕ in the Einstein frame. This is again a simple consequence of the shift
symmetry Eq. (2.7). Only derivative couplings of ϕ are allowed, which are contained in ∆L
in Eq. (2.4). However for a completely flat potential the VEV �Φ� (and the Planck scale)
remain undetermined. One needs to systematically incorporate small explicit breaking
terms into the Lagrangian which can easily fix the dilaton VEV at large values. Such
explicit breaking terms could possibly originate from the interactions with additional matter
contained in LM , in particular they could potentially be due to interactions with the SM
fields. As long as the explicit breaking induced by these terms is weak, the shift symmetry
Eq. (2.7) will remain approximately valid, and will continue to protect the low energy theory
Eq. (2.4) from large corrections. In the next section we will consider three well-motivated
simple forms of the explicit breaking terms.

3 Approximately Scale Invariant Inflaton Potentials

The goal of this section is to present examples of well-motivated potentials that systemati-
cally incorporate small explicit breakings of scale invariance and examine their experimental
consequences. In every example we will require that the cosmological constant vanishes at
the minimum of the potential. This is needed for two reasons: inflation will not end if
the minimum of the potential is not small, and the observed cosmological constant is very
small (in Planck units). Requiring scale invariance does not in itself say anything about
the cosmological constant: as we saw before, scale invariance allows a Φ4 potential for the
dilaton, which after moving to the Einstein frame is a contribution to the cosmological
constant. This term can be understood as the vacuum energy created during the phase
transition from the scale invariant phase to the spontaneously broken one considered here.5

4If Φ0 is orders of magnitude larger than its VEV, ∆ϕ is also super-Planckian. Such a large field
excursion is a direct consequence of using the Goldstone field for a non-compact symmetry group.

5For recent discussions on attempts to use weakly broken scale invariance to reduce the cosmological
constant see [18].
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Einstein frame

•The potential:                will become completely flat in 
Einstein frame - consequence of scale invariance/shift 
symmetry. 

•Need small explicit breaking terms to fix dilaton VEV

•Can come from interaction with matter 

•As long as breaking terms small approximate shift symmetry 
will remain
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Approximately scale invariant potentials

•Will add small explicit breaking terms

•Require that cosmological constant at minimum vanishes

•This is added by hand - scale invariance does not tell 
anything about cc

•CC is vacuum energy created during the phase transition

•To exit inflation will need to tune this to zero

•Nothing new to say about the cc 



A single relevant operator
•Add one marginally relevant operator of dimension

•Typical in warped extra dimension (Goldberger-Wise)

•Full potential:

•Minimized at 

•In Einstein frame:

•Same potential as for Starobinsky model

•Exponent controlled by small breaking parameter

•Starobinsky special case: if          dominates also scale 
invariant. But here don’t need to assume very large 
coefficient of higher dim. operator
  

3.1 A Single Relevant Operator

The first example takes the effect of a single marginally relevant operator with dimension
4−� into account, while also requiring the cosmological constant to vanish at the minimum
of the potential. This type of potential [19,20] naturally shows up in warped extra dimen-
sions [21] after modulus stabilization via the Goldberger-Wise mechanism [22, 23] (which
indeed corresponds to turning on a marginally relevant operator in the dual conformal field
theory language). The resulting approximately scale invariant potential is

V (Φ) = Φ4
�
α + βΦ−�

�2
, (3.1)

where � corresponds to the anomalous dimension of the operator breaking scale invariance,
� � 1. This potential is minimized at

�Φ� =
�
α

β

�1/�

, (3.2)

and the potential at the minimum vanishes to reproduce an (approximately) zero vacuum
energy density at the end of inflation. This is where we tune away the cosmological constant
(at this point neglecting any other contributions to the cosmological constant from LM).

The inflaton potential in the Einstein frame reads

V (ϕ) =
M4

P l

4

α2

ξ̃2

�
1− e−�

√
ξϕ/MPl

�2
. (3.3)

As expected this is a very flat potential, as long as � � 1. Flatness is a result of a small
explicit breaking of scale invariance. Note that the form of the potential in the Einstein
frame is the same as that of the Starobinsky model [24], with the important difference that
the exponent here is controlled by the amount of explicit breaking in the field theory. In
contrast, in the original Starobinsky model the exponent is fixed by 4D general covariance.
To understand why the Starobinsky potential is a special case of Eq. (3.3), however, all
one needs is scaling symmetry. The starting action of [24] can be thought of as a special
case of scale invariant theory where the breaking of scale invariance is induced purely
gravitationally, by an explicit M2

P lR term. This immediately explains the necessity that in
the Starobinsky inflation, the R2 termmust dominate overM2

P lR to yield inflation: the scale
symmetry breaking term must be subleading in the UV for the protection mechanism to
be operational. This is also the reason behind the emergence of the same type of potentials
in the context of induced gravity, as explained in [25].

The slow-roll parameters are given by

�V =
M2

P l

2

�
V �(ϕ)

V (ϕ)

�2

=
2�2ξ

(1− e�
√
ξϕ/MPl)2

, ηV = M2
P l

V ��(ϕ)

V (ϕ)
= �V

�
2− e�

√
ξϕ/MPl

�
.

(3.4)
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A single relevant operator

• The slow-roll parameters:

•Number of e-folds of inflation:

•Parameters of power spectrum:  
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Figure 1: Values of ns and r for �
√
ξ ∈ [−0.5, 0.5], for ϕ0 < �ϕ� = 0. The same results are

obtained for ϕ0 > �ϕ� = 0, but with opposite signs for �. The points shown correspond to
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√
ξ = −0.001,−0.01,−0.05, 0.001, 0.01, 0.1, 0, 5. The red and blue contours show the 68%

and 95% confidence regions by Planck and BICEP2 respectively.

3.2 A Cosh Potential

Another simple potential could arise in the presence of a marginally relevant and marginally

irrelevant perturbation. For simplicity we take their dimensions to be 4 ± �, though one

could of course also choose two independent dimensions.
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This potential is clearly the non-compact analogue of the generic axion-type potentials

for the case of a broken compact symmetry. Note, that the analogue of the axion decay

constant appearing here is effectively given by MP l/�
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However, here obtaining a ‘large decay constant’ and allowing for an even larger range of
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3.2 A Cosh Potential

Another simple potential could arise in the presence of a marginally relevant and marginally

irrelevant perturbation. For simplicity we take their dimensions to be 4 ± �, though one

could of course also choose two independent dimensions.

V (Φ) = −α2Φ4
+ β2Φ4−�

+ γ2Φ4+� . (3.10)

The minimum of the potential is at

�Φ� =
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2α2

+
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4α4 + β2γ2(4− �)(4 + �)

γ2(4 + �)

�1/�

. (3.11)

The inflaton potential in the Einstein frame reads, after fixing β again such that V (�Φ�) = 0,

V (ϕ) =
M4

P l

4

α2

ξ̃2

�
cosh(�

�
ξϕ/MP l)− 1

�
. (3.12)

This potential is clearly the non-compact analogue of the generic axion-type potentials

for the case of a broken compact symmetry. Note, that the analogue of the axion decay

constant appearing here is effectively given by MP l/�
√
ξ, which can be � MP l for small �.

However, here obtaining a ‘large decay constant’ and allowing for an even larger range of

variation of ϕ is straightforward.

In this case the slow-roll parameters and the number of e-folds of inflation are

�V =
1

2
�2ξ coth2
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�

ξϕ/2MP l) , ηV =
�V

cosh(�
√
ξϕ/MP l)

, (3.13)
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N � 2

�2ξ
log

�
cosh(�

�
ξϕ/2MP l)

�
, (3.14)

which again only depend on the combination �
√
ξ. In Fig. 2 we show the line of values

of ns and r for �
√
ξ ∈ (0, 0.5], with points at �

√
ξ = 0.1, 0.01, for either sign of ϕ0. The

same results are obtained for negative �. Small values of |�| yield approximately the same
result as for � = 0.01 (which is also very similar to the result at small � for the previous
potential, see Fig. 1). Thus this particular model predicts a relatively large tensor-to-scalar
ratio r ∼> 0.1. This is not surprising since the potential is an extrapolation of the quadratic
potential, which generically yields larger r [3, 11].

The normalization of the scalar power spectrum reads,

Ps =
α2

12π2ξ̃2
sinh2(�2ξNcmb)

�2ξ
, (3.15)

again an increasing function of �
√
ξ and decreasing with ξ̃. Taking ξ̃ � 16π2 and for

�
√
ξ = ±0.01,

Ps �
� α

0.1

�2
× 10−9 . (3.16)

3.3 A Potential with a Matter Induced Cosmological Constant

Let us now assume that matter interactions contained in LM generate a non-zero contri-
bution to the vacuum energy. In addition we include the effect of a marginally relevant
operator with dimension 4− �. The resulting potential is

V (Φ) = α2Φ4 − β2Φ4−� + Λ4
M . (3.17)
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Potential with matter induced CC
•CC from matter and one marginally irrelevant op dim

•Full potential:

•Minimized at 

•In Einstein frame:

•Example of a racetrack inflation model    

3.1 A Single Relevant Operator

The first example takes the effect of a single marginally relevant operator with dimension
4−� into account, while also requiring the cosmological constant to vanish at the minimum
of the potential. This type of potential [19,20] naturally shows up in warped extra dimen-
sions [21] after modulus stabilization via the Goldberger-Wise mechanism [22, 23] (which
indeed corresponds to turning on a marginally relevant operator in the dual conformal field
theory language). The resulting approximately scale invariant potential is

V (Φ) = Φ4
�
α + βΦ−�

�2
, (3.1)

where � corresponds to the anomalous dimension of the operator breaking scale invariance,
� � 1. This potential is minimized at

�Φ� =
�
α

β

�1/�

, (3.2)

and the potential at the minimum vanishes to reproduce an (approximately) zero vacuum
energy density at the end of inflation. This is where we tune away the cosmological constant
(at this point neglecting any other contributions to the cosmological constant from LM).

The inflaton potential in the Einstein frame reads

V (ϕ) =
M4

P l

4

α2

ξ̃2

�
1− e−�

√
ξϕ/MPl

�2
. (3.3)

As expected this is a very flat potential, as long as � � 1. Flatness is a result of a small
explicit breaking of scale invariance. Note that the form of the potential in the Einstein
frame is the same as that of the Starobinsky model [24], with the important difference that
the exponent here is controlled by the amount of explicit breaking in the field theory. In
contrast, in the original Starobinsky model the exponent is fixed by 4D general covariance.
To understand why the Starobinsky potential is a special case of Eq. (3.3), however, all
one needs is scaling symmetry. The starting action of [24] can be thought of as a special
case of scale invariant theory where the breaking of scale invariance is induced purely
gravitationally, by an explicit M2

P lR term. This immediately explains the necessity that in
the Starobinsky inflation, the R2 termmust dominate overM2

P lR to yield inflation: the scale
symmetry breaking term must be subleading in the UV for the protection mechanism to
be operational. This is also the reason behind the emergence of the same type of potentials
in the context of induced gravity, as explained in [25].

The slow-roll parameters are given by

�V =
M2

P l

2

�
V �(ϕ)

V (ϕ)

�2

=
2�2ξ

(1− e�
√
ξϕ/MPl)2

, ηV = M2
P l

V ��(ϕ)

V (ϕ)
= �V

�
2− e�

√
ξϕ/MPl

�
.

(3.4)
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Figure 2: Line of values of ns and r for �
√
ξ ∈ (0, 0.5], with points at �

√
ξ = 0.1, 0.01, for

either sign of ϕ0. The same results are obtained for negative �. The red and blue contours
show the 68% and 95% confidence regions by Planck and BICEP2 respectively.

N � 2

�2ξ
log

�
cosh(�

�
ξϕ/2MP l)

�
, (3.14)

which again only depend on the combination �
√
ξ. In Fig. 2 we show the line of values

of ns and r for �
√
ξ ∈ (0, 0.5], with points at �

√
ξ = 0.1, 0.01, for either sign of ϕ0. The

same results are obtained for negative �. Small values of |�| yield approximately the same
result as for � = 0.01 (which is also very similar to the result at small � for the previous
potential, see Fig. 1). Thus this particular model predicts a relatively large tensor-to-scalar
ratio r ∼> 0.1. This is not surprising since the potential is an extrapolation of the quadratic
potential, which generically yields larger r [3, 11].

The normalization of the scalar power spectrum reads,

Ps =
α2

12π2ξ̃2
sinh2(�2ξNcmb)

�2ξ
, (3.15)

again an increasing function of �
√
ξ and decreasing with ξ̃. Taking ξ̃ � 16π2 and for

�
√
ξ = ±0.01,

Ps �
� α

0.1

�2
× 10−9 . (3.16)

3.3 A Potential with a Matter Induced Cosmological Constant

Let us now assume that matter interactions contained in LM generate a non-zero contri-
bution to the vacuum energy. In addition we include the effect of a marginally relevant
operator with dimension 4− �. The resulting potential is

V (Φ) = α2Φ4 − β2Φ4−� + Λ4
M . (3.17)
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which has its minimum at

�Φ� =
�
β2

(4− �)

4α2

�1/�

, (3.18)

The inflaton potential in the Einstein frame is, after fixing ΛM such that the overall cos-

mological constant vanishes at the minimum V (�Φ�) = 0,

V (ϕ) =
M4

P l

4(4− �)

α2

ξ̃2

�
4

�
1− e−�

√
ξϕ/MPl

�
− �

�
1− e−4

√
ξϕ/MPl

��
. (3.19)

This is an example of racetrack inflation (see for example [27]). This potential gives rise

to a long slow-roll inflation only for ϕ > �ϕ� = 0, given that for negative values of ϕ the

constant Λ4
M term in the dilaton potential dominates.

6
In addition � > 0 is needed with all

other signs fixed; if � < 0, one needs to change the signs of the potential terms according

to α2 → −α2
, β2 → −β2

, Λ4
M → −Λ4

M .

In this case the slow-roll parameters are

�V =

�2ξ
�
1− e(�−4)

√
ξϕ/MPl

�2

2
�
1− 4−�

4 e�
√
ξϕ/MPl − �

4e
(�−4)

√
ξϕ/MPl

�2 , ηV =
�ξ(�− 4e(�−4)

√
ξϕ/MPl)

1− 4−�
4 e�

√
ξϕ/MPl − �

4e
(�−4)

√
ξϕ/MPl

.

(3.20)

The number of e-folds can be computed analytically leading to an expression involving

hypergeometric functions. However, in order to get an idea of the parametric dependence

of the predictions of the model on its parameters we can expand the potential Eq. (3.19)

in a Taylor series in the exponentials when ϕ > MP l, which is clearly required to be in

the slow-roll regime. Then (also neglecting terms proportional to � where � is not in the

exponential),

V (ϕ) = M4
P l

α2

ξ̃2

�
1− e−�

√
ξϕ/MPl

�
. (3.21)

The slow-roll parameters reduce to

�V =
�2ξ

2
�
1− e�

√
ξϕ/MPl

�2 , ηV =
�2ξ

1− e�
√
ξϕ/MPl

. (3.22)

The results of ns and r are shown in Fig. 3, for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2
].

The dots correspond to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2

, with orange lines

of constant � and varying ξ̃ up to ξ̃ = 1/16π2
. The black lines are for fixed ξ̃ = 1/16π2, 16π2

and varying �. Notice that the sensitivity on � decreases for decreasing ξ̃. This follows

because as ξ̃ becomes small, by Eq. (2.6), ξ � 2ξ̃ is decreasing as well. Hence the slow-roll

parameters in this limit are getting smaller and the slow-roll approximation is progressively

more efficient. Thus larger variation of � will be allowed without spoiling the slow-roll

6Depending on the value of ξ, power law inflation may be possible for ϕ < 0, but we will ignore this
case here.
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(3.20)

The number of e-folds can be computed analytically leading to an expression involving

hypergeometric functions. However, in order to get an idea of the parametric dependence

of the predictions of the model on its parameters we can expand the potential Eq. (3.19)

in a Taylor series in the exponentials when ϕ > MP l, which is clearly required to be in

the slow-roll regime. Then (also neglecting terms proportional to � where � is not in the

exponential),

V (ϕ) = M4
P l

α2

ξ̃2

�
1− e−�

√
ξϕ/MPl

�
. (3.21)

The slow-roll parameters reduce to

�V =
�2ξ

2
�
1− e�

√
ξϕ/MPl

�2 , ηV =
�2ξ
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√
ξϕ/MPl

. (3.22)

The results of ns and r are shown in Fig. 3, for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2
].

The dots correspond to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2

, with orange lines

of constant � and varying ξ̃ up to ξ̃ = 1/16π2
. The black lines are for fixed ξ̃ = 1/16π2, 16π2

and varying �. Notice that the sensitivity on � decreases for decreasing ξ̃. This follows

because as ξ̃ becomes small, by Eq. (2.6), ξ � 2ξ̃ is decreasing as well. Hence the slow-roll

parameters in this limit are getting smaller and the slow-roll approximation is progressively

more efficient. Thus larger variation of � will be allowed without spoiling the slow-roll

6Depending on the value of ξ, power law inflation may be possible for ϕ < 0, but we will ignore this
case here.
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The number of e-folds can be computed analytically leading to an expression involving

hypergeometric functions. However, in order to get an idea of the parametric dependence

of the predictions of the model on its parameters we can expand the potential Eq. (3.19)

in a Taylor series in the exponentials when ϕ > MP l, which is clearly required to be in

the slow-roll regime. Then (also neglecting terms proportional to � where � is not in the

exponential),
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The slow-roll parameters reduce to
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The results of ns and r are shown in Fig. 3, for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2
].

The dots correspond to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2

, with orange lines

of constant � and varying ξ̃ up to ξ̃ = 1/16π2
. The black lines are for fixed ξ̃ = 1/16π2, 16π2

and varying �. Notice that the sensitivity on � decreases for decreasing ξ̃. This follows

because as ξ̃ becomes small, by Eq. (2.6), ξ � 2ξ̃ is decreasing as well. Hence the slow-roll

parameters in this limit are getting smaller and the slow-roll approximation is progressively

more efficient. Thus larger variation of � will be allowed without spoiling the slow-roll

6Depending on the value of ξ, power law inflation may be possible for ϕ < 0, but we will ignore this
case here.
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The number of e-folds can be computed analytically leading to an expression involving

hypergeometric functions. However, in order to get an idea of the parametric dependence

of the predictions of the model on its parameters we can expand the potential Eq. (3.19)

in a Taylor series in the exponentials when ϕ > MP l, which is clearly required to be in

the slow-roll regime. Then (also neglecting terms proportional to � where � is not in the

exponential),
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The slow-roll parameters reduce to
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The results of ns and r are shown in Fig. 3, for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2
].

The dots correspond to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2

, with orange lines

of constant � and varying ξ̃ up to ξ̃ = 1/16π2
. The black lines are for fixed ξ̃ = 1/16π2, 16π2

and varying �. Notice that the sensitivity on � decreases for decreasing ξ̃. This follows

because as ξ̃ becomes small, by Eq. (2.6), ξ � 2ξ̃ is decreasing as well. Hence the slow-roll

parameters in this limit are getting smaller and the slow-roll approximation is progressively

more efficient. Thus larger variation of � will be allowed without spoiling the slow-roll

6Depending on the value of ξ, power law inflation may be possible for ϕ < 0, but we will ignore this
case here.
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The number of e-folds can be computed analytically leading to an expression involving

hypergeometric functions. However, in order to get an idea of the parametric dependence

of the predictions of the model on its parameters we can expand the potential Eq. (3.19)

in a Taylor series in the exponentials when ϕ > MP l, which is clearly required to be in

the slow-roll regime. Then (also neglecting terms proportional to � where � is not in the

exponential),
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The slow-roll parameters reduce to

�V =
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The results of ns and r are shown in Fig. 3, for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2
].

The dots correspond to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2

, with orange lines

of constant � and varying ξ̃ up to ξ̃ = 1/16π2
. The black lines are for fixed ξ̃ = 1/16π2, 16π2

and varying �. Notice that the sensitivity on � decreases for decreasing ξ̃. This follows

because as ξ̃ becomes small, by Eq. (2.6), ξ � 2ξ̃ is decreasing as well. Hence the slow-roll

parameters in this limit are getting smaller and the slow-roll approximation is progressively

more efficient. Thus larger variation of � will be allowed without spoiling the slow-roll

6Depending on the value of ξ, power law inflation may be possible for ϕ < 0, but we will ignore this
case here.
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Figure 3: Values of ns and r for � ∈ [−0.5, 0.5] and ξ̃ ∈ [1/16π2, 16π2]. The dots correspond

to �
√
ξ = −0.1,−0.001, 0.001, 0.1, 0.5 and ξ̃ = 16π2, with orange lines of constant � and

varying ξ̃ up to ξ̃ = 1/16π2. The black lines are for fixed ξ̃ = 1/16π2, 16π2 and varying

�. The red and blue contours show the 68% and 95% confidence regions by Planck and

BICEP2 respectively.

approximation. The most favorable limit in this case is ξ̃ � 16π2, and so the COBE

normalization of the scalar power spectrum, taking for example �
√
ξ = ±0.01, is

Ps �
� α

0.05

�2
× 10

−9
. (3.23)

3.4 Power Law Potentials

As a final example, let us switch our vantage point and consider other plausible potentials

directly in the Einstein frame, thinking about the dilaton dependent terms in terms of the

canonically normalized Goldstone inflaton. This viewpoint opens up a panorama of scaling

symmetry breaking potentials which arise from loop-generated terms. By the original

assumption that the breaking of scaling symmetry is small, these terms will be naturally

small also, remaining under the protection of the shift symmetry.

Specifically, one can imagine radiatively generated contributions to the dilaton/inflaton

potential from say, n-loop diagrams in perturbation theory. Scaling symmetry sets the func-

tional form to be ∼ βnΦ4[log(Φ/Λ�)]
n, where βn is proportional to the n-loop β-function.

In the Einstein frame these give rise to power law potentials

Vn ∼ βn�Φ�4
�√

ξϕ

MP l

�n

∼ βn
ϕn

M
n−4
P l

, (3.24)

where the shift symmetry of ϕ ensures that βn is small and under control, with the expec-

tation βn ∼ O(1/16π2)n.
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where the shift symmetry of ϕ ensures that βn is small and under control, with the expec-

tation βn ∼ O(1/16π2)n.
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3.4 Power Law Potentials

As a final example, let us switch our vantage point and consider other plausible potentials

directly in the Einstein frame, thinking about the dilaton dependent terms in terms of the

canonically normalized Goldstone inflaton. This viewpoint opens up a panorama of scaling

symmetry breaking potentials which arise from loop-generated terms. By the original

assumption that the breaking of scaling symmetry is small, these terms will be naturally

small also, remaining under the protection of the shift symmetry.

Specifically, one can imagine radiatively generated contributions to the dilaton/inflaton

potential from say, n-loop diagrams in perturbation theory. Scaling symmetry sets the func-

tional form to be ∼ βnΦ4[log(Φ/Λ�)]
n, where βn is proportional to the n-loop β-function.

In the Einstein frame these give rise to power law potentials
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Cutoff scale and higher orders
•Easiest to analyze in Einstein frame

•The dilaton decay constant: 

•Cutoff expected at or below 

•For example the R2 term (in Einstein frame gets corrections):

•Can think of this as integrating out a scalar with mass 

• NDA would                  giving rise to expected cutoff above.   

Such power law potentials could be the leading terms driving inflation, depending on
the details of the explicit scale invariance breaking sources (most likely those generated at
(n = 1)-loop). Even if they are not the leading terms, if the effective scale of the potential
Eq. (3.24), βn�Φ�4, is close to the scale of inflation, since the inflaton is automatically
normalized by MP l, such terms could yield interesting corrections to the leading order
inflationary potential that could leave their fingerprints on the sky (see, e.g. the discussion in
the last reference of [11] for similar corrections and their imprints on the sky in pseudoscalar-
driven inflation). The precise determination of such phenomena is beyond the scope of the
present work.

4 Cutoff Scale and Higher Order Corrections

Here we address the regime of validity of our effective field theory. This task is best per-
formed in the Einstein frame Eq. (2.4). There we can identify the inflaton decay constant,
associated to the spontaneous breaking of scale invariance, as

f =
MP l√

ξ
. (4.1)

The cutoff of such an effective theory lies at or below

ΛUV =
4π√
ξ
MP l . (4.2)

We can explicitly check that this is the case by studying the operators at higher order
in derivatives encoded in ∆L in Eq. (2.1), and identifying the effective cutoff scale that
suppresses them. One such term is R2, which in the Einstein frame gives rise to

1

g2R
R2 → 1

g2R

�
R + 6

� √
ξ

MP l
∇2ϕ− ξ

M2
P l

(∇ϕ)2
��2

. (4.3)

Each of the terms on the r.h.s. indicates that the cutoff lies at, or somewhat below, ΛUV .
For instance, the R2 term can be regarded as arising from integrating out a scalar of mass
M2

R � g2RM
2
P l, which for the NDA estimate gR ∼ 4π, sets the cutoff at ΛUV ≈ MR ∼ 4πMP l.

Similarly, the other two terms set the cutoff at ΛUV ≈ (g2R/ξ)MP l ∼ 4πMP l. Notice however
that by taking small values of ξ̃ in Eq. (2.6), for which ξ � 2ξ̃, this latter cutoff can be
raised above the naive expectation, contrary to the R2 case. The same behavior as for R2

is found for the R2
µν/g̃

2
R operator. In this case it corresponds to a spin-2 ghost field with

mass M̃2
R � g̃2RM

2
P l. As long as g̃2R is sufficiently large, the cutoff is above MP l.

Another example of operator in ∆L is,

1

g4Φ

[(∇Φ)2]2

Φ4
→ 1

g4Φ

ξ2

M2
P l

�
(∇ϕ)2

�2
, (4.4)
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1

g4Φ

[(∇Φ)2]2

Φ4
→ 1

g4Φ

ξ2

M4
Pl

[(∇Φ)2]2

Cutoff scale and higher orders
•Another example: 

•For                   we again get same expression for cutoff

•All symmetric terms derivatively coupled

•Field excursions beyond          not a problem since potential 
very flat and all terms contain derivatives

•Explicit breaking terms may not contain derivatives, but they 
are small by assumption   

gΦ ∼ 4π

in the Jordan and Einstein frames. This is again a Planck-suppressed operator, and for gΦ ∼
4π the cutoff actually lies at ΛUV ∼ 4πMP l. All of the scale invariant higher dimensional

corrections in ∆L will share this property.
7

We should stress that the inflaton is derivatively coupled, that is it only appears

through its derivatives ∇ϕ, in any of the operators in ∆L. Therefore, field excursion of the

inflaton beyond ΛUV do not constitute a problem given that the inflaton potential ensures

that its derivatives are small. Large ϕ values could be problematic in non-derivative terms,

which are associated to the explicit breaking of the shift symmetry. However, for that

very same reason — as long as the breaking of the scaling/shift symmetry is weak — they

are kept small and under control, via �-suppression. This means, that even if the actual

explicit breaking of scaling symmetry is below MP l but is weak, the low energy theory

remains extremely well protected by the approximate shift symmetry, essentially staying

valid all the way up to the scale of quantum gravity, because the scaling symmetry breaking

sector is very efficiently sequestered away from the low energy inflaton.

5 Dynamics of Matter Fields and Reheating

Finally let us turn to the dynamics of the matter fields, which is clearly quite dependent

on the UV completion. We will assume that at very high energies the SM fields are still the

proper degrees of freedom. If this is indeed the case, the couplings in the matter Lagrangian

LM are classically marginal (dimension 4) with the exception of the Higgs mass term.

Thus at tree-level the SM Lagrangian is scale invariant, while the Higgs mass parameter

constitutes a small explicit breaking of O(m2
H
/M2

P l
). A tree-level Higgs-dilaton quartic

coupling is classically scale invariant and will thus not generate any mass for the dilaton:

instead it contributes at loop-level to the dilaton quartic self interaction (after taking into

account that the cutoff is proportional to the dilaton itself, a necessary condition to ensure

that the UV regulator does not yield strong scaling symmetry breaking).
8

At loop-level

the SM couplings run, but the β-functions at high energies are perturbatively small, being

at most O(1/16π2
). These effects will yield small explicit breaking parameters that could

be potentially identified with the parameter βn in Eq. (3.24).

The exact form of the couplings between the dilaton/inflaton and the SM matter fields

7One should keep in mind in this discussion that loop corrections to the graviton sector point in fact
to an effective low-energy cutoff somewhat below MPl. Generically, because of a number N of light matter
modes, the low-energy effective action begins to break down at scales ΛUV,grav ∼ 4πMPl/

√
N . Therefore,

if MPl is fixed before inflation and never changes, this implies an upper bound on the number of light
matter degrees of freedom, N � (MPl/H)2, in order to guarantee that the geometry of inflation looks 4D
for a Hubble scale H during inflation. If BICEP2 is correct, H ∼ 1014 GeV and thus N � 108, which
constitutes a rather mild constraint. Therefore, these arguments do not affect the dynamics of the inflaton,
for the reasons we discussed above.

8However such a Higgs-dilaton coupling would give rise to a large contribution to the Higgs mass, and
for this reason should be small.
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Dynamics of matter fields & reheating

•Very UV dependent. Assume SM fields still good degrees of 
freedom.  

•All couplings classically marginal except Higgs mass term, 
which causes small explicit breaking

•Tree-level Higgs-dilaton quartic OK for dilaton (does not 
generate dilaton mass if cutoff done properly), but probematic 
for Higgs 

•Loop level SM couplings run but small                    beta 
functions 

•Could be small parameters       for loop induced polynomial 
potential
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N . Therefore,
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Dynamics of matter fields & reheating

•Coupling to SM fields: usually treat dimensionful parameters 
as spurions and dress them with

•Even if absent in Jordan frame derivative couplings will be 
generated from  

•For example Higgs-dilaton coupling
in Einstein frame

•Gives rise to                              via longitudinal modes

•Decay rate:

•Expression of mass in simplest model:  

are somewhat dependent on the details of the embedding of the SM fields into the scale
invariant UV theory. To obtain their couplings, one can usually dress the dimensionful
parameters, treated as spurionic fields, with the appropriate powers of Φ/�Φ� = e

ϕ/f , with
f = MP l/

√
ξ. Moreover, one must be aware that, even if absent in the Jordan frame, once

in the Einstein frame (and for canonically normalized matter fields), derivative couplings
of the inflaton to the SM fields are generated.

This is the case for instance for the coupling of the inflaton to the Higgs field: a
coupling of the form −

√
ξ|H|2∂2ϕ/MP l appears in the Einstein frame, through which the

inflaton can decay to the longitudinal components of WW and ZZ, and to the Higgs boson.
This is consistent with the shift symmetry acting on the Goldstone ϕ, given that it is a
derivative coupling. Notice furthermore that this decay ϕ → WW,ZZ, hh can only proceed
if the shift symmetry is explicitly broken, which in this case comes in the form of mϕ �= 0.
One might be concerned that, given that the Higgs field must get a VEV and break the
electroweak symmetry, the associated Goldstone modes can be rotated away from the term
above by going to the unitary gauge. However, one must notice that such a term induces
a mixing between the Higgs boson and the inflaton, leading to a decay rate of (including
the decay to the Higgs boson)

Γϕ→WW,ZZ,hh � 4ξ

32π

m
3
ϕ

M
2
P l

� 0.5GeV

�
ξ

1/12

��
mϕ

1013 GeV

�3
, (5.1)

where the reduced Planck mass is MP l � 2.5 × 1018 GeV, and the mass of the inflaton, in
the simplest example of Sec. 3.1 is given by

mϕ = MP l
α�

√
ξ

ξ̃
� 1013

� α

0.1

��
�
√
ξ

0.01

��
16π2

ξ̃

�
GeV . (5.2)

Although generically subleading in what regards the inflaton decay rate, we can also
consider the coupling of the inflaton to two massless SM gauge bosons. It can be read off
from the running of the corresponding gauge couplings, and is thus related to the associated
β-functions. If the SM gauge sector arises as a composite or a partially composite of the
sector that spontaneously breaks scale invariance, then the inflaton will couple to two gauge
bosons proportionally to the change in the β-function of the SM group during the transition
from the unbroken to the broken phase [20]:

αSM

8π
(bIR − bUV )F

µν
Fµν

�
ξ

ϕ

MP l
. (5.3)

This coupling is loop suppressed compared to the WW,ZZ couplings and is usually sub-
leading (unless ∆b is very large), giving rise to a contribution to the dilaton width

Γϕ→2g �
α2
s

256π3
∆b
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sξ

m
3
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2
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� 3 keV
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mϕ
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(∆bs)

2
, (5.4)

where we have taken αs � 1/25.
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ϕ → 2g

Dynamics of matter fields & reheating

•Resulting reheat temperature: 

•Assuming

•High enough for EW baryogenesis, but sufficiently low to 
avoid GUT defects

•Note:               suppressed compared to massive GB’s

•Coupling given by

•Much smaller width     

The reheat temperature is generically dominated by ϕ → WW,ZZ, hh decays, and is
given by

TRH ∼ g−1/4
∗ (ΓMP l)

1/2 ∼ 3× 108 GeV , (5.5)

for g∗ ∼ O(100) and for the parameters chosen above. We can see that this temperature
is high enough to accommodate (electroweak) baryogenesis, but sufficiently low to avoid
restoration of high scale symmetries (like GUT) and prevent any regeneration of undesired
topological defects.

6 Summary

The class of models of inflation which we have built here rest on a few simple assumptions:

• We start with an underlying theory which includes gravity and has scaling symmetry.

• The scaling symmetry is spontaneously broken at a scale above the scale of inflation,
simultaneously generating the low-energy Planck scale and allowing for the effective
4D cosmology with a set scale of inflation V 1/4 ∼

√
MP lH.

• Explicit scaling symmetry breaking appears only through almost marginal operators
with small anomalous dimensions (associated with non-trivial β-functions).

Given these assumptions,9 we can write down the low-energy effective theory for the
dilaton and the graviton, and their couplings to matter fields. Since the dilaton is the
Goldstone boson of the spontaneously broken scaling symmetry, its dynamics has an ap-
proximate shift symmetry. Hence its potential, and specifically its mass, is suppressed by
the factors of anomalous dimensions.

Once we transform the theory to the Einstein frame, the dilaton naturally becomes a
perfect candidate for an inflaton field. The non-compact nature of the symmetry allows for
a range of field values larger than the Planck scale, and the approximate shift symmetry
ensures that the slow-roll conditions are satisfied. From the point of view of inflationary
model building, this gives a natural and powerful tool to construct efficient models of large
field inflation. This may be necessary to explain the observations if the claimed discovery
of primordial tensor fluctuations by BICEP2 [5] is correct. Our construction automatically
accommodates a wide range of values of r for a fixed spectrum of scalar perturbations Ps.

9An issue we have sidestepped here regards the effects of the non-perturbative gravitational corrections,
believed to be a serious obstacle to the existence of global symmetries in field theories coupled to gravity.
In our case, since the global symmetry is scaling — intricately related to the spacetime symmetries — and
the global symmetry breaking is very sensitive to the nature of the UV completion [29], it is not clear that
the non-perturbative gravitational effects would be detrimental. If the UV theory has a full conformal
symmetry linked to spacetime symmetries, such effects could be suppressed.
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bosons proportionally to the change in the β-function of the SM group during the transition
from the unbroken to the broken phase [20]:
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are somewhat dependent on the details of the embedding of the SM fields into the scale
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f = MP l/

√
ξ. Moreover, one must be aware that, even if absent in the Jordan frame, once

in the Einstein frame (and for canonically normalized matter fields), derivative couplings
of the inflaton to the SM fields are generated.
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√
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inflaton can decay to the longitudinal components of WW and ZZ, and to the Higgs boson.
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One might be concerned that, given that the Higgs field must get a VEV and break the
electroweak symmetry, the associated Goldstone modes can be rotated away from the term
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consider the coupling of the inflaton to two massless SM gauge bosons. It can be read off
from the running of the corresponding gauge couplings, and is thus related to the associated
β-functions. If the SM gauge sector arises as a composite or a partially composite of the
sector that spontaneously breaks scale invariance, then the inflaton will couple to two gauge
bosons proportionally to the change in the β-function of the SM group during the transition
from the unbroken to the broken phase [20]:
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Summary

•Few simple assumptions lead to a robust inflationary model: 

•Low energy theory of dilaton has very flat potential protected 
by shift symmetry 

•Since Goldstone corresponding to non-compact direction 
can easily get large field range

•Underlies many scale-invariant models 

•Can give large field inflation, r can be sizable (or smallish), 
successful phenomenology

1. Underlying gravity theory scale invariant
2. Scale symmetry spontaneously broken generating 
Planck scale and giving rise to inflation
3. Explicit breaking small


