
Seiberg-Witten 
and Massless 
Monopoles

John Terning



Outline 

!
!

  Seiberg Duality Warm-up

!

  Monopoles, Dyons, and Triality

!

  N=2 SUSY: Seiberg-Witten

!
  SL(2,Z) duality

!
  New Anomalies

!
  Conclusions


!



Seiberg-Witten

exact results and points with 

massless monopoles and dyons

SUSY



Dirac

Proc. Roy. Soc. Lond. A133 (1931) 60

charge quantization



Dirac

Phys. Rev. 74 (1948) 817

Magnetic Monopoles 31

for example, for spin-1/2 particles. The photon propagator is denoted by D+(x − x′)

and fµ(x) is the Dirac string function which satisfies the differential equation

∂µf
µ(x) = 4πδ(x), (5.7)

the four-dimensional generalization of (3.17). A formal solution of this equation is given

by

fµ(x) = 4πnµ (n · ∂)−1 δ(x), (5.8)

where nµ is an arbitrary constant vector. [Equation (3.125) results if n̂ = −ẑ, in which
case f(r, t) = f(r)δ(t).]

5.3. Field theory of magnetic charge

In order to facilitate the construction of the dual-QED formalism we recognize that the

well-known continuous global U(1) dual symmetry (2.2b) [75, 78, 33] implied by (5.2),

(5.4), given by
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suggests the introduction of an auxiliary vector potential Bµ(x) dual to Aµ(x). In order

to satisfy the Maxwell and charge conservation equations, Dirac [85] modified the field

strength tensor according to

Fµν = ∂µAν − ∂νAµ + ∗Gµν , (5.10)

where now (5.2) gives rise to the consistency condition on Gµν(x) = −Gνµ(x)

∂ν ∗Fµν = −∂νGµν = 4π ∗jµ. (5.11)

We then obtain the following inhomogeneous solution to the dual Maxwell’s equation

(5.11) for the tensor Gµν(x) in terms of the string function fµ and the magnetic current
∗jν :

Gµν(x) = 4π (n · ∂)−1 [nµ
∗jν(x) − nν

∗jµ(x)]

=

∫

(dy) [fµ(x − y) ∗jν(y) − fν(x − y) ∗jµ(y)] , (5.12)

where use is made of (5.4), (5.7), and (5.8). A minimal generalization of the QED

Lagrangian including electron-monopole interactions reads

L = − 1

16π
FµνF

µν + ψ̄ (iγ∂ + eγA − mψ)ψ + χ̄ (iγ∂ − mχ) χ, (5.13)

where the coupling of the monopole field χ(x) to the electromagnetic field occurs

through the quadratic field strength term according to (5.10). We now rewrite the

Lagrangian (5.13) to display more clearly that interaction by introducing the auxiliary

potential Bµ(x).
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non-local action?
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SO(3) ⇠ SU(2) ! U(1)
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Dual of the Dual 
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Weak Coupling 
SO(N) F = N � 2 SO(3) SO(N)

U(1)

qi,±,Mi,jQi

large hQi

U(1)

det M ⇡ 0

qi,±

di, dF

d±F

det didj = 16⇤2N�4

EM Duality

U(1)

monopoles dyons
Q±

“electrons”
✓YM = ⇡



Witten Charge

Phys. Lett. B86 (1979) 283

effective charge shifted

qe↵ = q + g
✓YM

2⇡

L = � 1

4e2
Fµ⌫Fµ⌫ � ✓YM

32⇡2
Fµ⌫ ⇤Fµ⌫



E-M Duality

L = �Im
⌧

32⇡
(Fµ⌫ + i ⇤Fµ⌫)2

L = � 1

4g2
Fµ⌫Fµ⌫ � ✓YM

32⇡2
Fµ⌫ ⇤Fµ⌫

Lc =
1

4⇡
Aµ

D @⌫ ⇤Fµ⌫

Fµ⌫
D = @µA⌫

D � @⌫Aµ
D

LD = Im
1

32⇡⌧
(Fµ⌫

D + i ⇤Fµ⌫
D )

2

Bianchi



F = N � 2

z = det(QQ)

⌧ ⇡ i

⇡
ln

⇣ z

⇤b

⌘

⌧ =
✓YM

2⇡
+

4⇡i

g2

b = 3(N � 2)� F = 2(N � 2)

large hQi

Monodromy 

loop in z around 1: z ! e2⇡iz

monodromy: ⌧ ! ⌧ � 2



large hQi

Monodromy 
monodromy: ⌧ ! ⌧ � 2

T : ⌧ ! ⌧ + 1

⌧ =
✓YM

2⇡
+

4⇡i

g2

M1 = T�2



Monodromy 
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is single-valued at weak coupling

If Im ⌧ was single-valued everywhere it would be harmonic

then it would negative somewhere

way out: there are at least two other singularities
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N=1, SO(3), F=1 
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Monodromy Example
singular point uj where a state with
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Monodromy 
Assuming a monopole with charge (1, 0)
becomes massless at the point u1
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‘t Hooft-Mandelstam
magnetic condensate 


confines electric charge

 High Energy Physics Ed. Zichichi, (1976) 1225 
Phys. Rept. 23 (1976) 245



Torus and SL(2,Z) 
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⌧ is a section of an SL(2, Z) bundle

SL(2, Z) is the modular symmetry group of a torus

⌧ represents the modular parameter of a torus



Elliptic Curves 
a torus is the solution of an elliptic curve
in two complex dimensions
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Seiberg-Witten Curve 
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Seiberg-Witten Curve 
y

2 = (x� ⇤2)(x+ ⇤2)(x� u)

a(u) = �
p
2

⇡

Z ⇤2

�⇤2

dx

p
x� up

(x� ⇤2)(x+ ⇤2)

= �
p

2(⇤2 + u)F

✓
�1

2
,

1

2
, 1;

2

1 + u
⇤2

◆

aD(u) = �
p
2

⇡

Z ⇤2

u

dx

p
x� up

(x� ⇤2)(x+ ⇤2)

= �i

1

2

⇣
u

⇤
� ⇤

⌘
F

✓
1

2
,

1

2
, 2;

1

2

⇣
1� u

⇤2

⌘◆



Monopole Mass 

Λ

M
Λ

2
u

!4 !2 2 4

0.5

1

1.5

2

2.5

3

monopoledyon



Argyres-Douglas

hep-th/9505062
CFT with massless electric and magnetic charges



N=2, SU(2), F=1 
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Zwanziger

Phys. Rev. D3 (1971) 880


two gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the
are only two on-shell degrees of freedom for the gauge fields. The advantage of having two
gauge potentials is that one, Aµ, has a local coupling to electric currents, while Bµ has a
local coupling to magnetic currents. In Dirac’s formulation, the magnetic current does not
couple directly to the gauge field, it only couples through the Dirac string attached to each
monopole, which makes calculations very di⇥cult.

For our work we will need to generalize the Zwanziger action to include the CP violating
parameter ⇥. The use of di�erential forms also makes the expressions slightly easier to write,
so we will use the notation

(a ⇤ b)µ⇤ = aµb⇤ � bµa⇤ , (3.4)

(a · �(b ⇤ c))⇤ = �µ⇤�⇥aµb�c⇥ . (3.5)

Zwanziger found [13] that the action (with a vanishing ⇥)

L = � 1

2n2e2
{[n · (⇧ ⇤ A)] · [n ·� (⇧ ⇤B)]� [n · (⇧ ⇤B)] · [n ·� (⇧ ⇤ A)]

+ [n · (⇧ ⇤ A)]2 + [n · (⇧ ⇤B)]2
�
� J · A� 4⇤

e2
K · B. (3.6)

(where n is an arbitrary four vector corresponding to the direction of the Dirac string)
reproduces the Maxwell equations if the identification of the field strength F is given by

F =
1

n2
({n ⇤ [n · (⇧ ⇤ A)]}� � {n ⇤ [n · (⇧ ⇤B)]}) . (3.7)

While the Lagrangian is not Lorentz invariant, the EOM’s will be if written in terms of the
field strength. The proper generalization of this Lagrangian incorporating the ⇥-angle is

L = �Im
⌅

8⇤n2
{[n · ⇧ ⇤ (A + iB)] · [n · ⇧ ⇤ (A� iB)]}

�Re
⌅

8⇤n2
{[n · ⇧ ⇤ (A + iB)] · [n ·� ⇧ ⇤ (A� iB)]}

�J · A� 4⇤

e2
K · B. (3.8)

One can check that this Lagrangian indeed correctly reproduces the Maxwell equations (3.1)
after the Witten e�ect is taken into account. To incorporate the Witten e�ect, one may also
write a low-energy Lagrangian below the mass scale of the fermions that will correct the
coupling terms to

�J · A� 4⇤

e2
K · B ⇥ Re [(A� iB) · (J + ⌅K)] (3.9)
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Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.

A simpler way of obtaining the anomaly is to follow the method of Argyres and Douglas
[10] of using SL(2, Z) transformations to map the theory with a dyon to a dual theory with
an electric charge, perform the calculations in the dual theory, and then map back, as we did
for the �-function in Sec. 2. Thus we want to perform SL(2, Z) transformations of the sort
(2.8-2.9). As in (2.11) one can map a dyon with charges (q, g) to a dual electron with charge
n, where n is the greatest common factor of the integers q and g, using a transformation
with c = g/n and d = q/n. In the dual theory with electric charge n, the axial anomaly is

⇧µj
µ
A(x) =

n2

16⇤2
F ⇥µ⇥ �F ⇥

µ⇥ =
n2

32⇤2
Im (F ⇥µ⇥ + i �F ⇥µ⇥)2 . (5.1)

Using (3.2) we find that in the original theory with a dyon the axial anomaly is
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g
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e4

�
F µ⇥ �Fµ⇥ +

⇤
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⇥

2⇤
g2

⌅
F µ⇥ Fµ⇥

⌦
. (5.3)

We immediately recognize that the coe⇥cients are indeed determined by the one-loop �
function contributions as expected. The second term, proportional to the gauge kinetic term
F µ⇥ Fµ⇥ , may give one pause since it might seem that it allows us to rotate away this term
in the action. However there is only an axial anomaly if there are charged massless fermions,
but then ⇥ and �� are unphysical. Rotating ⇥ to zero we are left with

⇧µj
µ
A(x) =

1

16⇤2

⇧⇤
q2 � g2 16⇤2

e4

⌅
F µ⇥ �Fµ⇥ + qg F µ⇥ Fµ⇥

⌃
. (5.4)

6 Gauge Anomalies

In the case of a mixed gauge anomaly between the U(1) of electromagnetism (with only
electric charges) and an SU(N) gauge group one finds that gauge dependent terms appear
in the action

Lanom = c � Gaµ⇥ �Ga
µ⇥ (6.1)
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Conclusions 
the Seiberg-Witten analysis


gives exact results in 

strongly coupled theories with 


monopoles and dyons

!

there are theories with

massless monopoles interacting


with massless dyons



