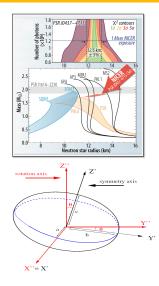
Microscopic matter models for GW physics (ongoing activity @USAL)


M. Ángeles Pérez García (C. Albertus, D. Barba-PHD)

Department of Fundamental Physics & IUFFyM, University of Salamanca, Spain

October 20, 2020

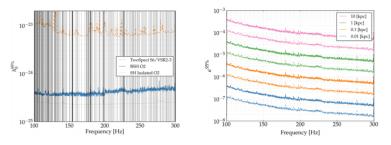
GWs from asymmetric NSs

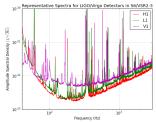
- A rotating neutron star generates GWs if it has some long-living axial asymmetry.
- This can be obtained in different ways: mountains, glitches, osc. modes, precession, magnetic deformations..
- Matter microscopic properties, i.e. EoS is the key ingredient.

Continuous GW emission

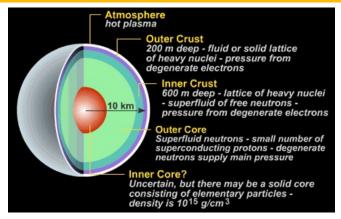
A deformed compact object will emit a monochromatic signal at $f_{GW} = 2\nu$, with amplitude h_0 at distance d given an ellipticity

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \tag{1}$$

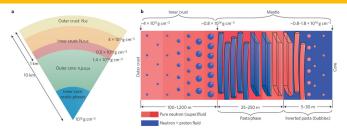

Then the strain amplitude is given by


$$h_0 = \left(\frac{16\pi^2 G}{c^4}\right) \frac{\epsilon I_{zz}\nu^2}{d} \tag{2}$$

For a closeby fast-spinning neutron star


$$h_0 = 10^{-25} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{I_{zz}}{10^{38} \text{kg m}^2}\right) \left(\frac{\nu}{50 \text{ Hz}}\right)^2 \left(\frac{100 \text{ pc}}{d}\right) \qquad (3)$$

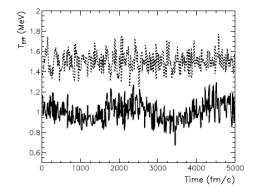
GW from Neutron Stars in binaries yield weak signal [aLIGO Covas & Sintes PRL 124(2020)]



NS deformation

- Deformation can be supported by stress in the crust (or core) on long timescales
- Pasta phases appear in the inner NS crust (~ 0.5 km) with densities $10^{13\div14}$ g/cm³

Pasta phases in the crust


Source:

COMPSTAR outreach

charges conserved

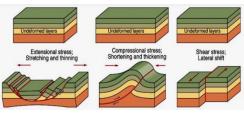
conditions	In-medium equilibrium
weak decay $n o p + e + ar{ u_e}$	$\mu_n = \mu_p + \mu_e$
elec.charge neutrality $n_p = n_e + n_\mu$	$\mu_p = \mu_e + \mu_\mu$
conservation baryon number	$\rho_B = \rho_n + \rho_p$

■ Microscopic models must reflect long-range correlations (defects or impurities) → extract elastic properties → GW amplitude.

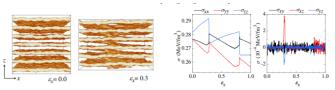
Better T control in the NVT system than rescaling

 $n_b=0.016~{\rm fm}^{-3}$, $Y_e=0.2$ for $Q=10^6{\rm MeV}({\rm fm/c})^2$ (upper) and $Q=~10^8{\rm MeV}({\rm fm/c})^2$ (lower) [Pérez-García et al 2018]

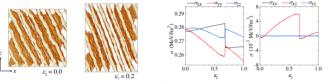
Neutron rich pasta


 $0.03 fm^{-3}$ proton density isosurface, $n_b=0.05\ fm^{-3}$ (left) and $n_b=0.025\ fm^{-3}$ (right).[Horowitz, Pérez-García et al. PRC 70 (2004), PRC72 (2005)]

Elasticity of Pasta


 In order to determine the elastic properties of Pasta one must obtain stress

$$\sigma_{a\beta} = \frac{1}{V} \sum_{i} \left[m u_a^{(i)} u_\beta^{(i)} + \frac{1}{2} \sum_{i \neq j} \left(x_a^{(i)} - x_a^{(j)} \right) f_\beta^{(ij)} \right]$$
(4)

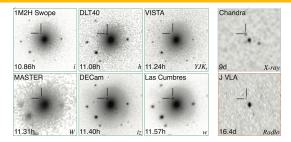

with x, u, f position, velocities and forces mixing tensile and shear stresses.

Lasagna plates show max. breaking strains of order 0.1 MeV/fm^3 . $n_b=0.05~fm^{-3}$, $Y_p=0.4.$ [Caplan,Schneider et al., PRL121 (2018)]

(b) Tensile deformation pulling lasagna sheets laterally while compressing them

(c) Lasagna sheets experiencing both tensile and shear strains

• This max. breaking strain determines the max. quadrupole moment, source of GWs

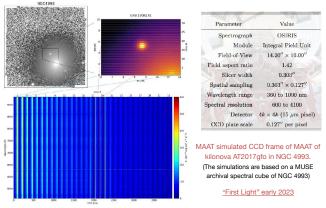

$$\epsilon = \sqrt{\frac{8\pi}{15}} \frac{\Phi_{22}}{I_{zz}}$$

where for slowly rotating neutron stars Φ_{22} can be written as

$$\Phi_{22,\max} = 2.4 \times 10^{39} g \,\mathrm{cm}^2 \left(\frac{\sigma_{\max}}{10^{-1}}\right) \left(\frac{R}{10 \,\mathrm{km}}\right)^{6.26} \left(\frac{1.4 M_{\odot}}{M}\right)^{1.2}$$

■ However allowed range $10^{-5} < \sigma_{max} < 10^{-1}$. [Ushomirsky, Cutler et al, MNRAS 319 (2000), Caplan et al. 2018]

More about NSs: multimessenger signal in BNS



- Hours to days from GW170817 broadband EM radiation was detected in AT2017gfo. Optical images (left) taken between 10 and 12 hours after the merger whilst days after those in X-rays (right). Source: LIGO website.
- Microscopic matter properties also determines the ejected mass in the BNS→ UV/visible/IR transient emission and more energetic channels perhaps interesting as a complementary standard candle in cosmology.

MAAT @GTC

MAAT visitor instrument @GTC

A new Integral-Field Spectroscopy mode for OSIRIS on the 10.4-m Gran Telescopio CANARIAS

White Paper on MAAT@GTC: https://arxiv.org/pdf/2007.01603.pdf

Conclusions

- NSs are complex objects where matter properties determine the deformations capable of generating GWs
- Microscopic simulations of neutron rich matter must consider interplay of short-range potentials and EM interaction, besides additional quantum effects.
- Richer description will provide more accurate answers, however this is computationally challenging.
- Deformations of NSs provided by current crust elasticity models could yield breaking strains up to $\sim 10^{-1}$ (MeV/fm^3) .

THANK YOU