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Introduction

e|nflation leading candidate for theory of early Universe

*Explains why Universe is big, old and smooth

*Gives prediction of initial spectrum of density fluctuations,
almost scale invariant
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Introduction
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Large field inflation?

o|f BICEP2 results hold, suggests large field inflation Ay > Mp;

]\A4—z = O() x (0?081)1/2

e Potential should remain very flat during inflation, but difficult
to do since potentially large quantum corrections

*One potential approach: inflaton is pseudo-Goldstone boson
Inflaton ~ axion, shift symmetry protects potential

*Not so easy to get large field displacements (inflaton is a

phase, need to wind around many times).
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Dilaton as inflaton?

*Could the inflaton be a scalar (rather than pseudo-scalar)?

*Should be Goldstone not of an internal symmetry (phase) but
rather of a space-time symmetry (real exponential)

*Scale transformations provide such a candidate, dilaton
*Goldstone boson of broken scale invariance
*Non-compact symmetry - accommodates large A ¢

*Scale invariance — shift symmetry — protection of potential
like for axion case



Dilaton basics

*Scale transformations 1z — '’ =e %z
*Operators transform  O(x) — O'(z) = eO‘AO(eO‘x)
*Ais full dimension, classical plus quantum corrections

*Change in action:
S = Z/d% 3:0;(x) — S = Z/d%e&(&_‘bgi(’)i(x)

*Assume spontaneous breaking of scale inv. (SBSI)

(©) = I



Dilaton basics

*Dilaton: Goldstone of SBSI, o, transforms non-linearly under

scale transf.: O'(.flf) N O'(eaﬁlj) —I— Oéf

*Restore scale invariance by replacing VEV

fofx=rel

eEffective dilaton Lagrangian is then (using NDA for coeffs)

- @2nxm
Lo = E ’
ff =, (47T)2(n—1) f2(n=2) y2n+m—4
f2

= —apo (4m)° A x* + =(0,x)° + (

azs (0x)*
47-‘-)2 X4

5 + ...



Dilaton dynamics

*Main point of dilaton: effective action can have non-derivative
x4 term - just the cosmological constant in the composite
sector

2
S = /d%%(@x)z — af*x* + higher derivatives

|

a>0

e Generically a#z0. Will make SBSI difficult: f

|
o

ea>0: VEV at f=0, no SBSI 1

a<0

*a<0: runaway vacuum f—eo

*a=0 arbitrary f
a=20

*Need to add additional almost-marginal operator to generate
dilaton potential



Dilaton dynamics

*Perturbation: 69 = / d*z (1) O

eDilaton potential: V' (x) = f*F(\(f)) vacuum energy in
units of f

aft — fAF(A(f))

*Tohave a VEV: V' = f3[4F(\(f)) + BE'(A(f))] =0

eDilaton mass:

may = [*B[BF" + 4F' + B'F'] = 4f*BF'(M(f)) = —16f*F(A(f))



Dilaton-aravit l

*Assume scale invariant Lagrangian for O dilaton and Juv
graviton

*Dilaton VEV will set Planck scale (EH term would violate
scale invariance)

*Assume dilaton initially displaced far from VEV, rolling to
minimum will lead to inflation

e[ agrangian:

L=+/—g|(D’R — %(VCD)Q - V(cb)] + AL(G, @) + L (g, @, V)

*Scale invariant potential just a quartic V' (®) = o’ d*



Dilaton- T :
*\\Ve treat this as a low-energy effective theory, won't try to
UV complete

*Since Mp; appears dynamically, suspect that graviton
dynamics also arises dynamically

*Possibilities: induced gravity? Start with no kinetic term for
graviton...

eComposite gravity? Weinberg-Witten thm. says can not have
a globally conserved stress tensor that becomes local in IR.

*May not have conserved stress tensor in UV
eComposite sector has its own conserved stress tensor and
all matter couples to that (like Seiberg duality for gauge

groups)



Dilaton-aravit l

eConformal invariance would fix g — 1/12 . Will not fix that,
instead assume NDA size & = O(16n2)

eDilaton VEV will set Planck scale (EH term would violate

scale invariance) <(I)> — 1/25

*Assume dilaton initially displaced far from VEV, rolling to
minimum will lead to inflation

Aﬁ(gw, ) contains additional derivative interactions
that are scale invariant (for example R* would be there)

o EM(guw ®, ¥) contains interactions with matter (could
violate scale invariance)



In Einstein E
e To understand dynamics, rescale metric to move from
Jordan frame to Einstein frame: ¢, — 2°g,.

2

* This is determined by Q2¢®? = Mp Field dependent
rescaling of metric 2

*Rescaled Lagrangian:

L=v—g|=2R— (Vo) = V(p)| + AL (©) g, D(©)) + L ((0) g, D(0), )

_ Mj-;z V(®(p))

ePotential in Einstein frame: V() © (y)
2 p



Einstein f

eEinstein frame inflaton:

1 1
¢(¢>:<¢>6XP(§;{;> ; 522—54‘6-
. . _ Mp
*Will have shift symmetry ©— P =@+ %A

» Given the relation ¢ = (Mp;/+/€) log(® /(D))

elf startoutat Py ~ 107°(P) ~ TeV rolito (P) ~ Mp,

\\Ve obtain |Agp‘ ~ 15Mp; aseemingly super-
Planckian field excursion in Einstein frame (though never left
effective theory)



Einstein f

*The potential: CVZCI)4 will become completely flat in
Einstein frame - consequence of scale invariance/shift

symmetry.
*Need small explicit breaking terms to fix dilaton VEV
eCan come from interaction with matter

*As long as breaking terms small approximate shift symmetry
will remain



; imatel le invariant potential

*\Will add small explicit breaking terms
*Require that cosmological constant at minimum vanishes

*This is added by hand - scale invariance does not tell
anything about cc

*CC is vacuum energy created during the phase transition
*To exit inflation will need to tune this to zero

*Nothing new to say about the cc



A single relevant operator
eAdd one marginally relevant operator of dimension 4 —¢

*Typical in warped extra dimension (Goldberger-Wise)
*Full potential: V' (®) = & (a + ﬁCD_e)Q

Minimized at  (®) = — <2> 6
4 2
*In Einstein frame: V(p) = %%2 (1 - e—eﬁso/Mpl)z

eSame potential as for Starobinsky model
*Exponent controlled by small breaking parameter €
eStarobinsky special case: if R? dominates also scale

invariant. But here don’t need to assume very large
coefficient of higher dim. operator



A single relevant operator

* The slow-roll parameters:

€y

_ My (V@ _ 2¢*¢ _ a2 Vo)
2 \Vip) ) ~ (A —eBeimyz’ VT PTGy

eNumber of e-folds of inflation:

1 V() 1 [ o
N ~ _/ dp = —— (66\/3¢0/Mpz _ 1)
Mz Jo  Vip) 2€°¢

eParameters of power spectrum:

| A |
7Dsz 4 %
2472 M5, €
Pt * dlIlPs * *
r:E:meV, nszl—l—dlnk21+2nv—6ev




A single relevant operator

*The region of r vs. ns:
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A single relevant operator
¢COBE normalization:

042 Sinh4(e\/ggpcmb/2Mpl)

_ -9
— 2471-252 €2€ Y ].O

S

*|[ncreases with €
*How large € expected? 1/In(Mp;/A,)

eExample numbers: A, ~ 10™3Mp; yields € ~ 0.1,
Ao ~ 105" Mp; gives € ~ 0.01

eTaking ev/€ ~ 0.01,¢ ~ 1672



A cosh potential

*One marginally relevant, one marginally irrelevant 4 -

eFull potential:  V(®) = —a?®* + 32d* ¢ + 2 Pptte

o _ (2074 /I A=+ e
(®) = v2(4 + ¢€)

*Minimized at
. . Mg, o?

|In Einstein frame: Vi(y) = 7z (Cosh(E\/EsO/Mpz) - 1)

*Non-compact analog of generic axion potentials

eAnalog of axion decay constant Mpz/ ev/E.

eCan be > Mp; for small €



A cosh potential

* The slow-roll parameters:

1
ey = §e2§ CothQ(G\/gSO/QMPl) ’ by = cosh(e\;gSO/MPl) |

eNumber of e-folds of inflation:

N ~ % log [COSh(E\/gSO/ZMPl)}

o sinh®(e2¢ Nap)

eParameters of power spectrum: Ps = Lom2Es Y.

= (%)2 x 107° for e\/g ~ 0.01,§~ 1672



A cosh potential

*The region of r vs. ns:
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Potential with matter induced CC

*CC from matter and one marginally irrelevant op dim4 —e

eFull potential:  V(®) = o*®* — B°®*° + Aj,

B%(4 — € 1/e
*Minimized at <‘P>:( (40{2 ))

e|n Einstein frame:

Vip) = 4(24%6) 2;2 [4 (1 — e‘eﬁWMPl) — € (1 _ 6—4\/§¢/Mpz)]

*Example of a racetrack inflation model



* The slow-roll parameters:

2
625 (1 _ 6(6—4)\/E<P/Mpl) 65(6 - 46(6_4)\/E<P/MP1)

ey = , _
v 2 (1 — %eex/gw/MPl — 26(6—4)\/&0/1\4}31)2 b7 1— %66\@“’/}\/]}’1 — 26(6—4)\/@3/1\/[131

*Number of e-folds complicated Hypergeometric, to simplify
expand potential for large values:

V() = Mp ; [1 —eeVe WMPZ]

*Approximate slow-roll parameters

e2¢ e2¢
€y = : = .
v 2 (1 — 66\/E<P/MP1)2 L 1 — ecVer/Mpy




*The region of r vs. ns:
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Power law potentials
*Most commonly used inflationary potentials simple power
laws

*|n fact n-loop logarithmic corrections give exactly those!

*Effect of n-loop in Jordan frame: 3, ®*[log(®/A.)]"™

n

*In Einstein frame: 1, ~ nq>4(\/g¢> ~ B, —

o [n ~ 0(1/16w2)” n-loop beta-function, shift symmetry
ensures it is small

*Could be leading order term, or lead to interesting potentially
measurable sub-leading corrections



Cutoff scale and higher orders

*Easiest to analyze in Einstein frame

: M p;
The dilaton decay constant: f=—
Cutoff expected at or below Ayy = 4_\/7% Mp,

*For example the R? term (in Einstein frame gets corrections):

1 1 VE ¢ ’
Ly LYo € o)
T T M p; ¥ M]%l( 2

*Can think of this as integrating out a scalar with mass
My, ~ gp Mg,

 NDA would gr ~ 47 giving rise to expected cutoff above.



Cutoff scale and higher orders
*Another example:
1L [(V®)]? 1 &

\
/4

gy P4 9 Mp,

(Ve)*)°

*For ga ~ 47 we again get same expression for cutoff
*All symmetric terms derivatively coupled V¢

*Field excursions beyond Ay not a problem since potential
very flat and all terms contain derivatives

*Explicit breaking terms may not contain derivatives, but they
are small by assumption



D ics of matter fields & reheati

*\VVery UV dependent. Assume SM fields still good degrees of
freedom.

*All couplings classically marginal except Higgs mass term,
which causes small explicit breaking O(m?2, /M2,)

*Tree-level Higgs-dilaton quartic OK for dilaton (does not
generate dilaton mass if cutoff done properly), but probematic
for Higgs

Loop level SM couplings run but small O(1/167%) beta
functions

*Could be small parameters S, for loop induced polynomial
potential



D ics of matter fields & reheati

*Coupling to SM fields: usually treat dimensionful parameters
as spurions and dress them with ®/(®) = e¥/f

*Even if absent in Jordan frame derivative couplings will be
generated from /g

*For example Higgs-dilaton coupling —+/&|H|?8%p/Mp;
In Einstein frame

eGivesrise to ¢ - WW,ZZ hh via longitudinal modes

_ 4¢ m3 m 3
.DeCay rate Fcp—)WW,ZZ,hh ~ 32—€7TM—§ ~ 0.5 GeV (1/512) (1013 éev)
Pl

*Expression of mass in simplest model:

- ae/§ o) e/€\ (1672
my = Mpl é =~ 1013 (ﬂ) (m) ( g ) GeV .




0 ics of matter fields & reheati

*Resulting reheat temperature:
Tri ~ g2 V4T Mp)Y? ~ 3 x 10° GeV
eAssuming g. ~ O(100)

*High enough for EW baryogenesis, but sufficiently low to
avoid GUT defects

*Note: ¢ — 2¢ suppressed compared to massive GB’s
*Coupling given by Ogg—WM (brr — buv) F’“’FW\/EMiPZ

*Much smaller width

Tyyng ™ A2 E—2 ~ 3k 2 Ab,)?
w29 = 256 550 M]%l ; eV<1/12) (1013Ge\/) (Ab,)




sSummary

*Few simple assumptions lead to a robust inflationary model:

1. Underlying gravity theory scale invariant

2. Scale symmetry spontaneously broken generating
Planck scale and giving rise to inflation

3. Explicit breaking small

[ ow energy theory of dilaton has very flat potential protected
by shift symmetry

*Since Goldstone corresponding to non-compact direction
can easily get large field range

*Underlies many scale-invariant models

*Can give large field inflation, r can be sizable (or smallish),
successful phenomenology



