

Quantum computers State of play, prospects, and a European perspective

Frank K.Wilhelm Saarland University, Saarbrücken, Germany

https://www.bsi.bund.de/DE/Publikationen/Studien/Quantencomputer/quantencomputer_node.html

Bundesamt für Sicherheit in der Informationstechnik

Dimensions of quantum technology

Basic Science

Sensing/Metrology

Engineering/Control

Software/Theory

Education/Training

The power of quantum

Classical computer

- Binary information
- Registers with well-defined binary value
- Commands on registers one-by-one
- Parallel operations = parallelized hardware

Quantum computer

- Binary information
- Superpositions of registers

$$|\psi\rangle = \sum_{\{\sigma_i\}} c_{\{\sigma_i\}} |\{\sigma_i\}\rangle$$

- $\{\sigma_i\}$ Operations on complete state space
- intrinsic parallelism

Applications

- Theoretical chemistry and materials science
- Combinatorical optimization
- Machine learning
- Graph theory
- Signal processing
- Cryptanalysis

Fundamentel algorithms with borad application portfolio

Overview

- Three paths to quantum computing
- NISQ: Using your noisy hardware
- A European flagship project
- Extrapolation: What it takes to be fault-tolerant
- Quantum annealing

• Have we found the best way to program a quantum computer yet?

Three paths to quantum computing

Universal fault-tolerant quantum computer:

- massive overhead from error correction
- long-term goal
- powerful tool
- potentially large time savings

Non error-corrected co-designed processor

- 50 qubits reached
- outperform supercomputer (in simulating quantum computers)
- gate number limited by physical errors
- potential memory savings

Quantum annealer / adiabatic quantum computer

- accessible technology
- quantum speedup?
- need more powerful versions (non stoquastic / manybody coupler)

NISQ

Noisy Intermediate-scale quantum computer (NSQ)

Simple, primitive, error-prone hardware: Coding needs to follow architecture

Clive Sinclair

Photo: Eric Lucero, Google

日

Quantum chip

UCSB

separate control

NN coupling

• 9 Qubits

- 10

and readout

published: Qubits

Basis of quantum supremacy

- saving a 50 qubit quantum states requires 2⁵⁰=1.126E15 complex numbers
- need to accomplish a sufficiently general task (otherwise it is not a computer)
- need to be coherent enough / low enough errors (otherwise it is classical)
- needs to be certified without simulation

$$H^{\otimes n} | 0 \rangle^{\otimes n} = \frac{1}{2^{n/2}} \sum_{s=0}^{2^n - 1} c_s | s \rangle$$

Technological platform

- Josephson platform
- Adjustable couplers (almost qubits)
- 9 x 6 grid
- One qubit defective
- Integrated measurement infastructure

Consistently low errors

- previous best in superconducting qubits: 0.6%
- achievement: even the bad qubits are in that range
- very disciplined engineering

Algorithm

- Random compiled circuit
- simulates a distribution from quantum chaos
- sampling is classically hard
- verified by cross-entropy benchmarking

Meaning

- Amazing technology push in qubit number and fidelity
- fully programmable
- Wright Brothers flight / Sputnik moment

Impact

- Gold standard for the community
- Software will try to get away with minimal upgrades
- hardware development will be influenced
- Strong emphasis on calibration and XEB

Supplementary information for "Quantum supremacy using a programmable superconducting processor"

> Google AI Quantum and collaborators^{\dagger} (Dated: October 25, 2019)

CONTENTS

I.	Device design and architecture					
II.	Fabrication and layout					
III.	. Qubit control and readout A. Control B. Readout					
IV	XFB theory	5				
1 V .	A VED of a small number of subits	5				
	A. AED of a small number of qubits	5 7				
	C. Two limiting ages	(0				
	D. Measurement errors	8 9				
V.	Quantifying errors	9				
VI.	Metrology and calibration	11				
	A. Calibration overview	11				
	1. Device registry	11				
	2. Scheduling calibrations: "Optimus"	12				
	B. Calibration procedure	12				
	1. Device configuration	12				
	2. Root config: procedure	13				
	3. Single-qubit config: procedure	13				
	4. Optimizing qubit operating frequencies	13				
	5. Grid config: procedure	14				
	C. Two-qubit gate metrology	15				
	1. The natural two-qubit gate for transmon qubits	15				
	2. Using cross entropy to learn a unitary model	16				
	3. Comparison with randomized	10				
	benchmarking	16				
	4. Speckle purity benchmarking (SPB)	18				
	5. "Per-layer" parallel XEB	19				
	D. Grid readout calibration	20				
	1. Choosing qubit frequencies for readout	20				
	2. Single qubit calibration	20				
	3. Characterizing multi-qubit readout	21				
	E. Summary of system parameters	22				
VII.	Quantum circuits	27				
	A. Background	27				
	B. Overview and technical requirements	27				
	C. Circuit structure	27				
	D. Randomness	27				
	E. Quantum gates	28				
	F. Programmability and universality	29				
	1. Decomposition of CZ into fSim gates	29				

	2. Universality for $SU(2)$	30
	G. Circuit variants	30
	1. Gate elision	31
	2. Wedge formation	31
VIII.	Large scale XEB results	31
	A. Limitations of full circuits	32
	B. Patch circuits: a quick performance	~ ~
	indicator for large systems	33
	C. Elided circuits: a more rigorous	
	performance estimator for large systems	33
	D. Choice of unitary model for two-qubit	0.4
	entangling gates	34
	E. Understanding system performance: error	25
	model prediction	35 90
	F. Distribution of bitstring probabilities	30
	G. Statistical uncertainties of AEB	20
	H System stability and systematic	39
	uncortaintios	40
	I The fidelity result and the null hypothesis	40
	on quantum supremacy	<i>4</i> 1
	on quantum supromacy	
IX.	Sensitivity of XEB to errors	42
Х.	Classical simulations	44
	A. Local Schrödinger and	
	Schrödinger-Feynman simulators	44
	B. Feynman simulator	45
	C. Supercomputer Schrödinger simulator	49
	D. Simulation of random circuit sampling with	
	a target fidelity	50
	1. Optimality of the Schmidt decomposition	
	for gates embedded in a random circuit	50
	2. Classical speedup for imbalanced gates	52
	3. Verifiable and supremacy circuits	53
	E. Treewidth upper bounds and variable	
	elimination algorithms	54
	F. Computational cost estimation for the	
	sampling task	55
	G. Understanding the scaling with width and	
	depth of the computational cost of	
	verification	56
	1. Kuntime scaling formulas	56
	2. Assumptions and corrections	57
	3. Fitting constants	58
	4. Memory usage scaling	50 50
	п. Energy advantage for quantum computing	99
XI.	Complexity-theoretic foundation of the	
	experiment	59

From useless academic to useful applied supremacy

Quantum computing and simulation

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." Richard P. Feynman, "Simulating physics with computers", 1981

• wave function of N two-state quantum system occupies 2^N real numbers

makes simulating quantum physics hard

accelerates computational problems if harnessed

Electronic structure calculation

- problem setting: Given position of nuclei in a molecule, find ground state energy
- gives bond lengths, energetics etc.
- important as a catalyst in biological nitrogen fixation
- understanding could hold the key to replace Haber-Bosch: CO₂ reduction

Ferredoxin: Fe₂S₂-cluster: 16 valence electrons, 84 total

Problem setting

Hamiltonian: Description of a quantum system based on its energetics, Hermitian matrix

Ground state: Eigenvector to lowest eigenvalue

Hamiltonian of a Molecule:

 \hat{H}_{ESH} =

Broken down to orbitals:

Hamiltonian of a quantum computer:

Drift: Defines qubit Control: Used for programming

$$= -\sum_{i=1}^{N_e} \frac{1}{2} \nabla_i^2 - \sum_{i=1}^{N_e} \sum_{J=1}^{N_I} \frac{Z_J}{r_{iJ}} + \sum_{i=1}^{N_e} \sum_{j>i} \frac{1}{r_{ij}} + \hat{h}_{nuc}.$$
$$\hat{H} = \sum_{PQ} h_{PQ} \hat{a}_P^{\dagger} \hat{a}_Q + \frac{1}{2} \sum_{PQRS} g_{PQRS} \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_R \hat{a}_S + \hat{h}_{nuc}.$$

$$\hat{H} = \sum_{i} \hat{H}_{i}(t) + \sum_{i < j} \hat{H}_{ij}(t)$$

Single qubit

Interactions: Used for two-qubit gates

$\hat{H} = \hat{H}_0 + \sum_i F_i(t)\hat{H}_i \qquad \hat{H} = \sum_i \hat{H}_i(t) + \sum_{i < j} \hat{H}_{ij}(t)$

 $\hat{U}_{\text{gate}} = \exp(-i\hat{H}t_q)$

Switch energies with precise timing to implement gates

Time

Trotter-based simulation

$$\hat{H} = \sum_{PQ} h_{PQ} \hat{a}_P^{\dagger} \hat{a}_Q + \frac{1}{2} \sum_{PQRS} g_{PQRS} \hat{a}_P^{\dagger} \hat{a}_Q^{\dagger} \hat{a}_P$$

Break down time evolution by Trotter decomposition

Find a quantum algorithm for the Trotter step (multi-qubit!)

Takes a long time, gets the ground state

 $R\hat{a}_S + \hat{h}_{nuc}.$

$$e^{i\hat{H} au} \approx \left[\prod_{X} e^{i\hat{h}_{X}rac{ au}{M}}
ight]^{M}$$

Slowest evolution: Ground state!

- quantum advantage: Natural Fourier transform
- quantum advantage: natural gate sequence for physical interactions
- but: leads to long algorithms

Reducing the size of the quantum operation

- let the (cheap) classical computer do what it is best at
- enhance its performance with the (expensive)
 quantum computer

Variational quantum eigensolver

 $|\Phi_0\rangle = |001111\rangle = |HF\rangle$

w/ quantum circuit $|\psi\rangle = \hat{U}(\theta_1 \dots \theta_N) |\Phi_0\rangle$

> Propose new $\theta'_1 \dots \theta'_N$

•quantum advantage in memory

- relatively short quantum algorithm: NISQ-friendly
- •JW/BK complexity in measurement, not algorithm
 - Still: N orbitals in O(poly(N)) qubits
- Can we build an effective VQE for the Hubbard model?

From molecules to materials!

Moonshot of quantum computer chemistry

YBCO

More is different

Do we need poly(N_A) qubits?

High-Tc and Hubbard model

Low (<1 eV) physics of electrons on lattices

• non-integrable

- QMC: Fermionic sign problem
- reproduces d-wave superconductivity

Variational eigensolver for Hubbard

Describe physical properties through the time-ordered two-point Green's function

$$G^{(j)}\left(\vec{r},t|\vec{r}',t'\right) = -i\left\langle \mathbf{T}^{(j)}\Psi(\vec{r},t)\Psi^{\dagger}(\vec{r},t)\Psi^$$

particle:

Dyson equation

Variational cluster Exact cluster Green's function $\mathbf{G}^{\prime-1}(\omega) = \omega - \mathbf{t}^{\prime} - \Sigma^{\prime}(\omega)$

Classical variational calculus for

Potthoff, Senechal ...

V

- split lattice into exact clusters
- couple clusters perturbatively: Closed form

$$\mathbf{G}\left[\mathbf{\Sigma}'
ight] = \mathbf{G}_{\mathrm{cpt}} = \left(\mathbf{G}'^{-1} - \mathbf{V}
ight)^{-1}.$$

$$\Omega_t \left[\mathbf{\Sigma}' \right] = \Omega' - \operatorname{Tr} \ln \left[\mathbf{1} - \mathbf{V} \mathbf{G}' \right].$$

• -

Input initial guess

Quantum simulator

Hybrid algorithm

Architecture and performance

Quantum advantage

Dimension(s)	Size	Orbitals (singlets) $[n]$	Dim. of Hilbert space $[2^n]$	Qubits required $[n + 1]$	Measured correl. functions [< $4n^2$]	c - SQGs to tune [7 <i>n</i>]	$c - \pm iSWAPs$ to tune $[2n - 2]$	Gates / Trotter-Suzuki step (hopping terms)
1D	2	4	16	5	64	28	6	24
1D	3	6	64	7	144	42	10	48
1D	4	8	256	9	256	56	14	72
2D	2×2	8	256	9	256	56	14	96
2D	3×3	18	262,144	19	1,296	126	34	336
2D	4×4	32	4,294,967,296	33	4,096	224	62	768
3D	$2 \times 2 \times 2$	16	65,536	17	1,024	112	30	416
3D	$3 \times 3 \times 3$	54	$1.8 imes 10^{16}$	55	11,664	378	106	2,736
3D	$4 \times 4 \times 4$	128	$3.4 imes10^{38}$	129	65,536	896	254	10,368

Limitations and classification

- Limited length of algorithms: (Error rate)⁻¹
- Builds on algorithms that are classically limited by memory
- Probably restricted to simulation of quantum systems

How do we run longer, time-limited algorithms?

Fault-tolerant quantum computing

Classical vs. quantum errors

Classical stability

Energy barrier:

Error rate

$$\propto \exp{-\frac{\Delta U}{k_B T}}$$

Quantum:

Bit-flip+phase errors amplitudes matter

How do we deal with analog errors?

Error correction: Classical and quantum

- similar to error correction in communication
- redundantly encode data
- compare bits to identify where error happened
- relies on errors being uncorrelated
- more redundancy = more protection

Quantum measurement

Measurement affects the quantum state

Arbitrary state: Observables uncertain

Measurement

- Measuring data qubits destroys superposition, nonquantum advantage: don't
- Measurement of error syndrome realizes error probability: do

Digitization of errors

Projective quantum measurement: No error detected -> error eliminated

 $\hat{U}_{\rm error}|00\rangle$ Miscalibration of Q2

Measure:

- ZZ = +1:
- ZZ = -1:

In practice:

- Syndrome measurement digitizes error
- Digital errors are tracked and matched but only corrected in the output

$$|\psi\rangle = \cos\theta|00\rangle + \sin\theta|01\rangle$$

$$p_1 = \cos^2 \theta, \quad |\psi\rangle_1 = |00\rangle$$

 $p_{-1} = \sin^2 \theta \quad |\psi\rangle_{-1} = X_2|01\rangle$

• Topological protection: Only errors that change the genus / connect surfaces remain uncorrected

Basic idea: Redundant encoding + rare errors

Syndrome extraction:

Measure error without learning state

 $Z_1 \otimes Z_2 \otimes Z_3 \otimes Z_4$

Two degenerate eigenvalues +/- 1 Reveals number of flips

 $X_1 \otimes X_2 \otimes X_3 \otimes X_4$

Commute, simultaneous measurement Reveals number of phase flips

Surface Code: Raussendorf, Fowler ...

Syndrome extraction

Threshold-Theorem

Logical X error rate (p_L)

+ More Qubit error
+ Ionger Algorithm
=more Overhead

Poly(n)*pⁿ

overhead

uncorrelated errors

You are here ...

N.B: Ion traps are cleaner than superconducting chips but have a slower clock Filled: 1 day, Open: 100 days

- Current goal: Consistently p=10⁻⁴
- Technlogical challenge: Scale-up

Our main project

High level summary

- Reach a size scale of 50 100 qubits (i.e., outperform classical supercomputers)
- use Josephson junctions
- build a sustainable central quantum computing laboratory
- Reach fidelities that allow for meaningful molecular simulation

- Build a sustainable technological ecosystem in Europe
- Interact with stakeholders
- Interact with national initatives
- Engage in the flagship

Beneficiaries

Universities

CHALMERS UNIVERSITY OF TECHNOLOGY

University of the Basque Country

Geography: Germany (3), Sweden, Finland, Switzerland (2), Spain (1)

RTOs

Companies

Partner

Coordination and Management Control, Benchmarking, Firmware Applications and theory

Chip fabrication Measurement Cryogenics and wiring

University of the Basque Country

Chip fabrication Control and Modeling Applications

Applications

Modeling High-level software and simulation Hosting

Readout and amplification Packaging 3D-Integration

Cryogenics Cryo wiring

Electronics Readout and control

Microwave technoolgy

Project management

Transferable tools and engineering

Superconducting circuit Fabrication

+ TWPAs from Chalmers and VTT

Three-dimensional integration

Classical infrastructure

- Custom cryogenic setup
- Custom electronics
- Equipment developers are integrated: Strong customization and early commercialization

Why a European project

- Expanding technological ecosystem
- Complementary, Airbus-style approach to collaboration
- Result under European legislation
- Research and training infrastructure with deep access

Universal adiabatic quantum computing

Find solution of hard constrained optimization problem by adiabatic sweep

 $H(s) = (1 - A(s))H_d + A(s)H_p$ Driver: $H_d = -D\sum \hat{X}_i$

Problem Hamiltonian:

 $H_{p} = \sum_{i} h_{i}Z_{i} + \sum_{i < j} J_{ij}Z_{i}Z_{j} + \sum_{i < j < k} K_{ijk}Z_{i}Z_{j}Z_{k} + \dots$

A(0) = 0A(1) = 1

Annealing schedule:

T

Proven result

Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation

Dorit Aharonov School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Julia Kempe CNRS-LRI UMR 8623, Université de Paris-Sud, Orsay, France

Seth Lloyd Department of Mechanical Engineering, MIT, Cambridge, MA

Wim van Dam Department of Computer Science, UC Santa Barbara, CA

Zeph Landau Department of Mathematics, City College of New York, NY

Oded Regev Computer Science Department, Tel Aviv University, Israel

February 1, 2008

Any quantum gate circuit can be run on an adiabatic quantum computer

(if it is sufficiently general)

Does not currently apply to general combinatorical optimization problems (and is unlikely to)

- Assumes 6-state ,,qubits"
- Assumes 3-body coupling $Z_1Z_2Z_3$
- Proves that gap shrinks proportional to number of gates

Temperature and speed lead to excitations

Quantum annealing

But tunneling gets us to the minimum faster (heuristically)

Nishimori (spin systems), Amin (quantum computers)

Combinatorical optimization

- Routing problems
- Machine learning
- Complex systems analysis
- Airport management
- Nurse schedules

Volkswagen

Google

Quantum simulation

Ising spin glass: Complex testbed of condensed matter and field theory

Sweet spot: Larger than gate based computers, but more versatile and programmable than optical lattices

 $H_{p} = \sum_{i} h_{i}Z_{i} + \sum_{i < j} J_{ij}Z_{i}Z_{j} + \sum_{i < j < k} K_{ijk}Z_{i}Z_{j}Z_{k} + \dots$

Quantum adiabatic Boltzmann machine

- common approach in machine learning: sample from Boltzmann distribution
- preparing Boltzmann distribution for hard problem hard
- diabatic annealing: welcome thermal transitions
- need custom annealing schedules

Famous caveats

- Adiabatic quantum computing and the gate model can efficiently (= with polynomial overhead) simulate each other
- For arbitrary combinatorical optimization, there are no proofs of speedup in either model (AQC/QA is a metaheuristic)
- Quantum annealing can be error corrected against thermal excitation
- A universal quantum annealer needs more coherent and versatile hardware than d-Wave's current offerings (which can be simulated efficiently by spin vector Monte Carlo)

Hardware consequences

- Program by physics: Higher degree of coupling
- Control adiabatically rather than pulse: Simpler drive, fewer microwave issues
- Non-simulable coupling: Couple by conjugate variable

Decoherence in annealers

Three impacts of decoherence in the simplest picture

- Dephasing: Loss of superpositions between eigenstates (T₂)
- Relaxation / Excitation: Transitions between eigenstates leading to thermalization (T_1)
- Renormalization: Change of effective Hamiltonian (Lamb shift)

Pivotal role of the Energy eigenbasis

Basic questions

- Does keeping the ground state even need coherence?
- Is relaxation even hepful?
- "Can there be quantum speedup without quantum coherence?" (J. Martinis, before 2014)
- "What is the role of the reorganization energy of the environment" (A.J. Kerman, 2017)
- "Isn't quantum annealing cheating" (many in the circuit-model community)

The dissipative phase transition

Energy shift: Level repulsion / second order pert. th.

Adiabatically dressed states $\hat{H} = \frac{\Delta_0}{2}\hat{\sigma}_z + \frac{\hat{\sigma}_z}{2}\sum$

High-frequency part - treat qubit as perturbation

Effect on qubit: Dressed tunneling

$$\lambda_i(\hat{a}_i + \hat{a}_i^{\dagger}) + \sum_i \hbar \omega_i \hat{a}_i^{\dagger} \hat{a}_i$$

Dressed states: Displaced vacua

$$|0/1\rangle_{\text{eff}} = |0/1\rangle \bigotimes_{\omega_i > \Delta} \left| \pm \frac{\lambda_i}{2\omega_i} \right\rangle$$

= 1 Cat per mode

 $H_{Q,\text{eff}} =_{\text{eff}} \langle 0 | H_Q | 1 \rangle_{\text{eff}}$

Reduction of Tunneling element widens bandwidth of dressing cloud

$$\Delta_{\rm eff} = \Delta_0 \exp\left(-\int_{\Delta_{\rm eff}}^{\omega_c}\right)$$

Running tunneling element

$$\left(\frac{J(\omega)}{\omega^2}\right)$$

Phase diagram and fixed point

Delocalized: Quantum phase

 $\mathbf{0}$

 $\Delta_{\rm eff} = \Delta_0 \left(\frac{\Delta_0}{\omega_c}\right)^{\frac{\alpha}{1-\alpha}}$

Localized: Classical phase

 α

A.J. Leggett et al., RMP 1988

Dissipative PT: Why the flux qubit was invented before quantum computing

Macroscopic quantum coherence

Macroscopic Quantum Systems and the Quantum Theory of Measurement

A. J. LEGGETT

School of Mathematical and Physical Sciences University of Sussex, Brighton BN1 9QH

Figure 1. A single rf (or single-junction) SQUID ring.

A.J. Leggett, Prog. Th. Phys. 1980

Tuning sytem-bath interactions kills tunneling

nature physics

LETTERS PUBLISHED ONLINE: 10 OCTOBER 2016 | DOI: 10.1038/NPHYS3905

Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime

P. Forn-Díaz^{1,2,3*}, J. J. García-Ripoll⁴, B. Peropadre⁵, J.-L. Orgiazzi^{1,3,6}, M. A. Yurtalan^{1,3,6}, R. Belyansky^{1,6}, C. M. Wilson^{1,6*†} and A. Lupascu^{1,2,3*†}

A technical note

- Adiabatic renormalization visualizes lowestorder perturbative renormalization group ("Poor man's scaling")
- Higher order calculations typically done with flow equations (Wegner / Kehrein; Glaczek / Wilson)

Dissipative phase transition for many qubits

Setting

Coupling (arbitrary)

From two to many

Renormalization ratio at cu

 $\operatorname{eff}\left\langle \left\{ \sigma_{i} \right\} \left| \hat{H} \right| \left\{ \sigma_{i}^{\prime} \right\} \right\rangle_{\operatorname{eff}} =$

- Disappearance of fixed-point matrix Hamiltonian elements
- **Recall:** Single qubit dressing $H_{Q,eff} =_{eff} \langle 0 | H_Q | 1 \rangle_{eff}$

toff
$$C =_{\text{eff}} \langle 0|\hat{\sigma}_x|1\rangle_{\text{eff}} = \left(\frac{\Delta_{\text{fix}}}{\omega_c}\right)^{\alpha} < 1$$

Matrix element renormalization: Count OD-Elements

$$= \left\langle \left\{ \sigma_i \right\} \left| \hat{H} \right| \left\{ \sigma'_i \right\} \right\rangle C^{\sum_i |\sigma_i - \sigma'_i|}$$

Energetics of Hamiltonian

- More lines in the phase diagram
- for a k-local-Hamiltonian: Lines at

$$\alpha = \frac{1}{k}$$

 In coherent phase: weak shift

$$\frac{J_k}{J_0} \simeq 1 - k\alpha \log \frac{\omega_c}{J_0}$$

the energetics are safe

Structure of the ground state

In **spin systems**, short-range interactions create long-range order

Reduced density matrix of the ground state

 $\left\langle \left\{ \sigma_i \right\} \left| \hat{\rho}_R \right| \left\{ \sigma'_i \right\} \right\rangle = \left\langle \left\{ \sigma_i \right\} \left| \hat{\rho} \right| \left\{ \sigma'_i \right\} \right\rangle C^{\sum_i |\sigma_i - \sigma'_i|}$

$$\hat{O}_S \equiv \hat{O}_S \otimes \mathbf{1}_B$$

- In quantum annealers, k-local interactions can create N>k weight entanglement

 - State overlap reduction for system-only obversables

$$\left\langle \hat{O}_S \right\rangle = \operatorname{Tr}\left(\hat{O}_S \hat{\rho}_R \right)$$

Regimes and clarifications

Perturbative: Small corrections Thermodynamics lives here

1/N

N-qubits, k-Local Hamiltonian, k<<N

Eigenstate thermalization in perturbative regime!

Locally coherent globally dephased (LCGD) regime
Working in the LCGD regime

Relevance:

Compute ground-state DM with local dephasing channels $D_1: \rho_1 \mapsto C\rho_1 + (1-C)\sigma_z \rho \sigma_z$ One qubit

Quantum annealer

Related to GHZ-state dephasing $|0\rangle^{\otimes N} + |1\rangle^{\otimes N}$ Survives with probability C^N

At N=1000 and k=2 (or 4), this is where most current annealers are / could be

 $D^{\otimes N}$

Error sensitivity of QA

- ultimately also hit by decoherence no cheating
- much more subtle
- huge advantage in short time (I/N vs. 0.00I/N)
- more forgiving of control inaccuracies
- simple error supression goes far
- expect disruption before error correction
- community is working on speedup manifesto

Nonpairwise interactions

• In electrical circuit nature only provides pairwise interactions

Motivation

use virtual photons

Idea+Motivation

• In electrical circuit nature only provides pairwise interactions

use virtual photons

Nonlinear coupler

 Virtual photons lead to higher order correlations • purely quartic coupler

 $\Rightarrow \hat{H}_{\text{int}} \propto \hat{\sigma}_{z,1} \hat{\sigma}_{z,2} \hat{\sigma}_{z,3} \hat{\sigma}_{z,4}$

Four local

Idea+Motivation

• In electrical circuit nature only provides pairwise interactions

Applications:

- Universal AQC
- **Error correction for AQC**
- Reduce embedding overhead
- Fundamentally interesting

use virtual photons

Nonlinear coupler

 Virtual photons lead to higher order correlations • purely quartic int. potential

 $\Rightarrow \hat{H}_{\text{int}} \propto \hat{\sigma}_{z,1} \hat{\sigma}_{z,2} \hat{\sigma}_{z,3} \hat{\sigma}_{z,4}$

Four local

Virtual interactions

Schrieffer-Wolff: Higher order processes lead to nonpairwise interactions

[8] Schöndorf and Wilhelm, Phys. Rev. Appl. 20.012305 (2019)

Setup and Hamiltonian

In qubit basis:

[8] Schöndorf and Wilhelm, Phys. Rev. Appl. 20.012305 (2019)

- Four flux quits coupled via large rf SQUID \Rightarrow nonlinear coupler
- Inductively coupled

•
$$\omega_c \gg \omega_{\rm QB}$$

$$\hat{\sigma}_{z,i}\hat{\sigma}_{z,j} + \tilde{\alpha}\sum_{i=1}^{4}\hat{\sigma}_{z,i}\hat{\varphi}_{c}$$

Setup and Hamiltonian

In qubit basis:

Direct qubit-qubit coup

[8] Schöndorf and Wilhelm, Phys. Rev. Appl. 20.012305 (2019)

- Four flux quits coupled via large rf-SQUID ⇒ nonlinear coupler
- Inductively coupled

•
$$\omega_c \gg \omega_{\rm QB}$$

$$\hat{\sigma}_{z,i}\hat{\sigma}_{z,j} + \tilde{\alpha} \sum_{i=1}^{4} \hat{\sigma}_{z,i}\hat{\varphi}_{c}$$
Indirect coupling

[8] Schöndorf and Wilhelm, Phys. Rev. Appl. 20.012305 (2020)

Results

- For the right parameters: $J_4 > J_2$
- Four body couplings in the strong coupling regime
- Suppress *J*₂ using external flux

Obervations on annealing

Gate model

Short term	NISQ:	d-Wave
	Memory-limited algorithms	Incoherent qubits
	Competition with early starters	Limited connectivity: can be simulated with
	about 50-100 qubits	spin-vector monte carlo
	significant microwave engineering	> 2000 Devices
	Short-range coupling - long range gate delegated	simple high-speed engineering
	into software (with overhead)	Long-range interactions embedded
Long term	FTQC:	Universal annealing
	All algorithms	All algorithms accessible
	Enormous qubit overhead (>1000 physical per	Early start on coherence - simple error
	logical)	mitigation goes a long way
	Currently on a very primitive level	Only IARPA projects - accessible?
	significant system integration (multi-cryostat)	Complex controls (NISQ-level)
	short-range coupling sufficient	Delegate interactions to physical level

Annealing

European annealing readiness

- European users (HPC, companies) interest in AQC/ Annealing
- coherent annealing mostly • So far only overseas partnerships developed in US (closed) and Japan
- disappointed by d-wave's performance
- Alternative would be highly welcome

• Europeans physicists set aback by d-Wave's PR

- Needs NISQ-type fabrication and infrastructure: European leadership
- Limited competition with other open projects - niche

A possible future

Applications and quantum firmware

- Control, benchmarking, calibration tools
- microarchitecture
- interoperable with openQASM / Qiskit
- platform-agnostic and open source
- Want to know more? Ask for our public deliverable on the software stack description

Analog gate design

$$\hat{U}_{\text{gate}}(t_{i+1}, t_i) : \quad i\partial_t \hat{U}(t, t_i) = \hat{H}(t)\hat{U}(t, t_i)$$

$$\hat{H} = \hat{H}_0 + \sum_i u_i(t)\hat{H}_i$$

Find controls implementing U fast and reliably: Analog control problem

Find controls that maximize fidelity

Practical wishlist:

Fast (limited coherence!) Simple (easy to calibrate) Robust (tolerate fluctuations)

S.J. Glaser et al., EPJ D 2015

Adaptive Hybrid Optimal Control

Note the analogy with VQE / QAOA

J. Kelly et al., PRL 2014

D.J. Egger and FKVV, PRL 2014

C³: Combined Calibration and Characterization

Open-source (permissive), Python

QAOA / Digitized AQC for combinatorical optimization

Problem Hamiltonian: Ising-type

Driver Hamiltonian: Tunneling

$$H_p = \sum_i h_i Z_i + \sum_{i < j} J_{ij} Z_i Z_j$$

$$H_d = -\frac{\Delta}{2} \sum_i X_i$$

 $+\ldots \exp\left(-i\beta\right)$

$$\hat{H}_{i}H_{p}$$
)
 $\hat{H} = \hat{H}_{0} + \sum F_{i}(t)\hat{H}$

$$\exp\left(-i\gamma_iH_d\right)$$

$$\hat{H} = \sum \hat{H}_i(t) + \sum \hat{H}_{ii}(t)$$

$$\hat{H} = \sum_{i} \hat{H}_{i}(t) + \sum_{i < j} \hat{H}_{ij}(t)$$

Digital Analogue QAOA

QAOA

- Alternate non-commuting $\left|\vec{\beta},\vec{\gamma}\right\rangle = \prod_{p'=0}^{p} e^{i\beta_{p'}H_{\rm D}} e^{i\gamma_{p'}H_{\rm P}} \left|+\right\rangle^{\otimes n}$ parameterized operators
- Classical optimiser maximises expectation value of a problem solution

Digital Analogue Scheme

- Express all two-qubit operations in terms of an all-to-all resource
- Use single-qubit operations to 'steer' this resource Hamiltonian
- If resource always on simultaneity of resource and single qubit ops causes error

DA-QAOA

- QAOA problem Hamiltonians suit DA scheme, easy to express
- QAOA can use variational freedom to 'eat' coherent DA error
- Faster single-qubit operations improve performance

ratios for γ

Many ways to write an algorithm

Gate-based algorithm Universal gate set Tuneup of gates

Optimal control Controllability Analogue programming

Conclusions

- 3 paths to quantum computing
- early stages with fast development
- multitude of platforms
- coherent annealing: the grey horse of quantum computing