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• Three known flavours

• Leptons with zero electric charge
→ only feel weak force

• Massless

CC (Charged Current) NC (Neutral Current)
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𝜈𝛼 Weak Eigenstates
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𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) =  〈𝜈𝛽 𝜈𝛼 𝐿  

2
= sin2 2𝜃 sin2 1.27

𝐿[𝑘𝑚]Δ𝑚2[𝑒𝑉2]

𝐸[𝐺𝑒𝑉]

Two Neutrino Aproximation

Amplitude → 𝜃

Period → Δ𝑚2
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𝜈𝛼 disappearance

𝜈𝛽 appearance
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Neutrinos are massive !!

Physics Beyond the
Standard Model (BSM)
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𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) =  〈𝜈𝛽 𝜈𝛼 𝐿  

2
= sin2 2𝜃 sin2 1.27

𝐿[𝑘𝑚]Δ𝑚2[𝑒𝑉2]

𝐸[𝐺𝑒𝑉]



𝜈𝜇

𝜈𝑒
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Advantages:

• Quasi Monochromatic Beam
• Tuned at expected oscillation maximum
• Background reduction

T2K Energy region
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ND280 (Near Detector)
SuperKamioKande (Far Detector)

Oscillated Flux (sim)

Unoscillated Flux 
(sim)f

𝜇

p

𝜇-type ring
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𝜈𝜇



• Desirable to link the true energy (𝐸𝜈) of neutrino with the lepton kinematics of our observables:

We only have the information involving the final leptonic state kinematics:  𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐
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• Desirable to link the true energy (𝐸𝜈) of neutrino with the lepton kinematics of our observables:

We only have the information involving the final leptonic state kinematics:  𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

• Have to deal with Final State Interactions (FSI)  problems:
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Nucleus

𝜈𝜇
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CCQE (Charged
Current Quasi-Elastic)
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Nucleus
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Δ++

Absorption
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Nucleus
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Charge Exchange𝜋0
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Elastic Scattering
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Pion Production
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• Desirable to link the true energy (𝐸𝜈) of neutrino with the lepton kinematics of our observables:

We only have the information involving the final leptonic state kinematics:  𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

• Have to deal with Final State Interactions (FSI)  problems:

• Rely on neutrino interaction models to link the reconstructed information with the true information:
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Section measurements

Theoretical Cross 
Section predictions>
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Real QE
Events
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+

Pionless-Δ++ decay
Events (Fake CCQE)
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+

Pionless-Δ++ decay
Events (Fake CCQE)
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+

Pionless-Δ++ decay
Events (Fake CCQE)

There are a few different
neutrino interactions models
that could explain this effect, 
but which is the good one?



• Desirable to link the true energy (𝐸𝜈) of neutrino with the lepton kinematics of our observables:

We only have the information involving the final leptonic state kinematics:  𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

• Have to deal with Final State Interactions (FSI)  problems:

• Rely on neutrino interaction models to link the reconstructed information with the true information:

𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

𝐸𝜈

Neutrino Interaction Models
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• Desirable to link the true energy (𝐸𝜈) of neutrino with the lepton kinematics of our observables:

We only have the information involving the final leptonic state kinematics:  𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

• Have to deal with Final State Interactions (FSI)  problems:

• Rely on neutrino interaction models to link the reconstructed information with the true information:

𝑝𝑙 & 𝜃𝑙 → 𝐸𝑟𝑒𝑐

𝐸𝜈

Neutrino Interaction Models

Results are Model-Dependent
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A near detector with the same features than the far detector:

 Same flux

 Same target

 Same detection type
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1°
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1° 2.5°
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1° 2.5°
4°
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1° 2.5°
4°

50 m tall and 6 m 
diameter water

Cherenkov detector, with
OA angle technique from
1° to 4 °, placed at 1 km 

(still to be fixed) from the
neutrino source
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4°

-0.5

+1.0

-0.2

1° 2.5°
4°

Φ𝑖
𝑣𝑝

𝐸𝜈 = basis

functions from the
spectra of OA 
angles in i bins

Φ 𝐸𝜈 =  

𝑖=1

𝑁𝑂𝐴

𝐶𝑖Φ𝑖
𝑣𝑝

(𝐸𝜈)
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4°
-0.5

+1.0

-0.2

30 Slices of νPRISM

Gaussian neutrino flux

Centered at 700 MeV, 10% width
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+1.0

-0.8

+0.2
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4°
-0.5

+1.0

-0.2

• Recreate oscillated
neutrino flux at SK 
using near detector

• Directly measure
muon kinetic variables 
for given value of 
oscillation parameters
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-0.5

+1.0

-0.2
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• A neutrino spectrometer:

We can take linear combinations and construct whatever “Energy Spectrum”
we want

We know a new form of reconstructing the energy:

Event vertex → Off-Axis Angle (OAA) → True Energy → Model Independent

We can predict the oscillated events at SK because:

It is the same detector type: water Cherenkov

It would be able to reproduce the same flux

• With the previous features and if placed at L = 1 km , it becomes a short-baseline neutrino oscillation
setup for testing Sterile Neutrino Oscillations in future neutrino experiments.
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Δmn𝑒𝑤
2 ⪎ 1 𝑒𝑉2

𝜈𝑒 , 𝜈𝜇 , 𝜈𝜏 + 𝜈𝑠

Δ𝑚21
2

Δ𝑚31
2 Δm23

𝐿 ~ 540 𝑚𝜈𝜇 𝜈𝑒

They are not interacting via weak
force, but they could mix with the
active neutrinos

Short-Baseline Experiment
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97 non-background events
could not be unexplained



• At L = 1 km flight path, “standard” neutrino oscillations are totally negligible

• Looking for 𝜈𝑒 appearance:     𝜈𝜇 → 𝜈𝑠 → 𝜈𝑒 (Trying to constrain MiniBooNE results)

 Considered 3 m of inner detector radius

 We take into account statistical, flux and cross section errors

 We made two different signal analyses:

𝜈𝑒

𝜈𝜇
𝜈𝑒

Flux and Cross sections
systematics are very

related to each other, 
so they should cancel
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We cover almost all MiniBooNE sensitivity region with 3 m of Inner Detector Radius

Excluded region at 
90% C.L.

Excluded region at 
90% C.L.
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• Neutrino Interactions models are a source of bias for oscillation parameters
measures

Until now we rely on complicated neutrino interaction models

• νPRISM is a real good project to make our results model independent

Neutrino Spectrometer

• The features of νPRISM (if placed at L = 1 km) make it a good short-baseline
experiment for testing sterile neutrinos 

Sensitivity studies are very promising in comparison with MiniBooNE anomaly
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𝜈𝛼 =  

𝑖=1

𝑈𝛼𝑖
∗  𝜈𝑖〉

𝜈𝑖 𝐿, 𝑡 = 𝑒−𝑖(𝐸𝑖𝑡−𝑝𝑖𝐿) 𝜈𝑖〉

〈𝜈𝛽 𝜈𝛼(𝐿) ≈  

𝑖=1

𝑈𝛽𝑖 𝑒−𝑖
𝑚𝑖

2

2𝐸 𝐿𝑈𝛼𝑖
∗  𝜈𝑖〉
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Normal
Hierarchy

Inverted
Hierarchy


