THEORY STATUS AFTER ICHEP 2014

Searching for New Physics at the Next LHC Run

A. Pich IFIC, Univ. València - CSIC

IFAE, Bellaterra, Spain, 24 November 2014

Great success of the Standard Model

BEGHHK (≡ Higgs) Mechanism

 ${\rm SU(2)}_{
m L} \otimes {\rm U(1)}_{
m Y}$ v = 246 GeV

$$M_Z \cos \theta_W = M_W = \frac{1}{2} \mathrm{v} g$$

2

The Heaviest Mass Scale

$$\frac{H}{t} - \frac{t}{t} \qquad \mathbf{y_t} = \frac{\sqrt{2}}{\mathbf{v}} \mathbf{m_t} = \mathbf{2^{3/4} G_F^{1/2} m_t} = \mathbf{1} \qquad (0.995)$$

The top quark:

□ Sensitive probe of Electroweak Symmetry Breaking

□ Non-perturbative (strong) dynamics ?

U Very different from other quarks: $y_b = 0.02$

 $y_{\rm b} = 0.025$, $y_{\rm c} = 0.007$...

□ Is it really a SM quark?

So far, we c	only know
the decay	$t \rightarrow b W^+$

Single-top	V _{tb}			
ATLAS '14	> 0.88 (95% CL)			
CMS'14	> 0.92 (95% CL)			
CDF'14	> 0.84 (95% CL)			
D0 '13	> 0.92 (95% CL)			

3

tt Production Asymmetries

Tevatron: $A_{FB} \equiv A_{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$ **LHC:** $A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$ $\Delta y = y_{t} - y_{\bar{t}} , \quad \Delta |y| = |y_{t}| - |y_{\bar{t}}|$

Kühn-Rodrigo, 1411.4675

Data is now consistent with the SM (still 1.7 excess at CDF)

Models predicting larger asymmetries don't pass other phenomenological tests or are rather ad-hoc

Cross section:

 $\sigma_{t\bar{t}}$ NNLO+NNLL

Well-defined mass

Possible Improvements:

• Differential distribution in $\rho_s = m_0 / \sqrt{s_{t\bar{t}+j}}$

Alioli et al, 1303.6415

$$R(m_t^{\text{pole}}, \rho_s) \equiv \frac{1}{\sigma_{t\bar{t}+1\text{ jet}}} \frac{d\sigma_{t\bar{t}+1\text{ jet}}}{d\rho_s}$$

Weight function method: Lepton energy distribution

Kawabata et al, 1405.2395

•
$$\sigma(e^+e^- \to t\,\overline{t})_{\text{threshold}}$$

Hoang et al, Beneke et al, Ruiz-Femenía, Martínez-Miquel

δ**m**_t < 100 MeV

Precision measurement needed to test the EW theory

A New Higgs-like Boson

Beautiful Discovery

Boson (J = 0)

Fermions = Matter ; Bosons = Forces

- New interaction which is not gauge Fundamental Boson:
- Composite Boson: New underlying dynamics

If New Physics exists at Λ_{NP}

 $\delta M_H^2 \sim \frac{g^2}{\left(4\pi\right)^2} \Lambda_{\rm NP}^2 \log\left(\frac{\Lambda_{\rm NP}^2}{M_H^2}\right)$

Which symmetry keeps M_{H} away from Λ_{NP} ?

- Fermions: Chiral Symmetry
- **Gauge Bosons:** Gauge Symmetry
- Scalar Bosons: Supersymmetry, Scale/Conformal Symmetry ... ?

Symmetries & Mass Scales

Fermions:

$$\psi_{L,R} \rightarrow e^{i\alpha_{L,R}} \psi_{L,R}$$
 Chiral symmetry

 $\mathcal{L}_{\psi} = \bar{\psi}(i\partial - m_{\psi})\psi = \bar{\psi}_{L}i\partial\psi_{L} + \bar{\psi}_{R}i\partial\psi_{R} - m_{\psi}(\bar{\psi}_{L}\psi_{R} + \bar{\psi}_{R}\psi_{L})$
 Symmetry recovered at $m_{\psi} = 0$

 Symmetry recovered at $m_{\psi} = 0$
 $\delta m_{\psi} \propto m_{\psi}$

 Vectors:
 $A_{\mu} + \partial_{\mu}\theta$
 Gauge symmetry

 $\mathcal{L}_{A} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{A}^{2}A_{\mu}A^{\mu}$
 Symmetry recovered at $m_{A} = 0$
 $\delta m_{A}^{2} \propto m_{A}^{2}$

 Scalars:
 $\mathcal{L}_{\phi} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m_{\phi}^{2}\phi^{2}$
 Any symmetry?

 No additional symmetry at $m_{\phi} = 0$
 $\delta m_{\phi}^{2} \propto M^{2}$
 $(M = \text{any scale})$

9

ÎCHE

Symmetries & Mass Scales

Scalars:
$$\mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2$$
Any symmetry?No additional symmetry at $m_{\phi} = 0$ \longrightarrow $\delta m_{\phi}^2 \propto M^2$ $(M = \text{any scale})$

• Shift symmetry: $\phi \longrightarrow \phi + c$

Pseudo-Goldstone Boson

• Scale symmetry: $x \longrightarrow x/\lambda$, $\phi(x) \longrightarrow \lambda \phi(x/\lambda)$

$$\mathbf{M} = \mathbf{0}$$
 , $\forall \mathbf{M}$

Conformal Invariance. Dilaton

Possible Scenarios of EWSB

- **1. SM scalar:** Favoured by EW precision tests
- **2. Alternative perturbative EWSB:**

Scalar Doublets and Singlets

$$\rho_{\text{tree}} = \frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_k v_k^2 \left[T_k \left(T_k + 1 \right) - Y_k^2 \right]}{2 \sum_k v_k^2 Y_k^2}$$

3. Dynamical (non-perturbative) EWSB:

Pseudo-Goldstone Boson

Scalar Resonance

SM Higgs

12

SM Scalar Potential

$$\mathbf{V}(\Phi) - \mathbf{V}_0 = \lambda \left(\left| \Phi \right|^2 - \frac{\mathbf{v}^2}{2} \right)^2 = \frac{1}{2} M_H^2 H^2 \left(1 + \frac{H}{\mathbf{v}} + \frac{H^2}{4\mathbf{v}^2} \right)$$

$$M_H = 125.14 \pm 0.24$$
 $\lambda = \frac{M_H^2}{2v^2} = 0.13$

Loop corrections:

$$M_{H}^{2} = 2\lambda(\mu) \mathbf{v}^{2} + \frac{2y_{t}^{2}\mathbf{v}^{2}}{(4\pi)^{2}} \left[2\lambda + 3(\lambda - y_{t}^{2}) \log(m_{t}^{2}/\mu^{2}) \right] + \cdots$$

Vacuum stability: $\lambda(\Lambda) \ge 0$

Meta-stable vacuum

Buttazzo et al, 1307.3536

SM interactions only

Strong sensitivity to New Physics

A. Pich

H(125) Couplings are SM-like

TH Status after ICHEP

14

Strong (indirect) evidence for H coupling to t

Quark Mixing

Successful CKM Mechanism (Tree / Loop / CP-c / CP-v)

Bounds on New Flavour Physics

$$L_{\rm eff} = L_{\rm SM} + \sum_{D>4} \sum_{k} \frac{c_k^{(D)}}{\Lambda_{\rm NP}^{D-4}} O_k^{(D)}$$

lsid	ori,	13	02.	0661
	,			

Operator	Bounds on Λ	in TeV $(c_{\rm NP} = 1)$	Bounds on $c_{\mathbb{N}}$	Observables	
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	6.6×10^2	$9.3 imes 10^2$	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$2.5 imes 10^3$	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.4×10^2	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^2	$8.3 imes 10^2$	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

- Generic flavour structure [c_{NP}~O(1)] ruled out at the TeV scale
- $\Lambda_{NP} \sim 1$ TeV requires c_{NP} to inherit the strong SM suppressions (GIM)

Minimal Flavour Violation:The up and down Yukawa matrices are the
only source of quark-flavour symmetry breakingD'Ambrosio et al, Buras et al

17

Rare Decays

Albrecht

SM

- No tree-level contribution
- Strong CKM suppression

 $B \rightarrow \mu^+ \mu^-$ sensitive to (pseudo) scalar contributions additional Higgs bosons

Li-Lu-A.P., 1404.5865

$B_d \rightarrow K^{*0} \mu^+ \mu^-$

Phen. analysis with "clean observables"

(FF independent)

Descotes-Genon et al

P'5 Anomaly

Observable	Experiment	SM prediction	Pull
$\begin{array}{c} \langle P_2 \rangle_{[0.1,2]} \\ \langle P_2 \rangle_{[2,4.3]} \\ \langle P_2 \rangle_{[4.3,8.68]} \\ \langle P_2 \rangle_{[1,6]} \end{array}$	$\begin{array}{c} 0.03\substack{+0.14\\-0.15}\\ 0.50\substack{+0.00\\-0.07}\\-0.25\substack{+0.07\\-0.08\\0.33\substack{+0.11\\-0.12}\end{array}$	$\begin{array}{c} 0.172\substack{+0.020\\-0.021}\\ 0.234\substack{+0.060\\-0.086}\\-0.407\substack{+0.049\\-0.037}\\ 0.084\substack{+0.060\\-0.078}\end{array}$	-1.0 + 2.9 + 1.7 + 1.8
$ \frac{\langle P_5' \rangle_{[0.1,2]}}{\langle P_5' \rangle_{[2,4.3]}} \\ \langle P_5' \rangle_{[4.3,8.68]} \\ \langle P_5' \rangle_{[1,6]} $	$\begin{array}{c} 0.45\substack{+0.21\\-0.24}\\ 0.29\substack{+0.40\\-0.39}\\-0.19\substack{+0.16\\-0.16\\0.21\substack{+0.20\\-0.21}\end{array}$	$\begin{array}{r} 0.533\substack{+0.033\\-0.041}\\ -0.334\substack{+0.097\\-0.113}\\ -0.872\substack{+0.053\\-0.041}\\ -0.349\substack{+0.088\\-0.100}\end{array}$	-0.4 +1.6 +4.0 +2.5

Fit with "New Physics" effective operators

 $O_{7} = \frac{e}{(16 \pi)^{2}} m_{b} \left(\overline{s} \sigma_{\mu\nu} P_{R} b\right) F^{\mu\nu}$ $O_{9} = \frac{e^{2}}{(16 \pi)^{2}} m_{b} \left(\overline{s} \gamma_{\mu} P_{L} b\right) \left(\overline{\ell} \gamma^{\mu} \ell\right)$

New Physics?

Altmannshofer-Straub, Beaujean et al, Descotes-Genon et al, Horgan et al.

Hadronic uncertainties?

Jäger & Martín-Camalich, Zwicky et al

19

Flavour-Violating Higgs Couplings

Blankenburg et al, Celis et al, Harnik et al, Davidson-Verdier, Kopp-Nardecchia

$$L = -h \left\{ Y_{e\mu} \,\overline{e}_L \mu_R + Y_{e\tau} \,\overline{e}_L \,\tau_R + Y_{\mu\tau} \,\overline{\mu}_L \,\tau_R + \cdots \right\}$$

0.10

0.15

 $|Y_{\mu\tau}^{h}|^{2} + |Y_{\tau\mu}^{h}|^{2}$

0.20

0.25

0.05

Celis, Cirigliano, Passemar (2013)

Two-Higgs Doublet Models

5 scalar fields: H^{\pm} , $\varphi_i^0 = (h, H, A)$ [3x3 mixing R_{ii}] $v = \sqrt{v_1^2 + v_2^2}$, $\tan \beta = v_2/v_1$ $g_{hVV}^{2} + g_{HVV}^{2} + g_{AVV}^{2} = (g_{hVV}^{SM})^{2}$ **CP-conserving potential:** $R = \begin{bmatrix} \cos \tilde{\alpha} & \sin \tilde{\alpha} & 0 \\ -\sin \tilde{\alpha} & \cos \tilde{\alpha} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $g_{\varphi_{i}^{0}VV} / g_{\varphi_{i}^{0}VV}^{SM} = R_{i1} = \cos \tilde{\alpha} \equiv \sin(\beta - \alpha)$ $L_Y = -\bar{Q}'_L \left(\Gamma_1 \phi_1 + \Gamma_2 \phi_2\right) d'_R + \cdots \qquad \blacksquare \qquad L_Y = -\frac{\sqrt{2}}{V} \bar{Q}'_L \left(M'_d \Phi_1 + Y'_d \Phi_2\right) d'_R + \cdots$ Yukawas: **EWSB FCNCs M'_f & Y'_f unrelated** (not simultaneously diagonal) Solutions: (same for u_R and ℓ_R Yukawas) • Natural Flavour Conservation: $\Gamma_1 = 0$ or $\Gamma_2 = 0$ (Z₂ models) Glashow-Weinberg... • Alignment: $\Gamma_1 \propto \Gamma_2$ \longrightarrow $Y_{d,l} = \varsigma_{d,l} M_{d,l}$, $Y_u = \varsigma_u^* M_u$ **AP-Tuzón** BGL Models: "controlled" FCNC (symmetries) Branco et al A. Pich **TH Status after ICHEP** 21

Z₂ 2HDMs

 $\sin \tilde{\alpha} = 0$

 $\cos \tilde{\alpha}$ $R = \begin{vmatrix} -\sin\tilde{\alpha} & \cos\tilde{\alpha} & 0 \\ 0 & 1 \end{vmatrix}$

5 scalar fields: H^{\pm} , $\varphi_i^0 = (h, H, A)$ [3x3 mixing R_{ii}] $v = \sqrt{v_1^2 + v_2^2}$, $\tan \beta = v_2/v_1$

CP-conserving potential:

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

2HDM Type I

 $g_{VV\varphi_i^0} / g_{VV\varphi_i^0}^{SM} = R_{i1} = \cos \tilde{\alpha} \equiv \sin(\beta - \alpha)$

2HDM Type IV

× Best fit

— – SM

ഫ 10 an

0.4

0.3

0.2

0 1

 $\cos(\beta - \alpha)$

ATLAS Preliminary

√s = 8 TeV: ∫Ldt = 20.3 fb⁻¹

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 $h \rightarrow \tau \tau. b\overline{b}$

 $\cos(\beta - \alpha)$

$$y_{d,l}^{\varphi_i^0} = R_{i1} + (R_{i2} + i R_{i3}) \zeta_{d,l}$$
$$y_u^{\varphi_i^0} = R_{i1} + (R_{i2} - i R_{i3}) \zeta_u^*$$

0.4

0.3

0.2

01

Yukawas: (SM units)

0.4

0.3

0.2

01

 $\cos(\beta - \alpha)$

ATLAS Preliminary

√s = 8 TeV: ∫Ldt = 20.3 fb⁻¹

 $h \rightarrow \tau \tau.b\overline{b}$

Obs. 95% CL \starset is = 7 TeV: ∫Ldt = 4.6-4.8 fb⁻¹

---- Exp. 95% CL Combined $h \rightarrow \gamma \gamma$,ZZ*,WW*

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

Flavour Alignment (Aligned 2HDM)

AP-Tuzón

Celis-Ilisie-AP, 1302.4022, 1310.7941

General setting without FCNCs & new sources of CP violation

$$Y_{d,l} = \varsigma_{d,l} M_{d,l} \quad , \quad Y_u = \varsigma_u^* M_u$$

Rich phenomenology @ LHC

Altmannshofer et al, Barger et al, Celis et al, Cervero-Gerard, López-Val et al...

Many allowed possibilities Search for light H[±], H, A CP violation

Flavour constraints fulfilled

Celis et al, Jung et al, Li et al

EDMs

Jung-AP, 1308.6283

 Usual Z₂ models recovered in particular (CP-conserving) limits

v Oscillations

Open Questions in v Physics

Low-E Effective Theory:

$$L = L_{SM} + \sum_{d} \frac{C_d}{\Lambda^{d-4}} O_d$$

25

1 SU(2)_L \otimes U(1)_Y invariant operator with d=5 Weinberg $-\frac{c_{ij}}{\Lambda} \overline{L}_i \tilde{\phi} \tilde{\phi}^t L_j^c + \text{h.c.} \quad \xrightarrow{\text{SSB}} \quad -\frac{1}{2} \overline{v}_{iL} M_{ij} v_{jL}^c + \text{h.c.} \quad ; \quad M_{ij} = \frac{c_{ij}}{\Lambda} v^2$ Small Majorana Mass: $m_v > 0.05 \text{ eV} \implies \Lambda / c_{ij} < 10^{15} \text{ GeV}$

Desperately Seeking SUSY (Dulcinea)

In all the world there is no maiden fairer than the Empress of La Mancha, the peerless SUSY del Toboso

> Your worship should bear in mind that SUSY is badly broken; got heavy through anomaly mediation

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHED 2014

010								$v^{3} = 7, 0 10 v$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit		Reference
Inclusive Searches	$\begin{array}{c} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell / (\ell / v) / v) \tilde{\chi}_{1}^{0} \\ GMSB (\ell NLSP) \\ GMSB (\ell NLSP) \\ GGM (bion NLSP) \\ GGM (bion NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau + 0 \cdot 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 20.3 4.8 4.8 5.8 10.5	\tilde{q}, \tilde{g} 1.7 TeV \tilde{g} 1.2 TeV \tilde{g} 1.1 TeV \tilde{g} 1.1 TeV \tilde{g} 1.1 TeV \tilde{g} 1.33 TeV \tilde{g} 1.33 TeV \tilde{g} 1.18 TeV \tilde{g} 1.12 TeV \tilde{g} 1.24 TeV \tilde{g} 1.24 TeV \tilde{g} 619 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV	$\begin{array}{c} m(\tilde{q})\!=\!m(\tilde{g}) \\ any\;m(\tilde{q}) \\ any\;m(\tilde{q}) \\ m(\tilde{\chi}_{1}^{0})\!=\!0\;GeV\;m(1^{\mathrm{st}}\;gen,\tilde{q})\!=\!m(2^{\mathrm{nd}}\;gen,\tilde{q}) \\ m(\tilde{\chi}_{1}^{0})\!=\!0\;GeV \\ m(\tilde{\chi}_{1}^{0})\!=\!0\;GeV \\ m(\tilde{\chi}_{1}^{0})\!=\!0\;GeV \\ tan\beta\!<\!10\;GeV \\ tan\beta\!<\!15 \\ tan\beta\!>\!20 \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!50\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!50\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!50\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!200\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!50\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!50\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!200\;GeV \\ m(\tilde{\chi}_{1}^{0})\!\!>\!\!10^{-4}\;eV \\ \end{array}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\lambda}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.25 TeV š 1.1 TeV š 1.34 TeV š 1.34 TeV š 1.3 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0})\!<\!400\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!350\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!400\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!400\mathrm{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^+ \\ & \tilde{i}_1 \tilde{i}_1(\text{light}), \tilde{i}_1 \rightarrow b \tilde{\chi}_1^+ \\ & \tilde{i}_1 \tilde{i}_1(\text{light}), \tilde{i}_1 \rightarrow b \tilde{\chi}_1^- \\ & \tilde{i}_1 \tilde{i}_1(\text{medium}), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^0 \\ & \tilde{i}_1 \tilde{i}_1(\text{medium}), \tilde{i}_1 \rightarrow b \tilde{\chi}_1^+ \\ & \tilde{i}_1 \tilde{i}_1(\text{heavy}), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^0 \\ & \tilde{i}_1 \tilde{i}_1 \neq t \tilde{\chi}_1^0 \\ & \tilde{i}_1 \tilde{i}_1 \neq t \tilde{\chi}_1^0 \\ & \tilde{i}_1 \tilde{i}_1 \neq t \tilde{\chi}_1 \end{pmatrix} \\ & \tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1\text{-}2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 90 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{+}) = 2 m(\tilde{\chi}_{1}^{0}) \\ & m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 200 \mathrm{GeV} , m(\tilde{\chi}_{1}^{+}) - m(\tilde{\chi}_{1}^{0}) = 5 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 15 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 150 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 150 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV} \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{L_{\mathbf{r}}} \tilde{\ell}_{L_{\mathbf{R}}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell (\tilde{\nu}), \ell \tilde{\nu}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array} $	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 - 3 e, \mu$ $1 e, \mu$ $4 e, \mu$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}){=}0\text{GeV} \\ m(\tilde{\chi}_{1}^{0}){=}0\text{GeV}, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}){=}0\text{GeV}, m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \text{ sleptons decoupled} \\ m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\ell},\tilde{\nu}){=}0, sleptons decoupled \\ m(\tilde{\chi}_{3}^{0}), m(\tilde{\ell}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}$ prod., long-lived \tilde{X}_{1}^{\pm} Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{\epsilon}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{X}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_{1}^{0} $\tilde{q}\tilde{q}, \tilde{X}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	X ⁺ 1 270 GeV Š 832 GeV X ⁰ 475 GeV X ¹ 230 GeV \bar{q} 1.0 TeV	$\begin{split} & m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) \!=\! 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) \!=\! 0.2 \; ns \\ & m(\tilde{\chi}_1^0) \!=\! 100 \; GeV, \; 10 \; \mu s \!<\! \tau(\tilde{g}) \!<\! 1000 \; s \\ & 10 \!<\! tan\beta \!<\! 50 \\ & 0.4 \!<\! \tau(\tilde{\chi}_1^0) \!<\! 2 \; ns \\ & 1.5 \!<\! c\tau \!<\! 156 \; mm, \; BR(\mu) \!=\! 1, \; m(\tilde{\chi}_1^0) \!=\! 108 \; GeV \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow e e \widetilde{\nu}_{\mu}, e \mu \widetilde{\nu}_e \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \tau \widetilde{\nu}_e, e \tau \widetilde{\nu}_{\tau} \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_1, t, \widetilde{t}_1 \rightarrow b s \end{array} $	$2 e, \mu 1 e, \mu + \tau 2 e, \mu (SS) 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	- 	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} \lambda'_{311} = 0.10, \ \lambda_{132} = 0.05 \\ \lambda'_{311} = 0.10, \ \lambda_{1(2)33} = 0.05 \\ m(\bar{q}) = m(\bar{g}), \ c\tau_{LSP} < 1 \ mm \\ m(\tilde{\chi}^0_1) > 0.2 \times m(\tilde{\chi}^\pm_1), \ \lambda_{121} \neq 0 \\ m(\tilde{\chi}^0_1) > 0.2 \times m(\tilde{\chi}^\pm_1), \ \lambda_{133} \neq 0 \\ BR(t) = BR(b) = BR(c) = 0\% \end{split}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data p	$\sqrt{s} = 8$ TeV eartial data	√s = full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary $\sqrt{s} = 7.8 \text{ TeV}$

Strong limits on SUSY partners

Tension with Higgs mass:

$$M_h^2 \leq M_Z^2 \cos^2(2\beta) + \varepsilon$$

$$\varepsilon \approx \frac{3 m_t^4}{2\pi^2 v^2 \sin^2(\beta)} \left[\log\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2}\right) \right]$$

$$M_S^2 = m_{\tilde{t}_1} m_{\tilde{t}_2}$$

Decoupling $(M_A \gg M_Z)$ $\cos^2(2\beta) \rightarrow 1$ Maximal stop mixing X_t

Improved higher-order calculations allow slightly larger values of M_h

Heinemeyer et al

Global Fits (LHC, Flavour, DM...)

NUHM2: best fit, 1σ , 2σ

NUHM1: best fit, 1σ , 2σ

CMSSM: best fit, 1σ , 2σ 1000 2000 m₀[GeV] 3000 4000 0 NUHM2: best fit, 1σ , 2σ NUHM1: best fit, 1σ , 2σ CMSSM: best fit, 1σ , 2σ 2000 M_A [GeV] 1000 3000 4000

 $(g-2)_{\mu}$ cannot be explained (not included in the fit)

Which SUSY?

- Looks bad in CMSSM (120 MSSM parameters reduced to 4 + 1 sign)
- More freedom in the Phenomenological MSSM

120 MSSM parameters reduced to 19-20

Many "models" consistent with data

Data-driven search

Many SUSY variants: NMSSM, Split, High-Scale, Stealth, 5D, Natural, Folded, Twin ...

Naturalness?

 $\Delta M_h^2 \propto M_{\rm SUSY}^2$

CMS Exotica Physics Group Summary – ICHEP, 2014

Don Quixote and the Windmills

Look, your worship, it's just the spectrum of the Standard Model

Massive & dark SUSY states show up through a hidden portal from a warped dimension

Effective Field Theory

$$L_{\text{eff}} = L^{(4)} + \sum_{D>4} \sum_{k} \frac{c_{k}^{(D)}}{\Lambda_{\text{NP}}^{D-4}} O_{k}^{(D)}$$

- Most general Lagrangian with the SM gauge symmetries
- Light (m $\ll \Lambda_{\rm NP}$) fields only
- The SM Lagrangian corresponds to D=4
- c^(D)_k contain information on the underlying dynamics:

$$L_{\rm NP} \doteq g_X \left(\overline{q}_L \gamma^\mu q_L \right) X_\mu \qquad \Longrightarrow \qquad \frac{g_X^2}{M_X^2} \left(\overline{q}_L \gamma^\mu q_L \right) \left(\overline{q}_L \gamma_\mu q_L \right)$$

- Options for H(126):
 - SU(2)_L doublet (SM)
 - Scalar singlet
 - Additional light scalars

Custodial Symmetry

$$\boldsymbol{\Sigma} \equiv \left(\phi_{C}, \phi\right) = \begin{pmatrix} \phi^{(0)^{*}} & \phi^{(+)} \\ -\phi^{(-)} & \phi^{(0)} \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\mathbf{v} + H(x)\right] \mathbf{U}(\phi) \quad , \quad \mathbf{U}(\phi) = \exp\left\{\frac{i}{\mathbf{v}} \,\vec{\sigma} \,\vec{\phi}\right\}$$

$$\mathcal{L}(\phi) = (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - \lambda \left(\phi^{\dagger}\phi - \frac{v^{2}}{2}\right)^{2}$$
$$= \frac{1}{2} \operatorname{Tr}\left[\left(D^{\mu}\Sigma\right)^{\dagger} D^{\mu}\Sigma\right] - \frac{\lambda}{4} \left(\operatorname{Tr}\left[\Sigma^{\dagger}\Sigma\right] - v^{2}\right)^{2}$$
$$= \frac{v^{2}}{4} \operatorname{Tr}\left[\left(D^{\mu}U\right)^{\dagger} D^{\mu}U\right] + O\left(H/v\right)$$

■ Invariant under global $SU(2)_L \otimes SU(2)_R \supset SU(2)_L \otimes U(1)_Y$

$$\Sigma \rightarrow g_L \cdot \Sigma \cdot g_R^{\dagger}$$
, $g_X \in SU(2)_X$

• Same Lagrangian than QCD pions: $f_{\pi} \to v$, $\pi^{\pm}, \pi^{0} \to \varphi^{\pm}, \varphi^{0} \to W_{L}^{\pm}, W_{L}^{0}$

Chiral Goldstone Bosons: $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_C$

$$W_{L} W_{L} \longrightarrow W_{L} W_{L}$$

$$\mathcal{L} = \frac{v^{2}}{4} \langle D^{\mu} U^{\dagger} D_{\mu} U \rangle \left[1 + 2 a \frac{H}{v} + b \frac{H^{2}}{v^{2}} \right]$$

(Espriu-Mescia-Yencho, Delgado-Dobado-Llanes-Estrada)

$$A(s, t, u) = \frac{s}{v^2} (1 - a^2) + \frac{4}{v^4} \left[a_4^r(\mu) (t^2 + u^2) + 2 a_5^r(\mu) s^2 \right] \\ + \frac{1}{16\pi^2 v^4} \left\{ \frac{1}{9} (14 a^4 - 10 a^2 - 18 a^2 b + 9 b^2 + 5) s^2 + \frac{13}{18} (1 - a^2)^2 (t^2 + u^2) \right. \\ \left. - \frac{1}{2} (2 a^4 - 2 a^2 - 2 a^2 b + b^2 + 1) s^2 \log \left(\frac{-s}{\mu^2} \right) \right. \\ \left. + \frac{1}{12} (1 - a^2)^2 \left[(s^2 - 3t^2 - u^2) \log \left(\frac{-t}{\mu^2} \right) + (s^2 - t^2 - 3u^2) \log \left(\frac{-u}{\mu^2} \right) \right] \right\}$$

SM: $a = b = 1$, $a_4 = a_5 = 0$ $A(s, t, u) \sim O(M_H^2/v^2)$

$$A\left(\gamma\gamma \to W_L^+ W_L^-\right)_{\rm NLO} \sim \frac{(a^2 - 1)}{8\pi^2 v^2}$$

Delgado et al

Deviations of the SM gauge couplings imply bad UV behaviours

New states needed to restore unitarity

WW Scattering @ LHC

(3.6 σ**)**

Berryhill

First evidence of W[±]W[±] scattering

ATLAS, arxiv:1405.6241

CMS-PAS-SMP-13-015

m_{ii} (GeV)

2000

Strongly-Coupled Scenarios

- $SU(2)_{I} \otimes SU(2)_{R} \rightarrow SU(2)_{C}$ Symmetry Breaking:
- Goldstone Dynamics **Electroweak Effective Theory**
- Strong Electroweak Dynamics

Heavy Resonances

- Many possibilities: (Walking, Conformal) Technicolour, CFT, 5D ...
- Light Scalar Resonance H(125)

Pseudo-Goldstone (composite) Higgs, Dilaton ...

The power of the dark side

Holds the Universe together and makes 85% of all the matter in it!

Interacts very weakly (not charged)

Higgs-like Interactions ?

SUSY and the WIMP Miracle ?

- If the LSP is the lightest neutralino it will behave as WIMP dark matter
- In the MSSM the lightest neutralino is generically a mixture of the Bino, Wino, and the two Higgsinos
- If you are more ambitious, can try to require that the LSP is a thermal relic with the correct abundance to explain all ALL dark matter

Dark Matter

Hidden Portals

Coupling to a hidden Dark Sector through new SM-singlet particles

- Higgs Portal: $\chi H^{\dagger}H$, $\chi^2 H^{\dagger}H$
- Vector Portal: $V_{\mu\nu}F^{\mu\nu}$
- Neutrino Portal: $\overline{L}_L H N_R$
- Axion Portal:

 $a\, ilde{G}_{\mu
u}G^{\mu
u}$, $\partial^{\mu}a~~ar{\psi}\,\gamma_{\mu}\gamma_{5}\,\psi$

DM candidates in many BSMs

Complementary experimental information

Thermal freeze-out

X

SM

Dark

Sector

Barenboim

Unsolved issues in the standard model

- Horizon problem Why is the CMB so smooth ?
- The flatness problem Why is the Universe flat ? Why is $\Omega \sim 1$?
- The structure problem Where do the fluctuations in the CMB come from ?
- The relic problem Why aren't there magnetic monopoles?

The relic problem Why aren't there magnetic monopoles?

BICEP2 Data & Inflation Paradigm

Right ascension [deg.]

Milky Way's (dust) magnetic fingerprint

Evidence of inflationary gravitational waves?

Foreground polarized dust emission?

Flauger et al 1405.7351, Mortonson-Seljak 1405.5857

Declination [deg.]

Inflaton

Another scalar field?

 $\Box \quad \textbf{Could "Higgs Inflation" work?} \qquad S_G = -\frac{1}{2} \int d^4x \ \sqrt{-g} \ \left\{ M_{\text{Pl}}^2 R + \xi H^2 R \right\}$ $\xi \approx 47000 \sqrt{\lambda} \quad (\textbf{COBE}) \quad \implies \quad n_s \approx 0.97 \quad , \quad r \approx 0.003$ $\textbf{Quantum effects:} \quad \textbf{M}_{\text{H}} > \textbf{M}_{\text{crit}} \sim 129.6 \text{ GeV} \qquad \textbf{Bezrukov-Shaposhnikov, 1403.6078}$

Close to M_{crit} , n and r strongly depend on M_{H} and m_{t}

Status & Outlook

- The SM appears to be the right theory at the EW scale
- The H(125) behaves as the SM scalar boson
- The CKM mechanism works very well
- Neutrinos do have (tiny) masses. Lepton flavour is violated
- Different flavour structure for quarks & leptons
- New physics needed to explain many pending questions: Flavour, CP, baryogenesis, dark matter, cosmology...

- How far is the Scale of New-Physics Λ_{NP} ?
- Which symmetry keeps M_H away from Λ_{NP} ? Supersymmetry, scale/conformal symmetry...
- Which kind of New Physics?

Awaiting great discoveries @ LHC

This, no doubt, Sancho, will be a most mighty and perilous adventure, in which it will be needful for me to put forth all my valour and resolution

Let your worship be calm, senor. Maybe it's all enchantment, like the phantoms last night

