From Electric-Magnetic Duality to Seiberg Duality

John Terning

- **X** Dirac Monopoles
- A Short Course on SUSY

Seiberg Duality

Electroweak Symmetry Breaking

EM Duality

- $\vec{\nabla} \cdot \vec{E} = 0, \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \cdot \vec{B} = 0, \qquad \vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t}$ $\vec{E} \to \vec{B}$
 - $\vec{B} \rightarrow -\vec{E}$

EM Duality $\vec{\nabla} \cdot \vec{E} = e \rho \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{B} = e \vec{J} + \frac{\partial \vec{E}}{\partial t}$

EM Duality $\vec{\nabla} \cdot \vec{E} = e \rho$ $\vec{\nabla} \times \vec{E} = -\frac{1}{e} \vec{J}_m - \frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \cdot \vec{B} = \frac{1}{e} \rho_m \qquad \vec{\nabla} \times \vec{B} = e \vec{J} + \frac{\partial \vec{E}}{\partial t}$ $\vec{E} \rightarrow \vec{B} \qquad \vec{J} \rightarrow \vec{J}_m \qquad \rho \rightarrow \rho_m$ $\vec{B} \rightarrow -\vec{E} \qquad \vec{J}_m \rightarrow -\vec{J} \qquad \rho_m \rightarrow -\rho$ $e \rightarrow \frac{1}{\rho}$

EM Duality
$^{*}F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$
$\partial_{\mu}F^{\mu\nu} = eJ^{\nu}$
$\partial^*_{\mu}F^{\mu\nu} = \frac{1}{e} J^{\nu}_m$
$F^{\mu\nu} \rightarrow {}^*F^{\mu\nu}$
$^*F^{\mu\nu} \rightarrow -F^{\mu\nu}$
$J^{ u} ightarrow J^{ u}_m$
$J_m^{ u} \rightarrow -J_m^{ u}$
$e \rightarrow \frac{1}{e}$

Proc. Roy. Soc. Lond. A133 (1931) 60

$$\vec{B} = \frac{g}{e} \frac{\hat{r}}{r^2}$$

$$\vec{A} = \frac{g}{e} \frac{1 - \cos \theta}{r \sin \theta} \hat{e}_{\phi}$$

$$\int_{loop} e q A^{\mu} dx_{\mu} = 4\pi qg = 2\pi n$$

$$q \longrightarrow qg = \frac{n}{2}$$

charge quantization Proc. Roy. Soc. Lond. A133 (1931) 60

't Hooft-Mandelstam

magnetic condensate confines electric charge

High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Phases of Gauge Theories

Coulomb : $V(R) \sim \frac{1}{R}$

Free electric : $V(R) \sim \frac{1}{R \ln(R\Lambda)}$

Free magnetic : $V(R) \sim \frac{\ln(R\Lambda)}{R}$

Higgs : $V(R) \sim \text{constant}$

Confining : $V(R) \sim \sigma R$

Phases of Gauge Theories

EM Duality:
 EM Duality:
 free electric
 Coulomb phase
 Coulomb phase
 Coulomb phase
 Coulomb phase

Seiberg found strongly coupled SUSY analogs where more precise tests can be made

SUSY and the problem with scalars

Weisskopf Phys. Rev. 56 (1939) 72

Supersymmetry

Gauge Interactions

Gauge Interactions

 $\sqrt{2} g T^a$

 $g^2 T^a T^a$

Scalar Mass

 $+4 g^2 \Lambda^2$

 $-g^2\Lambda^2$

Superpotential Interactions

$$\mathcal{L} = \partial^{\mu} \phi^{*j} \partial_{\mu} \phi_{j} + i \psi^{\dagger j} \overline{\sigma}^{\mu} \partial_{\mu} \psi_{j} -\frac{1}{2} \left(W^{jk} \psi_{j} \psi_{k} + W^{*jk} \psi^{\dagger j} \psi^{\dagger k} \right) - W^{j} W_{j}^{*}$$

$$W^{j} = \frac{\partial W}{\partial \phi_{j}} \qquad \qquad W^{ij} = \frac{\partial W}{\partial \phi_{i} \partial \phi_{j}}$$

W is a holomorphic function of ϕ_i

Superpotential

$$W = \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k$$

$$\mathcal{L}_{int} = -\frac{1}{2} y^{ijk} \phi_i \psi_j \psi_k - \frac{1}{2} y^*_{ijk} \phi^{*i} \psi^{\dagger j} \psi^{\dagger k}$$

$$-\frac{1}{4}y^{jkm}y^*_{npm}\phi_j\phi_k\phi^{*n}\phi^{*p}$$

Quadratic Cancellation

 $+y^2$

 $-y^2$

 $\mathcal{Q}_i = (\phi_i, \psi_i)$

 $R_{\psi} = R_{\phi} - 1$

 $\overline{\mathcal{Q}}_i = (\overline{\phi}_i, \overline{\psi}_i) \qquad \qquad R_{A_\mu} = R_\lambda - 1 = 0$

 $1 \cdot T(\mathbf{Ad}) + (R-1)T(\Box) \, 2F = 0$

$$R = \frac{F - N}{F}$$

Scalar Potential

$$D^a = g(\phi^{*in}(T^a)^m_n \phi_{mi} - \overline{\phi}^{in}(T^a)^m_n \overline{\phi}^*_{mi})$$

$$V = \frac{1}{2}D^a D^a \ge 0$$

Flat Directions F>N

 $D^a = 0$

N x F matrix of VEVs

moduli space of inequivalent vacua

Flat Directions F>N

classically, can parameterize by gauge invariant "mesons" and "baryons"

$$M_{i}^{j} = \overline{\Phi}^{jn} \Phi_{ni}$$

$$B_{i_{1},...,i_{N}} = \Phi_{n_{1}i_{1}} \dots \Phi_{n_{N}i_{N}} \epsilon^{n_{1},...,n_{N}}$$

$$\overline{B}^{i_{1},...,i_{N}} = \overline{\Phi}^{n_{1}i_{1}} \dots \overline{\Phi}^{n_{N}i_{N}} \epsilon_{n_{1},...,n_{N}}$$

Super Higgs Mechanism

Running Coupling

$$\beta_g = \mu \frac{dg}{d\mu} = -\frac{g^3}{16\pi^2} \left(\frac{11}{3} T(\mathrm{Ad}) - \frac{2}{3} T(F) - \frac{1}{3} T(S) \right) \equiv -\frac{g^3 b}{16\pi^2} ,$$

b = 3N - F

F > 3N infrared free

Banks-Zaks Fixed Point

large N, with $F = 3N - \epsilon N$ $16\pi^2\beta(g) = -g^3\epsilon N + \frac{g^5}{8\pi^2} \left(3(N^2 - 1) + \mathcal{O}(\epsilon)\right) + \mathcal{O}(g^7)$

$$g_*^2 = \frac{8\pi^2}{3} \frac{N}{N^2 - 1} \,\epsilon$$

Conformal Field Theory

 $p_{i}^{2} = 0$

jets!

SUSY + Conformal = super-conformal

for holomorphic gauge invariant operators

$$d = rac{3}{2}R$$

 $d(Q\overline{Q}) = rac{3(F-N)}{F} < 2$
 $d = 1 \ at \ F = rac{3}{2}N \ free \ field$

Minwalla hep-th/9712074

Seiberg

 $\mathcal{Q}_i = (\phi_i, \psi_i)$

 $R_{\psi} = R_{\phi} - 1$

 $\overline{\mathcal{Q}}_i = (\overline{\phi}_i, \overline{\psi}_i) \qquad \qquad R_{A_\mu} = R_\lambda - 1 = 0$

Dual Theory $SU(F-N) \mid SU(F) \quad SU(F)$ $U(1) \quad U(1)_R$ $\frac{N}{F-N} \qquad \frac{N}{F}$ 1 \boldsymbol{q} $\Box \qquad -\frac{N}{F-N} \qquad \frac{N}{F}$ \overline{q} 1 1 $0 \qquad 2 \frac{F-N}{F}$ M $W = \frac{\tilde{M}q\bar{q}}{\Lambda} \qquad \qquad W = y\,Mq\bar{q}$ $\Lambda_{\rm el}^{b_{\rm el}}\Lambda_{\rm mag}^{b_{\rm mag}} = (-1)^N \Lambda^{b_{\rm el}+b_{\rm mag}}$

Seiberg hep-th/9411149

Yukawa Landau pole

Anomaly Matching

global symmetry anomaly = dual anomaly $SU(F)^3$ -(F-N) + F = N $\frac{N}{F}(F-N)\frac{1}{2} = \frac{N}{2}$ $U(1)SU(F)^{2}$ $U(1)_R SU(F)^2$ $\frac{N-F}{F}(F-N)\frac{1}{2} + \frac{F-2N}{F}F\frac{1}{2} = -\frac{N^2}{2F}$ $U(1)^{3}$ 0 = 00 = 0U(1) $U(1)U(1)_{R}^{2}$ 0 = 0 $\left(\frac{N-F}{F}\right) 2(F-N)F + \left(\frac{F-2N}{F}\right)F^2 + (F-N)^2 - 1$ $U(1)_{R}$ $= -N^2 - 1$ $\left(\frac{N-F}{F}\right)^3 2(F-N)F + \left(\frac{F-2N}{F}\right)^3 F^2 + (F-N)^2 - 1$ $U(1)_{R}^{3}$ $=-\frac{2N^4}{F^2}+N^2-1$ $\left(\frac{N}{F-N}\right)^2 \frac{N-F}{F} 2F(F-N) = -2N^2$ $U(1)^2 U(1)_R$

Moduli Mapping

 $Q\overline{Q} \leftrightarrow M$ $B_{i_1,...,i_N} \leftrightarrow \epsilon_{i_1,...,i_N,j_1,...,j_{F-N}} b^{j_1,...,j_{F-N}}$ $\overline{B}^{i_1,...,i_N} \leftrightarrow \epsilon^{i_1,...,i_N,j_1,...,j_{F-N}} \overline{b}_{j_1,...,j_{F-N}}$

Running Coupling

$$\begin{array}{ll} \beta_g &=& \mu \frac{dg}{d\mu} = -\frac{g^3}{16\pi^2} \left(\frac{11}{3}T(\mathrm{Ad}) - \frac{2}{3}T(F) - \frac{1}{3}T(S) \right) \equiv -\frac{g^3 b}{16\pi^2} \ ,\\ & b = 3N - F\\ \mathrm{F} > 3\mathrm{N} \ \mathrm{infrared} \ \mathrm{free} \\ \tilde{b} = 3\tilde{N} - F = 3(F - N) - F = 2F - 3N\\ & \mathrm{dual} \ \mathrm{infrared} \ \mathrm{free} \ \mathrm{for} \ \mathrm{F} < 3\mathrm{N}/2\\ & \mathrm{weakly} \ \mathrm{coupled} \ \mathrm{Banks-Zaks} \ \mathrm{fixed} \ \mathrm{point} \end{array}$$

for F = $3N/2 + \epsilon$

Duality for SUSY QCD SU(N) SU(F-N)

`t Hooft instanton vertex

`t Hooft instanton vertex

 $W = y \, \overline{q}_j M^j{}_i \, q^i - \frac{\det M}{\Lambda^{2N-1}}$

Integrating Out

$$\begin{split} W = 0 & W = y \, \overline{q}_j M^j{}_i \, q^i - \frac{\det M}{\Lambda^{2N-1}} \\ B^i \leftrightarrow q^i \\ \text{confinement} \end{split}$$

confinement with chiral symmetry breaking

Chiral Symmetry Breaking

Phases of Gauge Theories

EM Duality:

electron \longleftrightarrow free electric \longleftrightarrow free magnetic Coulomb phase \longleftrightarrow Coulomb phase

monopole

Seiberg duality:

quark, gluon $\leftarrow \rightarrow$ dual quark,

strong electric \leftrightarrow free magnetic

Coulomb phase \leftrightarrow Coulomb phase

gluon, meson Higgs phase \leftrightarrow confining phase

Discovering Hierarchies

SPS: W,Z --> gauge hierarchy LEP: no light Higgs --> little hierarchy Tevatron: top --> Yukawa hierarchy LHC: no light SUSY --> squark mass hierarchy

> Minimal Composite SSM can resolve all these hierarchy problems

Minimal Composite SSM

Csaki, Shirman, JT hep-ph/1106.3074

Minimal Composite SSM

Csaki, Shirman, JT hep-ph/1106.3074

Minimal Composite SSM

Minimal Composite SSM

predicts stop much lighter than other squarks

Csaki, Randall, JT hep-ph/1201.1293

Realistic SUSY RS

Conclusions

Seiberg duality allows us to obtain exact results for nonperturbative effects in SUSY QCD

this allows for composite SUSY models of electroweak symmetry breaking