

Problems

- ✓ 41 % of OOFV events in the BWD direction
- ✓ 35 % of particles that are mis indentify as muons
- ✓ 41 % of protons that are mis indentify as pions in ECal
- ✓ 21 % of protons that are mis indentify as pions in FGD1

BWD Muon Kinematics

Muon PID for BWD direction is based in a single cut: $L_{\mu} > 0.05$

✓ If the cut is change to:

$$L_{\mu} > 0.7$$

We obtain a purity of $CC1\pi^+ \sim 46\%$ with $OOFV \sim 12\%$ and an efficiency $\sim 9\%$.

If the cut is change to:

$$\checkmark L_{MIP} > 0.8$$

$$\checkmark L_{\mu} > 0.6$$

We obtain a purity of $CC1\pi^+ \sim 40\%$ with $OOFV \sim 10\%$ and an efficiency $\sim 12\%$

FGD and ECal Positive Pion Kinematics

FGD Pion PID

- ✓ Track should be in the same time bunch as the muon,
- ✓ Track should have no TPC information,
- ✓ Track needs to start and stop in FGD,
- \checkmark -2.0 < Pion pull < 2.5

ECal Pion PID

- ✓ Track needs to start in FGD1
- ✓ Stop in the Barrel ECal,
 - ✓PIDMipEm > 15
 - ✓ 0.45 < Length/EMenergy < 0.9

- ✓ Loss of high number of events
- ✓ From ~41 % to ~10 % of OOFV events in the BWD direction
- ✓ From 35 % to ~2 % of particles that are mis indentify as muons
- ✓ Drop of the efficiency on the BWD direction
- ✓ Contamination of protons that are mis indentify as pions in ECal and FGD1
 - ✓ Event display of this events for better undestending

Results

0.85

Thank you!!!