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‘t Hooft-Mandelstam
magnetic condensate 



confines electric charge

 High Energy Physics Ed. Zichichi, (1976) 1225 
Phys. Rept. 23 (1976) 245



Phases of  
Gauge Theories 
Coulomb : V (R) ⇠ 1

R

Free electric : V (R) ⇠ 1
R ln(R⇤)

Free magnetic : V (R) ⇠ ln(R⇤)
R

Higgs : V (R) ⇠ constant

Confining : V (R) ⇠ �R
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monopole


free magnetic


Coulomb phase

EM Duality:

`t Hooft-Mandelstam 
conjectured duality: Higgs phase confining phase

Seiberg found strongly coupled SUSY analogs


where more precise tests can be made
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SUSY and the problem 
with scalars

Weisskopf Phys. Rev.56 (1939) 72
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Gauge Interactions 

Figure 2:

Interactions required by gauge invariance. Solid lines denote fermions,
dashed lines denote scalars, wavy lines denote gauge bosons, wavy/solid
lines denote gauginos.
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Figure 3:

Additional interactions required by gauge invariance and SUSY: (a)
�

⇤
 �, (b) �⇤�D coupling, Note that these three vertices all have the

same gauge index structure, being proportional to the gauge generator
T

a. Integrating out (c) the auxiliary field gives (d) the quartic scalar
coupling proportional to T
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Scalar Massone-loop squark mass
(a) (b)

Figure 12: (a) The squark–gluon loop and (b) the gluon loop.
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Figure 11: The quark–gluino loop correction to the squark mass.
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Figure 10: The squark loop correction to the squark mass.
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Superpotential 
Interactions

integrate out auxillary fields

action is quadratic in F
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Quadratic Cancellation

Unreasonable e↵ectiveness of the SM
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Figure 1: The top loop contribution to the Higgs mass term.
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SUSY QCD

Qi = (�i, i)

Qi = (�i, i) R = R� � 1

RAµ = R� � 1 = 0
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SU(N)2U(1)R Anomaly
R = R� � 1

RAµ = R� � 1 = 0

Anomalies
Since we can define an R-charge by taking arbitrary linear combina-

tions of the U(1)R and U(1)B charges we can choose Qi and Qi to have
the same R-charge. For a U(1) not be to broken by instanton e↵ects the
SU(N)2U(1)R anomaly diagram vanishes

Figure 5:

fermion contributes its R-charge times T (r). Sum over gluino, quarks:

1 · T (Ad) + (R� 1)T ( ) 2F = 0 ,

so R = F�N
F
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Scalar Potential
Flat directions F < N
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Flat Directions F>N
Da = 0Flat directions F � N

Since dn
m and d

n
m are invariant under flavor transformations, we can
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Again we have a space of degenerate vacua. At a generic point in the
moduli space the SU(N) gauge symmetry is completely broken.
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Flat Directions F>NClassical moduli space for F � N
VEV for a single flavor: SU(N)! SU(N � 1)

generic point in the moduli space: SU(N) completely broken
2NF � (N2 � 1) massless chiral supermultiplets

gauge-invariant description “mesons,” “baryons” and superpartners:
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The super Higgs mechanism
a massless vector supermultiplet eats a chiral supermultiplet to form a
massive vector supermultiplet

Fayet

Super Higgs Mechanism 
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Running CouplingRenormalization group
tree-level SUSY: Y =

p
2g, � = g2. For SUSY to be a consistent

quantum symmetry these relations must be preserved under RG running.
the � function for the gauge coupling at one-loop is
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Banks-Zaks 
Fixed Point 
large N, with F = 3N � ✏N

IR fixed points
Large N with F = 3N � ✏N
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Conformal Field Theory
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d = 1 at F =
3

2
N

d(QQ) =
3(F �N)

F
< 2

Enhanced Symmetry
SUSY + Conformal = super-conformal

for holomorphic gauge invariant operators

free field!
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Dual Theory  
SU(F �N) SU(F ) SU(F ) U(1) U(1)R
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W = yMqq

Seiberg hep-th/9411149

W =
M̃qq

⇤

two constructions. In the first, all the MSSM SU(2)L doublets arise as dual “magnetic
quarks”, while the SU(2)L singlets arise as mesons. The addition of elementary versions of
the right-handed SM fermions that mix with their composite relatives will allow a realistic
Yukawa structure to be obtained. In the second variant of the model all the light fermions
are elementary, which corresponds to a supersymmetric RS-type model like [12]. They
can acquire mass through coupling to an elementary Higgs fields that, in turn, couples to
composite Higgses in an analogy with the construction of [13, 14] (see also [15]). The new
feature of our models is that in addition to Higgses the gauge fields as well as (some of) the
SM fermions are also partially composite (or “fat”), similar to [16].

The paper is organized as follows. In section 2 we argue that one would not expect to
be able to find a model with fully composite W and Z that can reproduce the properties
of the SM. We discuss a fully composite toy model in section 3. In section 4 we discuss
modifications necessary to make the model realistic. Of special interest is the scenario where
the compositeness scale is low. We show that this can be achieved if composite gauge bosons
are mixed with elementary ones. As a result the W and Z are only partially composite. In
section 5 we introduce the minimal model where light SM fermions are elementary, the top
and Higgs are composite, while the W and Z are partially composite. We summarize our
results in section 6.

2 Composite W and Z?

In this section we argue that the properties of the SM W and Z are not generically expected
to be reproduced in a fully composite model, like the Abbott-Farhi model, the original RS1 or
a straight Seiberg duality.1 The gauge coupling of the SU(2)L at the weak scale is g ⇠ 0.65.
However, the coupling of a composite gauge boson at the compositeness scale is expected
to be strong. According to Naive Dimensional Analysis (NDA) [17] expectations one should
have g ⇠ 4⇡/

p
N . Phenomenologically for the ⇢ of QCD one finds g ⇠ 6 ⇠ 4⇡/

p
3. Thus one

would need a very large logarithmic running in order to reduce the coupling to the observed
level.

As an example consider the case of interest involving Seiberg duality (this case was also
explored in [9]). Here “magnetic” gauge bosons will play the role of the W and Z while
“magnetic quarks” will correspond to SU(2)L doublets. Thus we are considering an SU(N)
“electric” theory with F = N + 2 flavors although the following discussion is more general.
For general F and N , the matching of dynamical scales (strong interaction scale, or in the
case of IR free dual, Landau pole) is given by [3]

⇤bel
el

⇤bmag
mag

= (�1)N⇤bel+bmag , (2.1)

where ⇤
el,mag

are the “electric” and “magnetic” dynamical scales and b
el
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=
3(F �N)� F are the one-loop �-function coe�cients. We can rewrite Eq. (2.1) as
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1We thank Markus Luty for focusing our attention on this issue.
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Duality Consistency Checks
 Anomaly Matching

Q,   : SU(N) q,q, M: SU(F-N)

 Identical Space of Vacua

Q                      M
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Moduli Mapping

QQ $ M

Bi1,...,iN $ ✏i1,...,iN ,j1,...jF�N bj1,...,jF�N

B
i1,...,iN $ ✏i1,...,iN ,j1,...jF�N bj1,...,jF�N



Running CouplingRenormalization group
tree-level SUSY: Y =

p
2g, � = g2. For SUSY to be a consistent

quantum symmetry these relations must be preserved under RG running.
the � function for the gauge coupling at one-loop is

�g = µ dg
dµ = � g3

16⇡2

�
11

3

T (Ad)� 2

3

T (F )� 1

3

T (S)
�
⌘ � g3 b

16⇡2 ,

For SUSY QCD:

b = (3N � F )

b = 3N � F
F > 3N infrared free

b̃ = 3Ñ � F = 3(F �N)� F = 2F � 3N

dual infrared free for F < 3N/2
weakly coupled Banks-Zaks fixed point



for F = 3N/2 +  ✏



SUSY QCD for F � N
SU(N) SU(F ) SU(F ) U(1) U(1)R

�, Q 1 1 F�N
F

�, Q 1 -1 F�N
F

Duality
conformal theory global symmetries unbroken
‘t Hooft anomaly matching should apply to low-energy degrees of freedom

anomalies of the M , B, and B do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a
“dual” SU(F �N) gauge theory with a “dual” gaugino, “dual” quarks
and a gauge singlet “dual mesino”:

SU(F �N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F�N

N
F

q 1 � N
F�N

N
F

mesino 1 0 2 F�N
F

Dual Banks–Zaks
F = 3 ⇧N � � ⇧N = 3

2

�
1 + �

6

⇥
N

perturbative fixed point at

⇧g2
⇥ = 8⇥2

3
⇧N

⇧N2�1

⇤
1 + F

⇧N
⌅

�

⇥2
⇥ = 16⇥2

3⇧N �

where D(⌃M⇤⇤) = 3 (marginal) since W has R-charge 2
If ⇥ = 0, then ⌃M is free with dimension 1
If ⇧g near pure Banks-Zaks and ⇥ ⇥ 0 then we can calculate the

dimension of ⇤⇤ from the Rsc charge for F > 3N/2:

D(⇤⇤) = 3(F�⇧N)
F = 3N

F < 2 .

⌃M⇤⇤ is a relevant operator, ⇥ = 0 unstable fixed point, flows toward ⇥⇥
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where D(⌃M⇤⇤) = 3 (marginal) since W has R-charge 2
If ⇥ = 0, then ⌃M is free with dimension 1
If ⇧g near pure Banks-Zaks and ⇥ ⇥ 0 then we can calculate the

dimension of ⇤⇤ from the Rsc charge for F > 3N/2:

D(⇤⇤) = 3(F�⇧N)
F = 3N

F < 2 .

⌃M⇤⇤ is a relevant operator, ⇥ = 0 unstable fixed point, flows toward ⇥⇥
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⇥ = 8⇥2

3
⇧N

⇧N2�1

⇤
1 + F

⇧N
⌅

�
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⇥ = 16⇥2
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where D(⌃M⇤⇤) = 3 (marginal) since W has R-charge 2
If ⇥ = 0, then ⌃M is free with dimension 1
If ⇧g near pure Banks-Zaks and ⇥ ⇥ 0 then we can calculate the

dimension of ⇤⇤ from the Rsc charge for F > 3N/2:

D(⇤⇤) = 3(F�⇧N)
F = 3N

F < 2 .

⌃M⇤⇤ is a relevant operator, ⇥ = 0 unstable fixed point, flows toward ⇥⇥

special cases:	


F=N+1 → confinement without χSB	


F=N     → confinement with χSB

IR Fixed Point

IR Free

IR FreeStrong

Strong

IR Fixed Point

Duality for SUSY QCD 



qF�N , qF�N

M

SU(F �N), F
W = Mqq +mMFF

SU(F � 1�N), F � 1

QQ
QN ,QN

hqi 6= 0, hqi 6= 0

 

 

Duality Consistency Checks
 Anomaly Matching

Q,   : SU(N) q,q, M: SU(F-N)

 Identical Space of Vacua

Q                      M

QN,    N qF-N, q F-N

 Deformations

SU(N), F SU(F-N), F

    W=m QF   F        W=Mqq + mMFF 

SU(N), F-1     SU(F-1-N), F-1

=

Q
<q>≠0, <q>≠0

Q

Q

Q

SU(N) : �,Q,Q SU(F �N) : �, q, q,M

SU(N), F
W = mQFQF

SU(N), F � 1

Anomalies

Identical Space


 of Vacua

Deformations

Duality Consistency Checks 



Integrating Out 

W = 0

F = N + 2

F = N + 1

SU(N)

SU(N)

SU(2)

SU(2)

hq̄F i 6= 0
hqF i 6= 0

W = y qjM
j
i q

i � detM

⇤2N�1

W = y qjM
j
i q

i +mMF
FW = mQ

F
QF

`t Hooft instanton vertex



`t Hooft instanton 
vertex

W = y qjM
j
i q

i � detM

⇤2N�1

N−1

M

M
M

M

M



Integrating Out 

W = 0

F = N + 2

F = N + 1

SU(N)

SU(N)

SU(2)

SU(2)

hq̄F i 6= 0
hqF i 6= 0

W = y qjM
j
i q

i � detM

⇤2N�1

W = y qjM
j
i q

i +mMF
FW = mQ

F
QF

confinement
Bi $ qi



Integrating Out 

W = 0

F = N + 1
SU(N)

SU(N)

W = mMF
F +

1

⇤2N�1

h
BjM

j
i B

i � detM
i

W =
X

⇤2N�1

�
BB � detM + ⇤2N

N,N

�

confinement with chiral symmetry breaking 

W = mQ
F
QF

F = N



Chiral Symmetry


Breaking 



Phases of  
Gauge Theories 

electron


free electric



Coulomb phase

monopole


free magnetic


Coulomb phase

EM Duality:

Seiberg duality: quark, gluon


!

strong electric


Coulomb phase


Higgs phase

dual quark, 


gluon, meson


free magnetic


Coulomb phase


confining phase



Discovering Hierarchies 

SPS: W,Z --> gauge hierarchy


LEP: no light Higgs --> little hierarchy


Tevatron: top --> Yukawa hierarchy



LHC: no light SUSY --> squark mass hierarchy

Minimal Composite SSM


can resolve all these 


hierarchy problems



Minimal Composite 
SSM 

SU(4) SU(6)1 SU(6)2 U(1)V U(1)R

Q 1 1 1
3

Q̄ 1 �1 1
3

Csaki, Shirman, JT hep-ph/1106.3074



Minimal Composite 
SSM 

SU(2)mag SU(6)1 SU(6)2 U(1)V U(1)R

q 1 2 2
3

q̄ 1 �2 2
3

M 1 0 2
3

W = yMqq

Csaki, Shirman, JT hep-ph/1106.3074





Minimal Composite 
SSM 

SU(2)mag SU(6)1 SU(6)2 U(1)V U(1)R

q 1 2 2
3

q̄ 1 �2 2
3

M 1 0 2
3

q = Q3,H, Hd

q̄ = X, H̄, Hu
M =

0

@
V U t̄
E G+ P �u

R �d S

1

A



Minimal Composite SSM 

SU(2)mag SU(6)1 SU(6)2 U(1)V U(1)R

q 1 2 2
3

q̄ 1 �2 2
3

M 1 0 2
3

predicts stop much lighter


 than other squarks



!
Csaki, Randall, JT hep-ph/1201.1293 



Realistic SUSY RS

IRUV

W,Ze t

SUSY



Conclusions 
Seiberg duality allows us to obtain


exact results for nonperturbative



effects in SUSY QCD


!

this allows for composite SUSY models 
of electroweak symmetry breaking


