Minimal Dark Matter and future colliders

Filippo Sala

IPhT, CEA/Saclay and CNRS

mainly based on Cirelli, S, Taoso 1407.7058

Universitat Autònoma de Barcelona, 27 October 2014

Data: no answer so far, everything agrees with Standard Model

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

1 The Fermi scale is "natural"

 $[\Rightarrow \Lambda_{\rm NP} \lesssim TeV]$

A mechanism screens m_h from scales higher than M_{NP} , for any NP Examples: Supersymmetry composite Higgs models

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

1 The Fermi scale is "natural"

 $[\Rightarrow \Lambda_{\rm NP} \lesssim TeV]$

A mechanism screens m_h from scales higher than M_{NP} , for any NP Examples: Supersymmetry composite Higgs models

"Standard" approach on Dark Matter:

it is a byproduct of theories that solve the HP, e.g. Neutralino in supersymmetry

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

 $[\simeq \text{ why not } m_h \approx \Lambda_{\mathrm{NP}} ? (\text{e.g. } \Lambda_{\mathrm{NP}} = M_{\mathrm{Planck}})]$

- 2 Short distance assumptions $[\Lambda_{\rm NP}=???]$
- 3 Multiverse: Fermi scale anthropic, near-critical, .. $[\Lambda_{NP} = ???]$

2 has two more requirements than attitude 1:

i) no problems from gravity ~~ ii) know all physics up to $M_{\it Planck}~({\rm or}~\infty)$

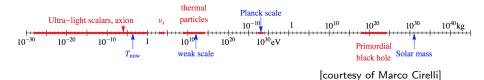
Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

 $[\simeq \text{ why not } m_h \approx \Lambda_{\mathrm{NP}} ? (\text{e.g. } \Lambda_{\mathrm{NP}} = M_{\mathrm{Planck}})]$

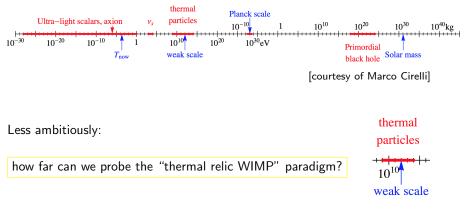
- 2 Short distance assumptions $[\Lambda_{\rm NP}=???]$
- 3 Multiverse: Fermi scale anthropic, near-critical, .. $[\Lambda_{NP} = ???]$

2 has two more requirements than attitude 1:


i) no problems from gravity — ii) know all physics up to M_{Planck} (or ∞)

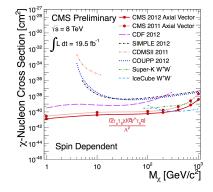
2 and 3 open new avenues for Dark Matter model building

Can DM provide an indication for a NP scale?


Can DM provide an indication for a NP scale?

Not really

Can DM provide an indication for a NP scale?

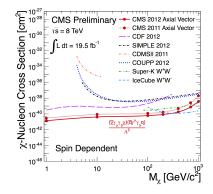

Not really

Unitarity bound: $M_{\rm DM} < 80 \div 120 \text{ TeV}$ Griest Kamionkowski PRL 1990

General strategy: effective field theories

- EFT approach mostly used till now
- S Model-independent
- © easy comparison collider direct detection

General strategy: effective field theories


EFT approach mostly used till now

S Model-independent

© easy comparison collider - direct detection

 \odot ~ wrong for LHC (especially 14 TeV) !!

often momentum transfer > suppression scale Λ

Lot of recent activity Busoni et al 1307.2253 and 1402.1275, Buchmuller et al 1308.6799,... Abdallah et al 1409.2893

Need to go to benchmark/simplified models!

Minimal Dark Matter

$\rightarrow \mathsf{Modelling}$

\rightarrow Phenomenology

Minimal Dark Matter

$\rightarrow \mathsf{Modelling}$

 $\label{eq:Philosophy: Focus on DM, and try to preserve SM successes (flavour & CP, ..) \\ + DM stability, adding the least possible ingredients to the theory$

Approach: add to the SM extra particle χ and determine its "good" quantum numbers "good" = i) stable ii) lightest component neutral iii) allowed

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + c \, \bar{\chi} (i \hat{D} - M_{\chi}) \chi$$
 $\left[+ c \left(|D_{\mu}\chi|^2 - M_{\chi}^2 |\chi|^2 \right) \text{ if scalar, } c = 1 \text{ or } 1/2 \right]$

other terms forbidden by Lorentz + SM symmetries (fermions)/by hand (scalars)

 M_{χ} is the only one free parameter, fixed if we impose thermal relic abundance!

[In "standard" SUSY many parameters obscure phenomenology]

Minimal Dark Matter: candidates

Allowed: χ neutral under g, γ , and almost under Z (direct detection)

$$\Rightarrow \chi = n \text{-tuplet of } SU(2)_L \qquad Y = 0$$

Stable: No renormalizable nor dim-5 operators that lead to decay

 \Rightarrow first candidates are n = 5 fermion and n = 7 scalar

Lightest component neutral: $M_Q - M_{Q=0} \simeq Q(Q + \frac{2Y}{c_{\theta_{uv}}})\Delta M$

 $\Delta M^{
m 2-loop} = 164.5 \pm .5$ MeV Ibe Matsumoto Sato 1212.5989

Minimal Dark Matter: candidates

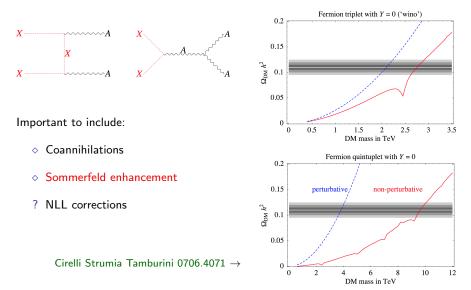
Allowed: χ neutral under g, γ , and almost under Z (direct detection)

$$\Rightarrow \chi = n \text{-tuplet of } SU(2)_L \qquad Y = 0$$

Stable: No renormalizable nor dim-5 operators that lead to decay

 \Rightarrow first candidates are n = 5 fermion and n = 7 scalar

Lightest component neutral: $M_Q - M_{Q=0} \simeq Q(Q + \frac{2Y}{c_{\theta_{uv}}})\Delta M$


 $\Delta M^{
m 2-loop} = 164.5 \pm .5$ MeV Ibe Matsumoto Sato 1212.5989

Avoid g_2 Landau pole before $M_{\rm Pl} \Rightarrow n$ not too large

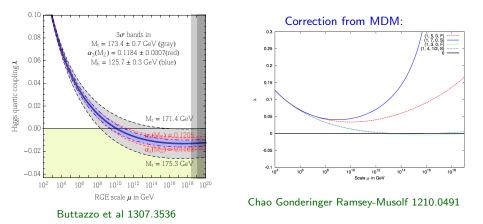
In practice: $n \le 8$ for scalars, $n \le 5$ for fermions [issue from 2-loop? Nardecchia et al, work in progress]

Relic abundance

Typical WIMP candidate \rightarrow $\textit{M}_{\rm DM} \sim$ TeV expected

Summary of candidates

Table from Cirelli Strumia 0903.3381


Quantum numbers			DM can	DD	Stable?
$SU(2)_L$	$U(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*	\checkmark	×
3	0	F	LH		×
3	1	S	HH, LL	×	×
3	1	F	LH	×	×
4	1/2	S	HHH^*	×	×
4	1/2	F	(LHH^*)	×	×
4	3/2	S	HHH	×	×
4	3/2	F	(LHH)	×	×
5	0	S	(HHH^*H^*)	\checkmark	×
5	0	F	-	\sim	\checkmark
5	1	S	$(HH^*H^*H^*)$	×	×
5	1	F	-	×	\checkmark
5	2	S	$(H^*H^*H^*H^*)$	×	×
5	2	F	-	×	\checkmark
6	1/2, 3/2, 5/2	S	-	×	\checkmark
7	0	S	—	\checkmark	\checkmark
8	$1/2, 3/2 \dots$	S	_	×	\checkmark

Masses if χ thermal relic: $M_3 \simeq 3$ TeV $M_5 \simeq 10$ TeV $M_7 \sim 25$ TeV

MDM and vacuum stability

Standard Model vacuum is metastable

(if BICEP confirmed, NP could be necessary to correct λ running)

 $\Big(ext{right-handed neutrinos not relevant if } M_{
u_R} \lesssim 10^{13} ext{ GeV} \qquad eta_\lambda \supset -y$

$${}^{4}_{\nu} {\# \over 16 \pi^2} \quad m_{
u} \sim {y^2_{
u} v^2 \over M_{
u_R}} \Big) ^{9/29}$$

Why an EW fermion triplet?

Quantum numbers			DM can	DD	Stable?
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
3	0	F		\checkmark	×

 \rightarrow Stable if one imposes L or B-L or discrete subgroup (already in the SM!)

[also kills all higher-dimensional operators that could make it decay]

Why an EW fermion triplet?

Quantum numbers			DM can	DD	Stable?
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
3	0	F		∥ √	×

 \rightarrow Stable if one imposes L or B - L or discrete subgroup (already in the SM!) [also kills all higher-dimensional operators that could make it decay]

ightarrow Not a big issue for $m_h \;\;\Rightarrow\;\;$ does not worsen fine-tuning

$$\delta m^2 = \frac{M^2}{(4\pi)^4} \frac{n(n^2 - 1)}{4} g_2^2 \left(6 \ln \frac{M^2}{\bar{\mu}^2} - 1 \right)$$

$$M_{\chi} \lesssim 1.0\sqrt{\Delta} \text{ TeV to have less than (100/\Delta) \% fine-tuning}$$

$$[5\text{-plet } M_{\chi} \lesssim 0.4\sqrt{\Delta} \text{ TeV}, \text{ 7-plet } M_{\chi} \lesssim 0.06\sqrt{\Delta} \text{ TeV}]$$

Farina Pappadopulo Strumia 1303.7244

 $\rightarrow~$ Helps with unification of gauge couplings

see e.g. "Split SUSY without SUSY" Frigerio Hambye 0912.1545 [Same running could put 5-plet in trouble, stay tuned with Nardecchia et al]

Why an EW fermion triplet?

ightarrow Connection with SUSY with heavy scalars m James Wells hep-ph/0306127

scalars $m_{_{3/2}}$ aluino bino

Keep all good features of Supersymmetry DM, unification of gauge couplings,...

And accept a tuned m_h (e.g. anthropic)

- \rightarrow All other scalars are heavier
- ightarrow Higgsinos also heavier if $\mu \sim m_{3/2}$
- \rightarrow Wino LSP candidate for Dark Matter!

See also:

Arkani-Hamed Dimopoulos hep-th/0405159 Giudice Romanino hep-ph/0406088

Arvanitaki Craig Dimopoulos Villadoro 1210.0555

D'Eramo Hall Pappadopulo 1409.5123

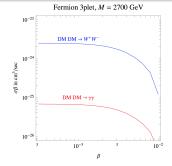
Minimal Dark Matter

$\rightarrow \mathsf{Modelling}$

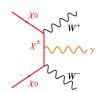
\rightarrow Phenomenology

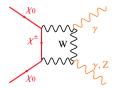
Minimal Dark Matter

\rightarrow Phenomenology

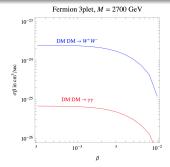

Indirect detection: ingredients

Sommerfeld enhancement

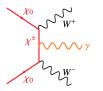

even more important than in abundance computation, since here

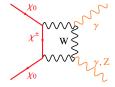

$$v\sim 10^{-3}c$$

Franceschini et al 0802.3378, WARNING: old \rightarrow

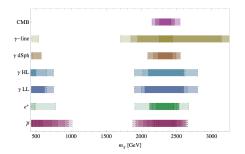

Indirect detection: ingredients

Sommerfeld enhancement


even more important than in abundance computation, since here

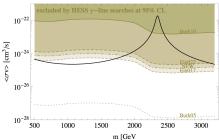

$$v\sim 10^{-3}c$$

Franceschini et al 0802.3378, WARNING: old \rightarrow



 $\bar{p},~e^+,~\nu,~\gamma,\ldots$

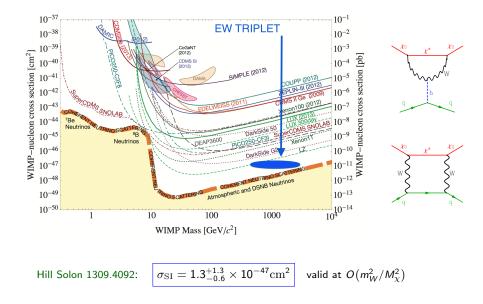
 γ ray lines: smaller cross-sections


but features in γ spectrum enhance sensitivities

Indirect detection: constraints

Large astrophysical uncertainties [shaded = different astro assumtpions]

Assume all DM made of EW triplet



Hryczuk Cholis lengo Tavakoli Ullio 1401.6212

Will CTA improve substantially?

Currently unclear see e.g. Bertone et al. 1408.4131

Direct Detection

Future colliders?

"The community needs studies of what could be probed at a 100 TeV machine and not elsewhere, and it needs them soon"

Michelangelo Mangano, 100 TeV kick-off meeting, Feb 2014, CERN

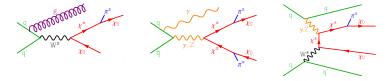
Currently unclear where particle physicists will put (EU? China? ???) money:

HL-LHC $\sqrt{s} = 14$ TeV, 3000 fb⁻¹, ~ 2025-2035 HE-LHC $\sqrt{s} = 33$ TeV, needs new technology FCC-pp $\sqrt{s} \sim 100$ TeV, start ~ 2040(?), needs ~ 100 km tunnel & new tech.

ILC $\sqrt{s} = 0.5 - 1$ TeV, maybe Japan soon

CLIC \sqrt{s} up to 3 TeV, needs new tech.

TLEP \sqrt{s} up to 500 GeV, higher luminosity, needs \sim 100 km tunnel

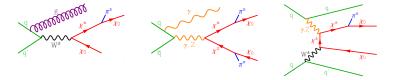

A pure Wino at colliders

DM not detected in collider: look for missing transverse energy + SM radiation

 $M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \Rightarrow \text{ lifetime } \tau \simeq 6 \text{ cm} \simeq 0.2 \text{ ns}$

Almost all χ^{\pm} s decay to χ_0 + soft pions before reaching detectors

 $\Rightarrow \ \chi^{\pm} \ {\rm add} \ {\rm to} \ {\rm the} \ {\rm signal!}$


A pure Wino at colliders

DM not detected in collider: look for missing transverse energy + SM radiation

$$M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \Rightarrow \text{ lifetime } \tau \simeq 6 \text{ cm} \simeq 0.2 \text{ ns}$$

Almost all χ^{\pm} s decay to χ_0 + soft pions before reaching detectors

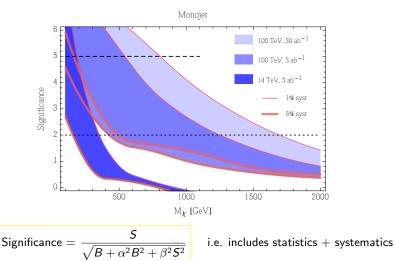
 $\Rightarrow \chi^{\pm}$ add to the signal!

4 channels: Monojet Monophoton Vector boson fusion Disappearing tracks at LHC14 with $L = 3 \text{ ab}^{-1}$, and at a 100 TeV p - p collider, for $L = 3, 30 \text{ ab}^{-1}$ For a recent study of Monojet and Disappearing Tracks see Low Wang 1404.0682

Monojets + missing energy

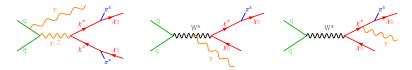
Backgrounds: mainly $Z \rightarrow \nu \bar{\nu}$, $W \rightarrow \ell \nu$ (+ mistagged lepton)

Cuts: inspired by rescaling of 8 TeV searches, optimized on a grid

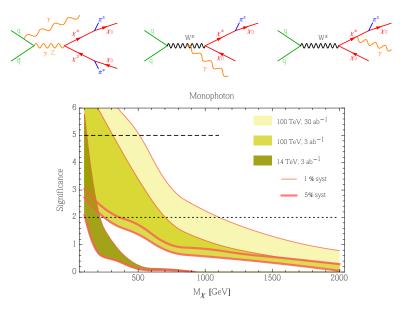

$$\mathsf{Significance} = \frac{\mathsf{S}}{\sqrt{B + \alpha^2 B^2 + \beta^2 \mathsf{S}^2}}$$

i.e. includes statistics $+ \mbox{ systematics}$

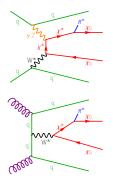
Monojets + missing energy


Backgrounds: mainly $Z \rightarrow \nu \bar{\nu}$, $W \rightarrow \ell \nu$ (+ mistagged lepton)

Cuts: inspired by rescaling of 8 TeV searches, optimized on a grid

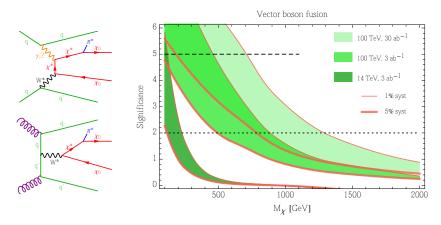

Monophoton + missing energy

Qualitatively analogous to Monojet, but photons also from final state radiation!


Monophoton + missing energy

Qualitatively analogous to Monojet, but photons also from final state radiation!

Forward dijets + missing energy (VBF)


Backgrounds: again mainly $Z \rightarrow \nu \bar{\nu}$, $W \rightarrow \ell \nu$ (+ mistagged lepton)

Delannoy et al. 1304.7779, studied VBF at 14 TeV and found sensitivity over 1 TeV!

Forward dijets + missing energy (VBF)

Backgrounds: again mainly $Z \rightarrow \nu \bar{\nu}$, $W \rightarrow \ell \nu$ (+ mistagged lepton)

Delannoy et al. 1304.7779, studied VBF at 14 TeV and found sensitivity over 1 TeV! Discrepancy not solved, we find a higher background count at high MET cuts...

Summary of missing energy + SM radiation

Tools used: Madgraph5_v2 + Pythia 6.4 + Delphes (CMS card)

Backgrounds: simulations validated with available 8 TeV CMS and ATLAS analyses Cuts: fixed values chosen on a pre scan, those with higher impact left free

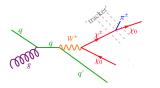
Cuts	$14 { m TeV}$	$100~{\rm TeV}$ 3 ${\rm ab^{-1}}$	$100 { m TeV} 30 { m ab}^{-1}$
$\not\!$	0.4 - 0.7	1.5 - 5.5	1.5 - 5.5
$p_T(j_{12})$ [GeV]	40 (1%), 60 (5%)	150	200
M_{jj} [TeV]	1.5 (1%), 1.6 (5%)	6 (1%), 7 (5%)	7
$\Delta \eta_{12}$	3.6	3.6	3.6~(1%),~4~(5%)
$\Delta \phi$	1.5 - 3	1.5 - 3	1.5 - 3
$p_T(j_3)$ [GeV]	25	60	60
$p_T(\ell) \; [\text{GeV}]$	20	20	20
$p_T(\tau)$ [GeV]	30	40	40

For example VBF:

Take-home messages

- \rightarrow Complementary to Indirect Detection, will not cover thermal relic mass
- $\rightarrow\,$ Systematics understanding will be crucial, today we are at \sim 5%, not 1%!
- $\rightarrow\,$ going from 14 to 100 TeV will increase mass reach by a factor 3 $\div\,4$

Disappearing Tracks - Introduction

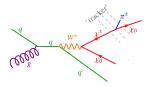

 $M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \; \Rightarrow \; \text{ lifetime } \tau \simeq 6 \, ext{cm} \simeq 0.2 \, ext{ns}$

Almost all $\chi^\pm {\rm s}$ decay to χ_0 + soft pions before reaching detectors

Disappearing Tracks - Introduction

 $M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \Rightarrow \text{ lifetime } \tau \simeq 6 \text{ cm} \simeq 0.2 \text{ ns}$

Almost all χ^{\pm} s decay to χ_0 + soft pions before reaching detectors



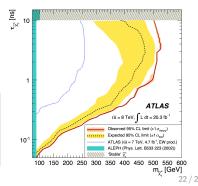
Feng Strassler 1994 Feng Moroi Randall Strassler Su 1999 ... Low Wang 1404.0682

Disappearing Tracks - Introduction

 $M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \Rightarrow \text{ lifetime } \tau \simeq 6 \, ext{cm} \simeq 0.2 \, ext{ns}$

Almost all χ^{\pm} s decay to χ_0 + soft pions before reaching detectors

Feng Strassler 1994 Feng Moroi Randall Strassler Su 1999 ... Low Wang 1404.0682


ATLAS performed this analysis at 8 TeV!

Current strongest limit on pure Wino

 $M_{\chi_0}>270~{
m GeV}$

No background in the SM, but from detector:

- ightarrow interactions of charged hadrons in detector
- ightarrow unidentified leptons
- ightarrow mis-measured tracks, dominant at large p_T

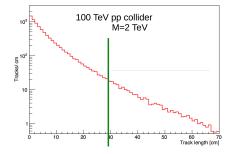
Disappearing Tracks - Strategy

We mimic the ATLAS analysis

[we cannot simulate backgrounds]

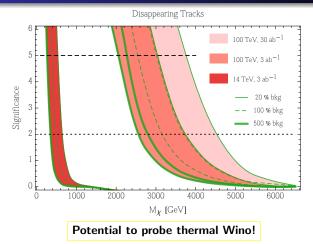
Disappearing Tracks - Strategy

We mimic the ATLAS analysis

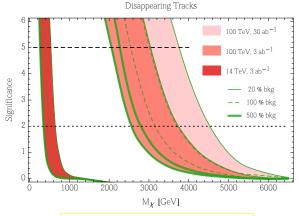

[we cannot simulate backgrounds]

We require: i) high- p_T jet ii) large missing energy

iii) track with high p_T

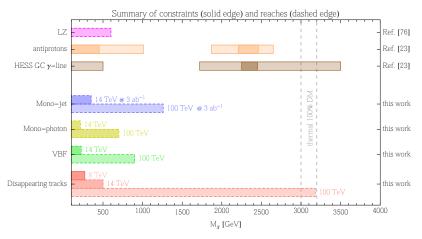

Track reconstruction becomes solid at \sim 30 cm from pipe

DISCLAIMER: of course we cannot foresee future detectors, but such a study useful also for their characterization



Assumptions for background: \diamond mis-measured tracks dominate \diamond their shape is the one fitted by ATLAS $\frac{d\sigma}{dp_T} \propto p_T^{-a}$ \diamond their cross section scales as the one for $pp \rightarrow \nu \bar{\nu} jet$ Then we quantify uncertainty on bkg with a factor of 5 up/down

Disappearing Tracks - Results


Disappearing Tracks - Results

Potential to probe thermal Wino!

OK, but isn't mass splitting sensitive to higher energy scales? Only mildly, first operators at dim 7, e.g. $\chi^a \chi^b (H^+ \sigma^a H) (H^+ \sigma^b H)$ they give $\Delta M^{\dim 7} \simeq \frac{1}{4} \frac{v^4}{\Lambda^3} \lesssim 1 \text{ MeV}$ for $\Lambda \gtrsim 10 \text{ TeV}$

Summary of pure Wino phenomenology

Indirect detection good probe

but large astro uncertainties + assumes all DM = Wino

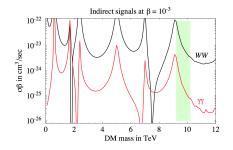
LHC14 poor reach, 100 TeV could probe masses up to thermal (and beyond?)

Other electroweak multiplets?

A fermion quintuplet

Originally "the" Minimal Dark Matter candidate, cause automatically stable

 $M_{
m thermal} \simeq 10 \ {
m TeV}$


 $\Delta M \simeq 165 \; {
m MeV}$

Direct Detection: poor prospects

100 TeV collider: very unlikely to reach thermal mass

Indirect detection:

depends on position of Sommerfeld peaks, precise computation needed

OLD Cirelli Strumia Tamburini 0706.4071

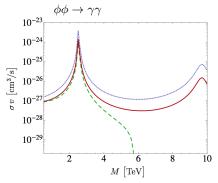
A scalar triplet

Needs extra symmetry to be stabilised, e.g. Z_2

 $M_{
m thermal} \simeq 2.5 \ {
m TeV}$

 $\Delta M \simeq 165 \; {
m MeV}$

emerges as "techni-pion" in scale-free models with strong interactions Antipin Redi Strumia 1410.1817

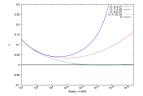

Direct Detection: poor prospects

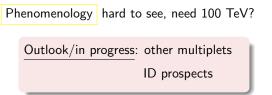
100 TeV collider:

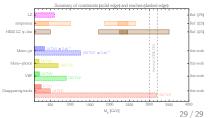
maybe disappearing tracks

Indirect detection:

precise computations available




Bauer Cohen Hill Solon 1409.7392


An EW fermion triplet to make Dark Matter

[needs non-standard attitude towards hierarchy problem]

- ✓ stable by B L (or discrete subgroup)
- \checkmark not big contribution to m_h
- \checkmark helps with unification of gauge couplings
- ✓ stabilizes EW vacuum
- ✓ mimics Wino LSP/provides benchmark

