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What is a cosmic string? 
•  Simplest	
  model:	
  Abelian	
  Higgs	
  model.	
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What is a cosmic string? 

•  Physical properties of the strings: 

•  They are topological stable objects, they have no ends. 
 
•  They have Tension = Energy density per unit length 

•  They are not coupled to any massless mode, except 
gravity. 

 
 

(This is the simplest version of strings that we will consider here) 



The String Scale 

•  Thickness,	
  energy	
  density	
  and	
  tension	
  of	
  the	
  string	
  are	
  controlled	
  by	
  
the	
  symmetry	
  breaking	
  scale.	
  

	
  
•  For	
  a	
  Grand	
  Unified	
  Theory	
  scale:	
  
	
  
•  Thickness:	
  
	
  
•  Linear	
  mass	
  density:	
  
	
  
•  Tension	
  :	
  
	
  
•  Gravita*onal	
  effects	
  depend	
  on:	
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Cosmic String Dynamics 
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Z p
�� d2⇠

(Nambu,’71; Goto ‘70). 

•  A relativistic string dynamics has an 
action of the form, 

 

•  This is a good approximation as long as the radius of curvature of the 
string is larger than its thickness. 
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Cosmic Loop Dynamics 

•  Strings can have intersections where they exchange partners.	
  

•  Once formed loops oscillate due to their tension.	
  



Stochastic background of Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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It also depends on the spectrum of gw 
emission by the surviving loops. 



Nambu-Goto Cosmic String Networks 
(B-P., Olum and Shlaer ‘12). 



The number of cosmic string loops 
(B-P., Olum and Shlaer ‘13). 

•  We have been able to obtain from the simulations the scaling 
distribution of loops (See also Ringeval et al. ’05). 

 
 
•  This allows us to calculate the loop distribution of sizes at any 

moment in the history of the universe: 

nr(t, l)

a3(t)
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Loops from the Simulation 
(B-P., Olum and Shlaer ‘12). 



Smoothing the loops (Toy model) 
(B-P., Olum‘15). 



Gravitational Radiation by Loops 
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Radiation Spectrum Step 7 

•  Averaging over more than 1000 loops we get a spectrum of the form. 
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(B-P. and Olum  ‘17). 



Stochastic background of Gravitational Waves 

•  The whole network of strings contributes to the stochastic 
background of GW.  
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(B-P. , Olum and Siemens  ‘18). 
Observational Implications 



(B-P. , Olum and Siemens  ‘17). 
Observational Implications 

•  Current limit from Parkes PTA (Australia) 

•  Similar results from the old NANOGrav (9 year) 

•  European Pulsar Timing. 

 
•  LISA would be the relevant instrument for strings in the long run 

•  These strings would not be seen in the CMB. 

Gµ < 1.5⇥ 10�11

Gµ < 6⇥ 10�18

Gµ < 4⇥ 10�11

Gµ < 1.1⇥ 10�10



Implications from NANOGrav 12.5 year data 
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(Ellis and Lewicki  ‘20). 



Implications from NANOGrav 12.5 year data 

(Ellis and Lewicki  ‘20). 

1� : Gµ 2
�
4⇥ 10�11, 10�10

�

2� : Gµ 2
�
2⇥ 10�11, 3⇥ 10�10

�



Including real backreaction 



Real Gravitational Backreaction 
•  Recall the NG equations: 

 
 
 
•  We want to introduce the gravitational self-interaction at linear 

order:  
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•  This captures the gravitational effect of 
the intersection of the worldsheet with the 
past lightcone of the observation points.  

 
 

(Quashnock and Spergel  ‘90). 
(B-P. , Olum and Wachter  ’18; ‘19). 

•  Correction at the linear order in   

 
 

Gµ



Real Loops with Real Backreaction 
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Real Loops with Real Backreaction 

As the loop evolves with 
backreaction its length decreases. 

Backreaction modifies the 
loop’s power spectrum. 
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Observational Implications 

How much does this picture change due to backreaction ? 

Work in progress




Conclusions 

•  Cosmic Strings are predicted in many extensions of the SM. 

•  We are entering an era of precision cosmology in cosmic string simulations. 

•  All known effects taken into account except real backreaction. 
      ( Coming soon ) 
 
•  We can impose important constraints on the scale of the string from current 

PTA observations. 

•  Future observatories like LISA and ET could detect or constrained these 
scenarios. 

•  This bounds have an impact on high energy physics of the early universe. 
 



Thank you 


