Have Primordial Black Holes been found by LIGO/Virgo?

Iberian GW Meeting, 20th Oct 2020 Juan García-Bellido IFT-UAM/CSIC Madrid

Inflation

Quantum Fluctuations= Ripples in Space-Time

Stretched to cosmological distances

Inflation

Gravitational Collapse of PBH

Spatial Distribution PBH

- Monochromatic
- Uniformly distributed

- Broad range masses
- In clusters

Standard Model Lagrangian

Z= - / Fre Friv titte +h.c. + 4: 4: 4: 4: 4. c. + $D_{\mu}\phi l^2 - V(\phi)$

 $+ \frac{1}{2} |4|^2 R$ gravity

Primordial Spectrum PBH JGB, Ruiz Morales (2017) 1 PBH 0.01 Slow-roll approx. 10^{-4} $\mathcal{P}_{\mathcal{R}}$ (k) **Miniclusters** 10^{-6} Planck Exact 10^{-8} 10^{-10} 10^{-12} 10^{26} 10^{20} 10^{-4} 10^{8} 10^{14} 10^{2} k [h/Mpc]

Non-Gaussian Exponential Tails

Relativistic degrees of freedom

Equation of state parameter

Black Holes and Neutron Stars

Black Holes and Neutron Stars

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Black Holes and Neutron Stars

Microlensing

Model prediction: mass spectrum

M (*M*_Θ)

PBH clusters

Effective & Final Spin

The future of GW (G3)

Detection horizon for black-hole binaries

BBH sensitivity in future G3 GW

Conclusions

- Quantum diffusion during inflation generates PBH
- Thermal history predicts PBH have masses ~ Msun
- The predicted PBH spin and mass distribution has been measured by LIGO/Virgo + OGLE (features: peak+plateau)
- Other peaks could be explored with microlensing
- Very rich phenomenology: multiscale, multiepoch, multiprobe => Future G3 detectors (ET, LISA)
- Paradigm shift in Structure Formation of Universe