
Shedding some light on the

light-by-light

Oscar Catà
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Status of the muon (g − 2)µ

• While awaiting for the FNL (and J-PARC) numbers, currently:

aexpµ = 116592091(54)(33) × 10−11

• Long-standing discrepancya with the SM estimate (3 to 4σ):

aSMµ = 116591823(1)(34)(26) × 10−11

• Excellent control over the dominant EW and EM corrections. Hadronic contributions (HVP
and HLbL) small but dominate the uncertainty. Difficult to evaluate.

aOnly one experiment, not yet challenged...



Hadronic contributions

• HVP leading effect (∼ 700× 10−10). Uncertainties can be reduced with e+e−-based
and/or τ -based analyses. [Davier et al, Teubner et al]

Lattice QCD at a really advanced stage. [Mainz, BMWc, RBC/UKQCD]

• HLbL much harder to estimate. Connection to experiment more convoluted, albeit
dispersion analyses promising. [Bern, Bonn, Mainz]

Lattice QCD catching up fast. [Mainz, RBC/UKQCD]

• Experimentally, FNL and J-PARC have a much improved projected uncertainty, 16× 10−11.

• Hadronic contributions cannot account for the present discrepancy, but we need better
control of theoretical uncertainties to claim NP interpretations, when/if the time comes.



HLbL estimates

• Contributions ranked using large-Nc and χPT arguments. [de Rafael’93]

• Dominance from π0 exchange:

π
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γ
∗ γ

∗

• However, single resonance exchange (axials) have a sizeable effect (kinematical kernels
peaked at 1− 2 GeV).

• Scalar exchange, Goldstone loops and quark loops also important.

• The final outcome is complicated by large cancellations of the different contributions.

• Three main routes for HLbL: form factor ansatz, lattice QCD, dispersion relations.



Form factor analysis

• Main contributions from form factor analyses (in units of 10−11):

Contribution BPP HKS,HK KN MV PdRV N,JN

π0, η, η′ 85(13) 82.7(6.4) 83(12) 114(10) 114(13) 99(16)
axial vectors 2.5(1.0) 1.7(1.7) − 22(5) 15(10) 22(5)
scalars −6.8(2.0) − − − −7(7) −7(2)
π,K loops −19(13) −4.5(8.1) − − −19(19) −19(13)
π,K loops
+subl. NC

− − − 0(10) − −
quark loops 21(3) 9.7(11.1) − − 2.3 21(3)

Total 83(32) 89.6(15.4) 80(40) 136(25) 105(26) 116(39)

• Overall agreement with the ’pion-pole’ contribution, main discrepancies in other
contributions.

• Caveat: not all the entries above come from independent calculations.

• Axial- and Goldstone-exchange contributions not settled.

• A number of theoretical issues still open, which affect not just the uncertainty.



Form factor analysis

Pion-pole contribution:

π
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γ
∗

γ
∗ γ

∗

• Vertices given by the π0γ∗γ∗ form factor,
∫

d4x eiq1·x〈0|T {Jµ
EM(x) J

ν
EM(0)} |π0(p)〉 = ǫµναβq1αq2β Fπγγ

(

Q2
1, Q

2
2

)

• Fπγγ not known from first principles. Information only on certain kinematical limits:

(a) Fπγγ (0, 0) = − Nc

12π2fπ
≡ A (Anomaly)

(b) lim
Q2→∞

Fπγγ(Q
2, Q2) = − 2fπ

3Q2
+ . . . (OPE)

(c) lim
Q2→∞

Fπγγ(0, Q
2) = −2fπ

Q2
+ . . . (Brodsky-Lepage)



Form factor analysis

• Ansätze with different short and long-distance constraints: [see e.g. Knecht et al’01]

F
(1)

γ∗γ∗π0 (q1, q2) = A; F
(2)

γ∗γ∗π0 (q1, q2) = A m4
V

(q21 −m2
V )(q

2
2 −m2

V )

F
(3)

γ∗γ∗π0 (q1, q2) = A m2
V

m2
V − q21 − q22

; F
(4)

γ∗γ∗π0 (q1, q2) = A
m4

V − 4π2f2
π

Nc
(q21 + q22)

(q21 −m2
V )(q

2
2 −m2

V )

• In principle, the more constraints the better (closer to QCD). However, interesting to play
with them to test which constraints are numerically important.

• The same strategy can be repeated for the other contributions.

• Important: the previous models are interpolators, i.e., the parameters are not the physical
masses. They encode OPE information (inclusive)...

Main Hurdles:

• Hard to pin down the discrepancies: different interpolators for different channels, subject to
different constraints.

• Not always clear how/if the short distances can be incorporated into form factors.



The Melnikov-Vainshtein limit

• OPE condition on the electromagnetic correlator (not on a form factor!)

µ−(p) µ−(p′)

q4

q2 q1q3

p− q2 p′ + q1

Πµνλσ

• Main object:

W µν(q2, q3) =

∫

d4x

∫

d4y ei(q2·x+q3·y)T
{

jµem(x), j
ν
em(y)

}

• In the kinematical limit Q2
2 ≃ Q2

3 ≫ Q2
1 & ΛQCD

lim
ξ→∞

W µν

(

ξQ− Q3

2
,−ξQ− Q3

2

)

=
1

ξ

2i

Q2
ǫµνλρQλ

∑

a

d̂aγγ
∫

d4ze−iq1·zj
(a)
5ρ (z)

• The OPE links VVVV to the (anomalous) VVA. [Melnikov-Vainshtein’03]



The Melnikov-Vainshtein limit

• The resulting short-distance constraint allegedly leads to a (sizable) increase

Contribution BPP HKS,HK KN MV PdRV N,JN

π0, η, η′ 85(13) 82.7(6.4) 83(12) 114(10) 114(13) 99(16)
axial vectors 2.5(1.0) 1.7(1.7) − 22(5) 15(10) 22(5)

• The increase is ascribed to the Goldstone and axial contributions, but this is misleading...

• Attempts to implement it with form factors not entirely successful. E.g.,
[Melnikov-Vainshtein’03]

Aπ0 = Fπγγ(q2, q3)
1

q21 −m2
π

Fπγγ(q1, 0)

consistent only if Fπγγ(q1, 0) = 1. Hard to argue phenomenologically: symmetry
arguments, OPE of the pion form factor...

Open issues:

• Does a form factor analysis capture this effect?

• Which resonances are responsible for it?



Correlators vs form factors

• Melnikov and Vainshtein redux:

The OPE constraint is solid, but a model is needed to extrapolate it to all energies. With

the model chosen, there is a substantial increase in the HLbL

• The main problem ([Melnikov’11]) is that, in general,

Correlator 6=
∑

(particle exchange)

• Sometimes a finite number of particles will fail to satisfy short distances, e.g.

lim
Q2→∞

〈V V 〉 = lim
Q2→∞

∞
∑

n

FV n

Q2 +MV n

≃ log

(

Q2

µ2

)

• Contact terms are important to fulfill general properties, e.g. gauge invariance:

lim
q2→0

Πµν
AA(q) =

(

gµν − pµpν

p2

)

f2
π

Pion propagation is not enough. Contact terms are fundamental.



Correlators vs form factors

• Relevant issue for the HLbL: this mismatch between form factors and correlators is at the
root of the so-called pion ’on-shell’ vs ’off-shell’ contributions.

• How to make sure that correlators contain (possible) contact terms? Lagrangian
description with external sources, e.g. ChPT.

• Problem: Lagrangians for strong interactions only known at specific kinematical regimes
(pQCD, ChPT).

Shopping list:

• Hadronic model with a (regulated) infinite number of resonances.

• Lagrangian formulation.

• Correct low and high energies at correlator level.

• Anomalies correctly implemented.

• Simplicity.

In other words, a consistent realization of large-Nc QCD.



A toy model

• 5-dimensional model: [Hirn-Sanz’05]

S5 =

∫

d4x

∫ z0

0

dz

{

− λ
√
g tr

[

FMN
(L) F(L)MN + FMN

(R) F(R)MN

]

+ c tr
[

ω5(LM)− ω5(RM )
]

}

with ω5(L) = tr

[

LF 2
(L) +

i

2
L3F(L) −

1

10
L5

]

z = ǫ z = z0

• AdS5 space: ds2 =
1

z2
(−dz2 + ηµνdx

µdxν)



A toy model

• Lagrangian-based theory of infinite massive vector and axial mesons (Kaluza-Klein modes):

Vµ(x, z) =
∑

n=1

V (n)
µ (x)ϕV

n (z), Aµ(x, z) =
∑

n=1

A(n)
µ (x)ϕA

n (z)

• (Spontaneous) chiral symmetry breaking via IR boundary conditions:

Lµ(x, z0)−Rµ(x, z0) = 0, F
zµ
L (x, z0) + F

zµ
R (x, z0) = 0

• Pion multiplet related to the axial zero mode A
(0)
5 (x, z). Via Wilson lines, e.g.

ξL(x, z) = P exp

{

−i

∫ z0

z

dz′ L5(x, z
′)

}

the change of variables Lξ
M(x, z) = ξ

†
L(x, z) [LM(x, z) + i∂M ] ξL(x, z) replaces A5 by

U(x) ≡ ξL(x)ξ
†
R(x) = exp

[

2iπa(x)ta

fπ

]

• Short-distance QCD: through (conformal) AdS5 metric, one reproduces all the (leading)
constraints tested so far.

• Simplicity: only 3 free parameters, λ, z0, c.



A toy model

• Important: the change of variables does not leave the CS term invariant, but induces a shift

ω5(L
ξ) = ω5(L) + ω5(ΣL) + dα4(L,ΣL), ΣL = dξLξ

†
L

where α4(L,ΣL) =
1

2
tr

[

ΣL(LF(L) + F(L)L) + iΣLL
3 − 1

2
ΣLLΣLL− iΣ3

LL

]

.

• UV boundary conditions (AdS/CFT prescription): fields on the boundary are sources of the
4d theory, i.e.,

Lξ
µ(x, 0) = lξµ(x) = u†(x) [lµ(x) + i∂µ]u(x)

Holographic recipe: Given an action S5(AM),

(1) Split the fields as Aµ(x, z) = a(x, z) â⊥µ (x) + ā(x, z) â‖µ(x) +
α(z)

fπ
∂µπ(x)

(2) Solve the EoM for a(x, z) et al. and plug them back into the action. This defines the
four-dimensional generating functional Seff(âµ(x)).

(3) Compute correlators, e.g.

Πµνλρ
V V V V =

δ4Seff

δv̂µδv̂νδv̂λδv̂ρ



How far can we go with the toy model?

Not QCD, clear limitations:

• From the pQCD quark loop in ΠAA and the chiral anomaly:

λ =
Nc

48π2
; c =

Nc

24π2

but confinement scale too rough:

mV n =
γ0,n

z0
, f2

π =
Nc

6π2z20
,

mρ

fπ
∼ 10.7(!)

• No explicit chiral symmetry breaking: massless Goldstones (easily fixed).

• Mass scalings:

mρ

ma1

=
γ0,1

γ1,1
∼ 0.63

good, but the spectrum of V and A excitations is not accurately reproduced.

• No mass splitting within multiplets.



Minkowski vs Euclidean

• However, the HLbL comes from an integral over Euclidean space.

aHLbL
µ = − e6

48mµ

∫

d4q1

(2π)4
d4q2

(2π)4
Kµνλρ

(

∂

∂q
ρ
4

Πµνλσ(q1, q2,−q4 − q1 − q2)

)
∣

∣

∣

∣

q4=0

• From experience: as long as short- and long-distances are fulfilled, the form of the
interpolator in Minkowski space has a minor impact.[Knecht, Peris, Perrottet, de Rafael, ... ca. 2000]

• Consider e.g. ΠLR,
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Very different pole distributions in Minkowski can give similar Euclidean continuations.

The toy model is expected to be an excellent laboratory to explore QFT issues in HLbL.



The HLbL tensor

µ−(p) µ−(p′)

q4

q2 q1q3

p− q2 p′ + q1

Πµνλσ

Using the effective action, one finds a close expression for it:

Πµνλρ = εµναβελρα′β′

[

2c2

λ

∫

dz

∫

dz′T
β
12(z)G

αα′

A (z, z′; p)T β′

34 (z
′) + F (12)

πγγ

qα1 q
β
2 q

α′

3 q
β′

4

p2 −m2
π

F (34)
πγγ

]

plus permutations, where T
µ
ij(z) =

[

q
µ
i vi(z)∂zvj(z)− q

µ
j vj(z)∂zvi(z)

]

and

Fπγγ(Q
2
1, Q

2
2) =

2c

fπ

∫ z0

0

dz α′(z) v(z,Q1)v(z,Q2)

• This represents the contribution of the Goldstone modes and axial excitations.

• The (inclusive) calculation of the HLbL in the large-Nc limit is straightforward.



The HLbL tensor

µ− µ− µ−µ− µ− µ−

Using the effective action, one finds a close expression for it:

Πµνλρ = εµναβελρα′β′

[

2c2

λ

∫

dz

∫

dz′T
β
12(z)G

αα′

A (z, z′; p)T β′

34 (z
′) + F (12)

πγγ

qα1 q
β
2 q

α′

3 q
β′

4

p2 −m2
π

F (34)
πγγ

]

plus permutations, where α(z) = 1− z2

z20
,

v(z,Q) = Qz

[

K1(Qz) +
K0(Qz0)

I0(Qz0)
I1(Qz)

]

, a(z,Q) = Qz

[

K1(Qz)− K1(Qz0)

I1(Qz0)
I1(Qz)

]

G⊥
A(z, z

′;Q) = − 1

Q
z′I1(Qz′)a(z,Q)θ(z − z′) + (z ↔ z′)

GL
A(z, z

′;Q) = −(z′)2

2
α(z)θ(z − z′) + (z ↔ z′)



Pion transition form factor

• General expression:

Fπγγ(Q
2
1, Q

2
2) =

2c

fπ

∫ z0

0

dz α′(z) v(z,Q1)v(z,Q2)

• In the zero-momentum limit, Fπγγ is determined by the chiral anomaly. Using that
v(z, 0) = 1,

Fπγγ(0, 0) = − Nc

12π2fπ

• At very high energies,

lim
Q2→∞

Fπγγ(Q
2, Q2) = − 2fπ

3Q2
+O

(

e−Qz0
)

lim
Q2→∞

Fπγγ(0, Q
2) = −2fπ

Q2
+O

(

e−Qz0
)

• Only the leading term in the OPE is correctly reproduced by the model (enough).

• Parametrically there is agreement, but numerically not necessarily (more on this later on).



Longitudinal piece and pion-exchange dominance

• The longitudinal piece of the HLbL tensor can be projected via

GA
µν(z, z

′; q) = P⊥
µνG

A
⊥(z, z

′; q) + P ‖
µνG

A
‖ (z, z

′; q)

• The electromagnetic tensor reads

Π
‖
µνλρ = Tµνλρ

[

F
(12)
πγγ F

(34)
πγγ

s−m2
π

− 2c2

λ

∫

dz

∫

dz′v1(z)v2(z)
∂z∂z′G

‖
A(z, z

′)

s
v3(z

′)v4(z
′)

]

• The axial contribution can be split into a factorizable and a nonfactorizable piece with

W‖ =
F

(12)
πγγ F

(34)
πγγ

s−m2
π

− F
(12)
πγγ F

(34)
πγγ

s
−
(

2c

fπ

)2
1

s

∫

dzα′(z)v1(z)v2(z)v3(z)v4(z)

• Limits:

lim
s→∞

W‖ = −
(

2c

fπ

)2
1

s

∫

dzα′(z)v1(z)v2(z)v3(z)v4(z) +O(m2
π)

lim
s→0

W‖ =
F

(12)
πγγ F

(34)
πγγ

s−m2
π

• There is no pion dominance! Axials play a fundamental role at short distances



Anomaly matching in the VVA triangle

• Consider the correlator

Γµνλ(q3) = i

∫

d4xd4y eiq3·(x−y)〈0|T
{

jemµ (x)jemν (y)j5λ(0)
}

|0〉

=
1

24π2

[

ωL(q
2
3)t

‖
µνλ + ωT (q

2
3)t

⊥
µνλ

]

• It is known that the chiral anomaly imposes (at all energies) [Vainshtein; Knecht et al]

ωL(q
2) = −2Nc

q2

to all orders in pQCD. Corrections are O(m2
π).

• This relation could be a consequence of pion dominance. [Melnikov-Vainshtein’03]

• However, this would entail that Fπγγ(Q3, 0) = 1. Puzzle: how such a contribution could be
structureless?

• Additionally, at short distances,

lim
Q3→∞

[

ωL(Q
2
3)− 2ωT (Q

2
3)

]

= 0



The VVA triangle

In the model, the triangle can be computed from the effective action:

(S
(3)
CS)

⊥ =
2c

3
εµνλρ

∫

d4x â⊥µ (x)∂ν v̂λ(x)v̂ρ(x)

[

1 + 3

∫ z0

0

dz a(x, z)v(x, z)v′(x, z)

]

(S
(3)
CS)

‖ =
c

3
εµνλρ

∫

d4x
∂αâ

‖
α(x)

2
∂ν v̂λ(x)∂µv̂ρ(x)

[

1 + 3

∫ z0

0

dz α′(z)v(x, z)v(x, z)

]

plus the pion propagation. Notice the existence of a contact term.

jemµ jemν

j5λ

Fπγγ

j5λ

jemµ jemν

Result:

ωL(Q3) =
2Nc

Q2
3

−
(

2Nc

Q2
3

− 2Nc

Q2
3 +m2

π

)

Fπγγ(Q3, 0)

Fπγγ(0, 0)
,

ωT (Q3) =
Nc

Q2
3

− Nc

2
z20

(

K0(Qz0)

I0(Qz0)
+

K1(Qz0)

I1(Qz0)

)

Longitudinal component: cancellation of the energy-dependent parts (exact in the chiral limit).
The anomaly is the contact term.



The VVA triangle

• Notice that one finds, as expected from QCD:

ωL(Q
2
3) =

2Nc

Q2
3

+O(m2
π)

lim
Q3→∞

[

ωL(Q
2
3)− 2ωT (Q

2
3)

]

∼ O
(

m2
π

Q6
3

, Q2
4

)

• Pion dominance does not hold but it cannot be a bad numerical approximation. Compare
with the continuation [Melnikov-Vainshtein’03]

ωL(Q
2
3) =

2Nc

Q2
3 +m2

π

; ωT (Q
2
3) =

Nc

m2
a1
−m2

ρ

[

m2
a1
−m2

π

Q2
3 +m2

ρ

−
m2

ρ −m2
π

Q2
3 +m2

a1

]
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Numerical analysis

• Short distances convincingly implemented (parametrically), but numerical limitations of the
model:

mρ

fπ
∼ 10.7(!)

• Fixing mρ to the physical value important at low energies to match the slope of Fπγγ :

aπ = −m2
π

∫ z0

0

dzα′(z)

[

1− 2 log
z

z0

]

z2

4
= 0.033

• No clear optimal choice of parameters:

fπ

Nc

= 31MeV; mρ = 776MeV , (Set 1)

fπ = 93MeV; Nc = 3 . (Set 2)
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Numerical analysis

Set 1 Set 2

aPS
µ (π0 + η + η′) 8.1 (5.7+1.4+1.0) 11.2 (7.5+2.1+1.6)

a
AL
µ (a1 + f1 + f∗

1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aL
µ (a

PS
µ + a

AL
µ ) 9.6 12.6

aT
µ (a1 + f1 + f∗

1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aµ 11.0 14.0

a(π)µ = 5.7(0.3) · 10−10 [Hayakawa et al]

a(π)µ = 5.9(0.9) · 10−10 [Bijnens et al]

a(π)µ = 5.8(1.0) · 10−10 [Knecht et al]

a(π)µ = 6.8(0.3) · 10−10 [Greynat et al]

a(π)µ = 6.3(0.3) · 10−10 [Hoferichter et al]



Numerical analysis

Set 1 Set 2

aPS
µ (π0 + η + η′) 8.1 (5.7+1.4+1.0) 11.2 (7.5+2.1+1.6)

• Change of numerical input (flavour copies), while keeping the correlations between
Goldstone and axials (anomaly!):

fη′

Nc

= 24.7MeV; mρ = 776MeV , (Set 1)

fη′ = 74MeV; Nc = 3 , (Set 2)

• Previous results: [Knecht et al]

a(η)µ = 1.3(0.1) · 10−10; a(η
′)

µ = 1.2(0.1) · 10−10
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Numerical analysis

Set 1 Set 2

aL
µ(a

PS
µ + a

AL
µ ) 9.6 12.6

aT
µ (a1 + f1 + f∗

1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aµ 11.0 14.0

Final number:

a(AV+PS)
µ = 12.5(1.5) · 10−10

a(AV+PS)
µ = 13.6(1.5) · 10−10 [Melnikov et al]

a(AV+PS)
µ = 12.9(2.7) · 10−10 [Prades et al]

a(AV+PS)
µ = 12.1(2.1) · 10−10 [Jegerlehner et al]

a(AV+PS)
µ = 11.0(0.6) · 10−10 [Leutgeb et al]



Numerical analysis

Set 1 Set 2

aL
µ(a

PS
µ + a

AL
µ ) 9.6 12.6

aT
µ (a1 + f1 + f∗

1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aµ 11.0 14.0

Longitudinal and transverse breakout:

aLµ = 11.1(1.5) · 10−10 aTµ = 1.4(0.2) · 10−10

a
(PS)
µ = 11.4(1.0) · 10−10 a

(AV)
µ = 2.2(0.5) · 10−10 [Melnikov et al]

a
(PS)
µ = 11.4(1.3) · 10−10 a

(AV)
µ = 1.5(1.0) · 10−10 [Prades et al]

a
(PS)
µ = 9.9(1.6) · 10−10 a

(AV)
µ = 2.2(0.5) · 10−10 [Jegerlehner et al]

However

a(PS)
µ = 9.6(1.6) · 10−10 ; a(AV)

µ = 2.8(0.2) · 10−10

The axial contribution is underestimated, in benefit of the Goldstone one.



Conclusions

• A (holographic) Lagrangian approach to HLbL provides an inclusive analysis of the leading
large-Nc effects. One has access to full correlators and can clarify unresolved issues from
form factor analyses. Nice perks: generating functional, simplicity, chiral anomaly and
short-distance constraints correctly implemented.

• The chiral anomaly in VVA is saturated by a contact term (structureless). This is the
reason for a significant axial increase to HLbL. We exclude a relevant contribution of
massive pseudoscalars, as claimed elsewhere.

• The contact term is crucial to fulfill the MV short-distance constraint and is due to a
collective effect, i.e. it is not saturated with a form factor. The puzzle of a structureless
pion form factor is just a manifestation of this limitation.

• Pion dominance is not compatible with the correct implementation of the chiral anomaly at
all energy scales, but numerically it gives an excellent estimate.

• The previous results are generic QFT consequences for the leading large-Nc contributions
to HLbL. Specific numbers will of course depend on the model, but the bulk of the number
should be model-independent. Our results seem to indicate so.

• Lattice simulations should be able to confirm some of (if not all) the previous points.


