Shedding some light on the
light-by-light

Oscar Cata

" UNIVERSITAT
SIEGEN

IFAE, February 25th, 2021
(in collaboration with L. Cappiello, G. D’Ambrosio, D. Greynat and A. lyer)




Outline

Motivation

A toy model

MV limit and the anomaly

Numerical results

Conclusions



Status of the muon (g — 2),,

e While awaiting for the FNL (and J-PARC) numbers, currently:
a®P = 116592091(54)(33) x 10~

7

e Long-standing discrepancy® with the SM estimate (3 to 40):
)" =116591823(1)(34)(26) x 10~

e Excellent control over the dominant EW and EM corrections. Hadronic contributions (HVP
and HLbL) small but dominate the uncertainty. Difficult to evaluate.

20nly one experiment, not yet challenged...



Hadronic contributions

e HVP leading effect (~ 700 x 107!%). Uncertainties can be reduced with e¢*e™-based
and/or T-based analyses.

Lattice QCD at a really advanced stage.

e HLbL much harder to estimate. Connection to experiment more convoluted, albeit
dispersion analyses promising.
Lattice QCD catching up fast.

e Experimentally, FNL and J-PARC have a much improved projected uncertainty, 16 x 107!,

e Hadronic contributions cannot account for the present discrepancy, but we need better
control of theoretical uncertainties to claim NP interpretations, when/if the time comes.



HLbL estimates

e Contributions ranked using large-N,. and Y P1' arguments.

e Dominance from 7% exchange:

e However, single resonance exchange (axials) have a sizeable effect (kinematical kernels
peaked at 1 — 2 GeV).

e Scalar exchange, Goldstone loops and quark loops also important.
e The final outcome is complicated by large cancellations of the different contributions.

e Three main routes for HLbL: form factor ansatz, lattice QCD, dispersion relations.



Form factor analysis

e Main contributions from form factor analyses (in units of 10~*):

Contribution BPP HKS,HK KN MV PdRV N,JN
P S5(13)  82.7(6.4) 83(12) 114(10) 114(13) 99(10)
axial vectors  2.5(1.0) 1.7(1.7) — 22(5) 15(10) 22(5)
scalars —6.8(2.0) — — — —7(7) —7(2)
7, K loops  —19(13) —4.5(8.1)  — — —19(19) —19(13)
=K loops

Teubl. N - - -y - -
quark loops 21(3) 9.7(11.1) — — 2.3 21(3)
Total 83(32)  89.6(15.4) 80(40) 136(25) 105(26) 116(39)

e Overall agreement with the 'pion-pole’ contribution, main discrepancies in other

contributions.
e Caveat: not all the entries above come from independent calculations.

e Axial- and Goldstone-exchange contributions not settled.

e A number of theoretical issues still open, which affect not just the uncertainty.



Form factor analysis

Pion-pole contribution:

e Vertices given by the m%+*~* form factor,

/d4x ' 0|T { Ty (%) Jena (0)} [7°(p)) = P @102 Fryry ( T Qg)

e [, not known from first principles. Information only on certain kinematical limits:
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Form factor analysis

e Ansatze with different short and long-distance constraints:

4

F(p w0 (01, q2) = A; F(f) o (q1,q2) = A oV
v vy (¢f —mi) (g5 —m3)
2 my — Wf“ (3 + ¢2)
e, (q1,q2) = A v ; . (q1,q2) = A ~ -
Ty m? — ¢ — ¢3 LA (% — v)(qg— m?,)

e In principle, the more constraints the better (closer to QCD). However, interesting to play
with them to test which constraints are numerically important.

e The same strategy can be repeated for the other contributions.

e Important: the previous models are interpolators, i.e., the parameters are not the physical
masses. They encode OPE information (inclusive)...

MAIN HURDLES:

e Hard to pin down the discrepancies: different interpolators for different channels, subject to
different constraints.

e Not always clear how/if the short distances can be incorporated into form factors.



The Melnikov-Vainshtein limit

e OPE condition on the electromagnetic correlator (not on a form factor!)

X
q4

q2 qs qi1

W)~ p—a NS

e Main object:

WMV(C]Q,C];g) :/d4x/d4yei(QQ-m—F%'y)T{jébm(x)’jgm(y)}

e In the kinematical limit Q3 ~ Q?, > Q1 2 Agep

. U Q)3 @3 120 Ja 4., —iq-z :(a)
5lilf(r)loVV” (5@ T o —§Q — o = E@Eﬂ pQAza:d W/UZ ze " J5p (2)

e The OPE links VVVV to the (anomalous) VVA.



The Melnikov-Vainshtein limit

e The resulting short-distance constraint allegedly leads to a (sizable) increase

Contribution BPP HKS, HK KN MV PdRV  N,JN
P 85(13)  82.7(6.4) 83(12) 114(10) 114(13) 99(16)
axial vectors  2.5(1.0) 1.7(1.7) — 22(5)  15(10)  22(5)

e The increase is ascribed to the Goldstone and axial contributions, but this is misleading...

e Attempts to implement it with form factors not entirely successful. E.g.,

1
A?TO — FW’Y’Y(QQ? QS)Q%——W”LQFWWV(Qh O)
consistent only if F..(q1,0) = 1. Hard to argue phenomenologically: symmetry
arguments, OPE of the pion form factor...

OPEN ISSUES:

e Does a form factor analysis capture this effect?

e Which resonances are responsible for it?



Correlators vs form factors

e Melnikov and Vainshtein redux:

The OPE constraint is solid, but a model is needed to extrapolate it to all energies. With
the model chosen, there is a substantial increase in the HLbL

e The main problem ( ) is that, in general,

Correlator # Z (particle exchange)

e Sometimes a finite number of particles will fail to satisfy short distances, e.g.
FVn Q2
lim (VV) lim ~ log | —
Q2—>oo< QQ%OOZ QQ + MVn & (MQ
e Contact terms are important to fulfill general properties, e.g. gauge invariance:

N v
lim 1% (¢) = (9“ - 7 )f?

q%2—0

Pion propagation is not enough. Contact terms are fundamental.



Correlators vs form factors

e Relevant issue for the HLbL: this mismatch between form factors and correlators is at the
root of the so-called pion 'on-shell’ vs "off-shell’ contributions.

e How to make sure that correlators contain (possible) contact terms? Lagrangian
description with external sources, e.g. ChPT.

e Problem: Lagrangians for strong interactions only known at specific kinematical regimes
(pQCD, ChPT).

SHOPPING LIST:

e Hadronic model with a (regulated) infinite number of resonances.
e Lagrangian formulation.

e Correct low and high energies at correlator level.

e Anomalies correctly implemented.

e Simplicity.

In other words, a consistent realization of large-/N. QCD.



A toy model

e 5-dimensional model:

S5 — /d4$/ dz{ — )\\/ﬁtr[F(]\f)NF(L)MN -+ F(]\é)NF(R)MN} —|—ctr[w5(LM) —w5(RM)]}
0

' 1
with ws(L) = tr [LF(QL) + %L?’F(L) — EL5]

1
o AdS; space: ds* = —2(—dz2 + N dxtdz”)
2



A toy model

e Lagrangian-based theory of infinite massive vector and axial mesons (Kaluza-Klein modes):

Vilz,z) =) V(@) (2),  Aulz,2) =) AP(2)en(z)

e (Spontaneous) chiral symmetry breaking via IR boundary conditions:
L.(x,20) — R,(x,20) =0, Fi*(x,20) + F'(z,20) =0

e Pion multiplet related to the axial zero mode Aéo) (x,z). Via Wilson lines, e.g.

Er(z,z) = Pexp {—i /ZO dz' L5<ZE,Z/)}

the change of variables LS, (x, 2) = &€} (x, 2) [La(x, 2) + i0y] €1 (x, 2) replaces A5 by
2@'7r“(x)t“]
Ja

e Short-distance QCD: through (conformal) AdS; metric, one reproduces all the (leading)
constraints tested so far.

Ule) = &(2)€h(x) = exp [

e Simplicity: only 3 free parameters, \, 2y, c.



A toy model

e Important: the change of variables does not leave the CS term invariant, but induces a shift

ws(L8) = ws(L) + ws(32r) + das(L, 1), Y, = déLel

1 1
where ay(L,¥;) = =tr | S (LFy + Fi L) + i3S L — =X, LY, L —i¥3 L.
5 (L) T £ 5 L

e UV boundary conditions (AdS/CFT prescription): fields on the boundary are sources of the
4d theory, i.e.,

L (x,0) = I;(2) = u'(2) [lu(2) + i0,] u(z)
HOLOGRAPHIC RECIPE: Given an action S5(Axy),

(1) Split the fields as A, (z, 2) = a(x, 2) a*(z) + alx, =) all(z) + O‘]ﬁz) 0,7(z)
(2) Solve the EoM for a(x, z) et al. and plug them back into the action. This defines the
four-dimensional generating functional Seg(a,(x)).

(3) Compute correlators, e.g.

0% Seft

Huw\p _
00,,00,00,00,

vvvv —




How far can we go with the toy model?

Not QCD, clear limitations:

e From the pQCD quark loop in II44 and the chiral anomaly:

\ N, N,
p— : C =
4872 2472
but confinement scale too rough:
Yo.n 5 N, m,
n _— —_—, — , —_— 107 '
my o I 622 7 (1)

e No explicit chiral symmetry breaking: massless Goldstones (easily fixed).

e Mass scalings:

Te 101 0,63

me, V1,1

good, but the spectrum of V and A excitations is not accurately reproduced.

e No mass splitting within multiplets.



Minkowski vs Euclidean

e However, the HLbL comes from an integral over Euclidean space.
6 4 4
HLbL € d'qp d°qo 0 Ve
— K v [ y Y2, — Y4 — —
a, i8m, / (2m) (272 LU Ap ((%Z (91, G2, —q4 — @1 Q2)>

e From experience: as long as short- and long-distances are fulfilled, the form of the
interpolator in Minkowski space has a minor impact.

q4=0

e Consider e.g. Il R,

0.12
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Very different pole distributions in Minkowski can give similar Euclidean continuations.

The toy model is expected to be an excellent laboratory to explore QFT issues in HLbL.



The HLbL tensor

W) S p—a AN

Using the effective action, one finds a close expression for it:

20 / 5 aa! B’ (12) 41 ngsl%/f/ (34)
H,LWAP o EMVaﬁgApalﬂl dz dz T12 )G (Z Z p>T34< ) + Fw'y'y pz mg Fw'y'y

plus permutations, where T}(2) = [qfvi(z)ﬁzvj(z) — qjvj(2)0.vi(2)| and

2c

ﬁ/o dz o/ (z) v(z, Q1)v(z, Q2)

e This represents the contribution of the Goldstone modes and axial excitations.

Fﬂ")”)’(Q%? Q%) —

e The (inclusive) calculation of the HLbL in the large- N, limit is straightforward.



The HLbL tensor

N N A TN -

Using the effective action, one finds a close expression for it:
2¢° aa’ ! qa qﬁqo/ qﬁl
ILap = €pvaBErpa’ g’ [T/dz/dz'Tg(z)GA (2,2 p)T5, () —I—FEYZW) ]1922—3777,24 Fﬁ?

2

plus permutations, where a(z) =1 — z_2
20
B Ko(Q2) L _ K1(Qz0)
v(z,Q) = Qz [K1<QZ) + To(Q2) [1(QZ)] ,a(z,Q) = Qz | K1(Qz) 1(Qz) ]1(QZ)]
1
Gi(z,7;Q) = —éz’h(Qz’)a(Z, Q)(z—2")+ (2 + 2

Gh(2.25Q) =~ L a2z~ ) + (.00 2)



Pion transition form factor

e General expression:
2c
fr

e In the zero-momentum limit, F.. is determined by the chiral anomaly. Using that
v(z,0) =1,

mv( Q3) = /OZO dz o/ (z) v(z, Q1)v(2, Q2)

N,
FW77(07O> — _127T2f
e At very high energies,

2f
2 2 — T —Qzo
S Freyn (Q7, Q7) 302 " O (e7°%)

2fx
lim Fy..(0,Q? O (e~ @
QQILHOO ’Y’Y( ’Q ) QQ + ( )

e Only the leading term in the OPE is correctly reproduced by the model (enough).

e Parametrically there is agreement, but numerically not necessarily (more on this later on).



Longitudinal piece and pion-exchange dominance

e The longitudinal piece of the HLbL tensor can be projected via
Go(z,25q) = PG (z,2',q) + P,Gi' (2,75 q)

e [he electromagnetic tensor reads

F7512>F7534> 92 aZaZ/GH /
T i/dz/dz'vl(z)vg(z) A(Z’Z)vg(z')m(z’)
S

2
s —m2 A

[
H,LWAp — LuvAp

e The axial contribution can be split into a factorizable and a nonfactorizable piece with

FUD EGY p(2) R0 9\ 2 1
wih=>-- ™ ZT0 T (f_) —/dzo/(z)vl(z)vg(z)vg(z)v4(z)

2
s§ — mz S S

e Limits:

o il — <2C)2 ! / A0/ (2)01 (2)va(2)vs(2)0a (2) + O(m2)

S—>00 ﬁ S
(12) ~(34)

lim W = Fryy Fry

s—0 S — m,72T

e There is no pion dominance! Axials play a fundamental role at short distances



Anomaly matching in the VVA triangle

e Consider the correlator

Toa(gs) =i / d'zd'y € V0|T {55 (2) 55 (y)73(0) } 10)
o
2472

(@)t + (@)t

e It is known that the chiral anomaly imposes (at all energies)
2N,
—

wi(q®) =
to all orders in pQCD. Corrections are O(m?2).

e This relation could be a consequence of pion dominance.

e However, this would entail that £}, (Q3,0) = 1. Puzzle: how such a contribution could be
structureless?

e Additionally, at short distances,

lim wL<Q§) — 2wT(Q§) =

Q3—>OO



The VVA triangle

In the model, the triangle can be computed from the effective action:

(St = X

— gs“”)‘p/clél o (@)8,05 ()0, (2) [1+3/0Z0 dza(x,z)v(x,z)v’(x,z)]

(S(3 )= 36“”’)/0[4 O aa(a )8,,@(:1:)8“1%(:1:) [1 + 3/020 dz o/(z)v(x,z)v(:z:,z)]

plus the pion propagation. Notice the existence of a contact term.

. 55
ji IX %
é |
jZIIl jSIIl jﬁln jﬁnl

Result:

N, <2NC N, )FW(Q?,,O)

w = — ,
U@ =22~ @~ @ rmz ) Fop(0,0)

N. N, 5 (Ko(Qz) Ki1(Qz)
wr(Q3) = Q—3 T~ <[O(Qz0) " 11(Qz0) )

Longitudinal component: cancellation of the energy-dependent parts (exact in the chiral limit).
The anomaly is the contact term.



The VVA triangle

e Notice that one finds, as expected from QCD:

2N,

=4+ 0(m?

wi(Q3) 0 (mz)

Jim_ (@) - 20 (@] ~ 0 (2.02)
3—>00 3

e Pion dominance does not hold but it cannot be a bad numerical approximation. Compare
with the continuation




Numerical analysis

Short distances convincingly implemented (parametrically), but numerical limitations of the
model:

Mo
fa
e Fixing m, to the physical value important at low energies to match the slope of Fi..:

20 > 22
Ur = —mi/ dza'(z) [1 — 2log —] — =0.033
0 ZO 4

~ 10.7(1)

e No clear optimal choice of parameters:

Jn
N, — ot MeV: m, = T76 MeV, (Set 1)
C
fr = 93MeV: N =3, (Set2)
e A 007 e |
> = 006" ///h“- ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
g 015 é 010527
S S
9; 0.10: ”Q; 004 |
2 = o003
NLL:: 005 NL’F 0.0Z;
v 7 N 0.01§
0.00 000"




Numerical analysis

Set 1 Set 2

a,> (" +n+n') 81 (5.7+1.4+1.0) 11.2 (7.5+2.1+1.6)

aih (a1 + f1 + ff) 1.4 (0.4+0.4+0.6) 1.4 (0.44+0.44+0.6)

ak(ab® + apt) 9.6 12.6

a) (a1 + fi+ ff) 1.4(0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

a 11.0 14.0
a{™ =5.7(0.3)- 10717
al”) =5.9(0.9)- 1017
al”) = 5.8(1.0) - 10~
al”) =6.8(0.3)- 10717
al) =6.3(0.3)- 1017



Numerical analysis

Set 1 Set 2

a,>(m® +n+n) 81 (5.7+1.4+41.0) 11.2 (7.5+2.14+1.6)

e Change of numerical input (flavour copies), while keeping the correlations between
Goldstone and axials (anomaly!):

fn’

N 24.7 MeV; m, = 776 MeV , (Set 1)
for = T4 MeV; N, =3, (Set 2)
e Previous results:
a{M = 1.3(0.1) - 10719; a{") =1.2(0.1)- 1071
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Numerical analysis

Set 1 Set 2

ak(al® + aj") 9.6 12.6

o

a, (a1 + fi+ fi) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

a, 11.0 14.0

Final number:

alN P9 =12.5(1.5) - 10717

alV1TPS) = 13.6(1.5) - 10717
alV1PS) = 12.9(2.7) - 10710
a8 =12.1(2.1) - 1071
(VP8 =11.0(0.6) - 1071



Numerical analysis

Set 1 Set 2

ak(ab® + ap”) 9.6 12.6

a, (a1 + fi+ fi) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

a, 11.0 14.0

Longitudinal and transverse breakout:

ol =11.1(1.5) - 10710 a,, =1.4(0.2) - 1071
afy ¥ = 11.4(1.0) - 10710 aji) =2.2(0.5) - 10710
ol = 11.4(1.3) - 10710 aj) =1.5(1.0) - 10~ 10
P9 — 9.9(1.6) - 10-10 o) =2.2(0.5) - 10710
However
P = 9.6(1.6) - 1071; a™) =2.8(0.2) - 10710

The axial contribution is underestimated, in benefit of the Goldstone one.



Conclusions

e A (holographic) Lagrangian approach to HLbL provides an inclusive analysis of the leading
large- V. effects. One has access to full correlators and can clarify unresolved issues from
form factor analyses. Nice perks: generating functional, simplicity, chiral anomaly and
short-distance constraints correctly implemented.

e The chiral anomaly in VVA is saturated by a contact term (structureless). This is the
reason for a significant axial increase to HLbL. We exclude a relevant contribution of
massive pseudoscalars, as claimed elsewhere.

e [he contact term is crucial to fulfill the MV short-distance constraint and is due to a
collective effect, i.e. it is not saturated with a form factor. The puzzle of a structureless
pion form factor is just a manifestation of this limitation.

e Pion dominance is not compatible with the correct implementation of the chiral anomaly at
all energy scales, but numerically it gives an excellent estimate.

e The previous results are generic QFT consequences for the leading large-N,. contributions
to HLbL. Specific numbers will of course depend on the model, but the bulk of the number
should be model-independent. Our results seem to indicate so.

e Lattice simulations should be able to confirm some of (if not all) the previous points.



