Charging a leptoquark under $L_{\mu}-L_{\tau}$

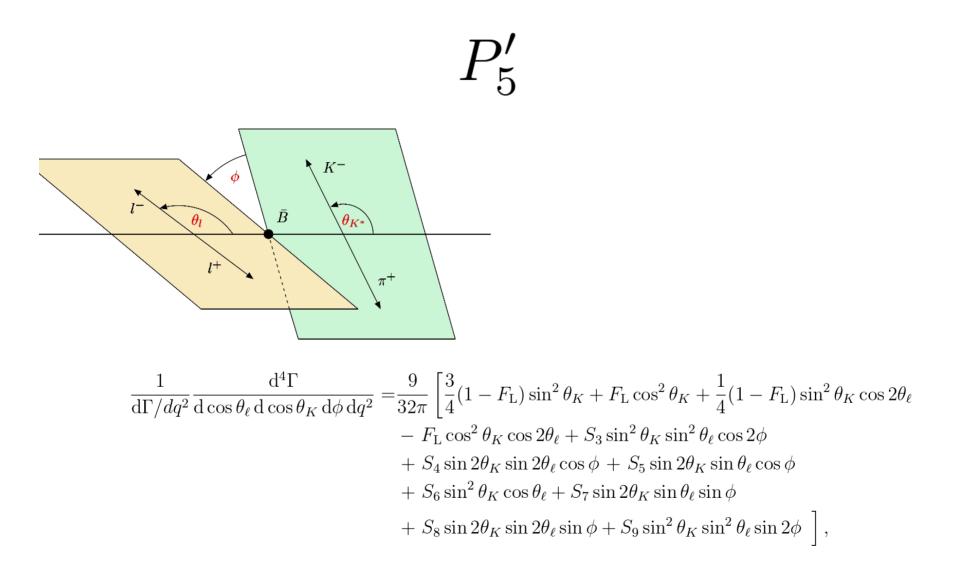
Matthew Kirk

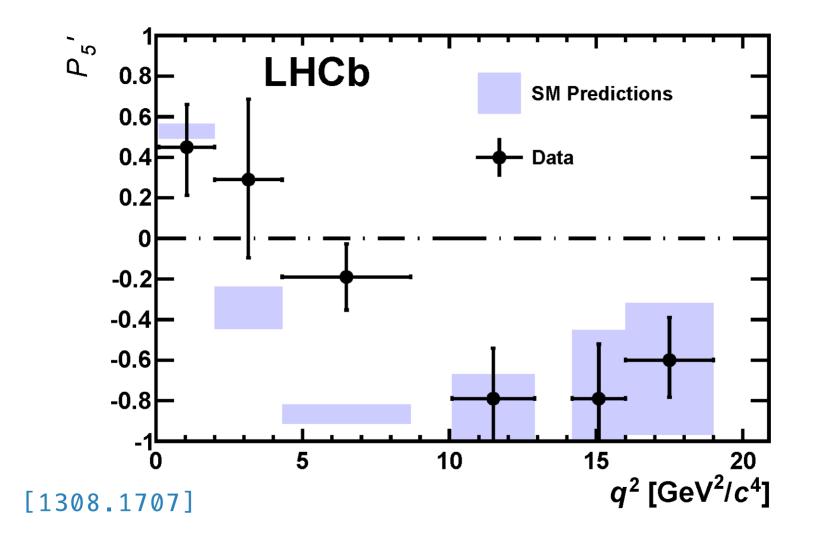
La Sapienza, Rome

IFAE Barcelona seminar – 28 January 2021 (based on 2007.15016 with Joe Davighi, Marco Nardecchia)

Flavour Anomalies – a history

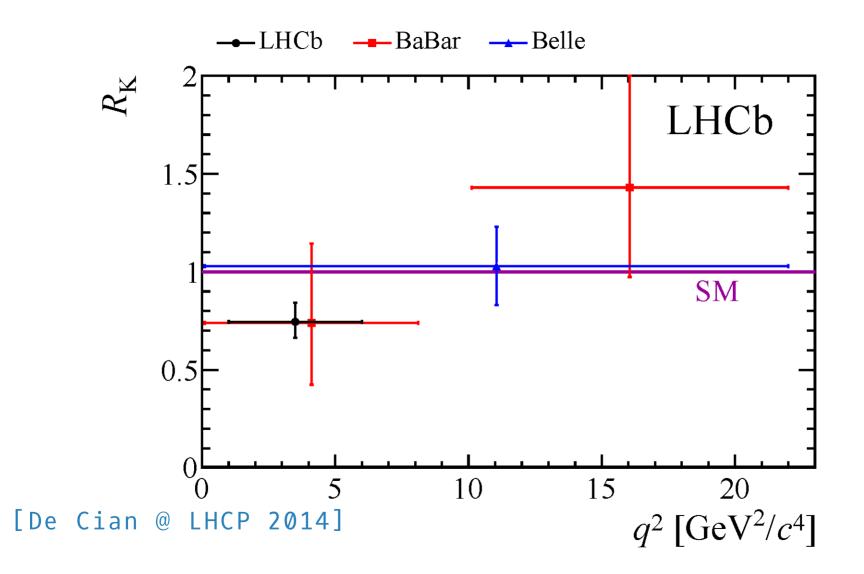
- P_5^\prime in 2013, $2.8\,\sigma\,$ deviation
- R_K in 2014, 2.6σ deviation
- R_{K^*} in 2017, 2.5σ deviation
- R_K in 2019, $2.5\,\sigma\,$ deviation
- R_{pK} in 2019, $< 1\,\sigma$ deviation
- P_5^\prime (x2) in 2020, $2.5\,\sigma$ deviation

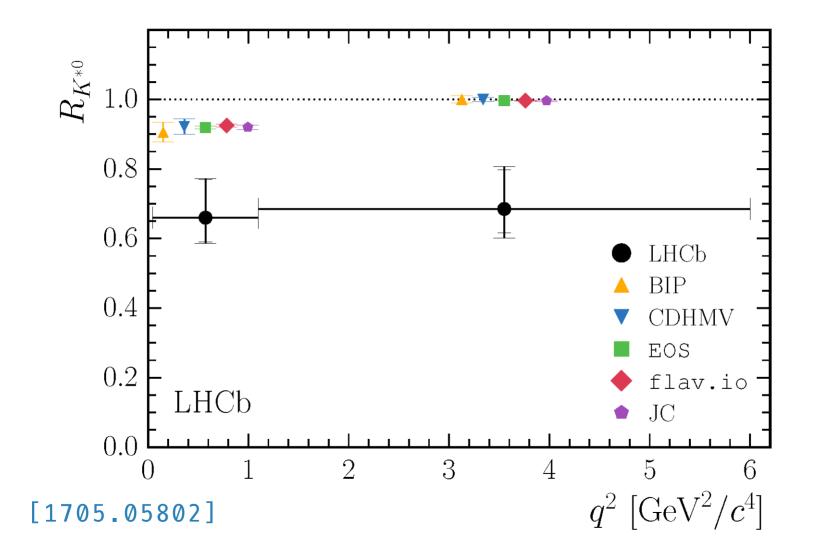


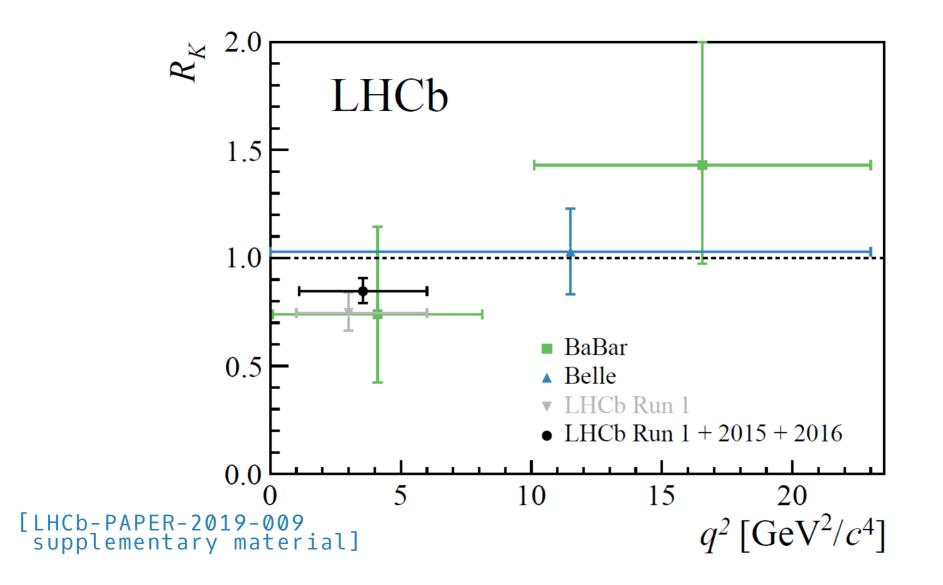


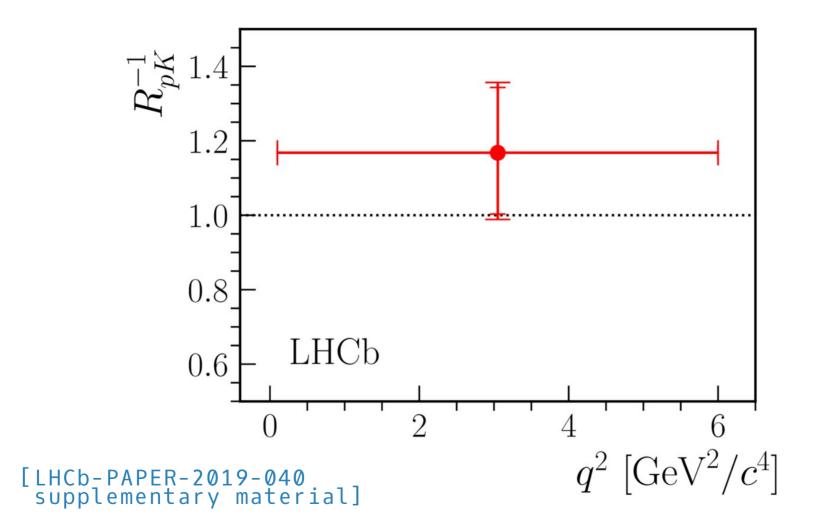
$$R_{K^{(*)}}$$

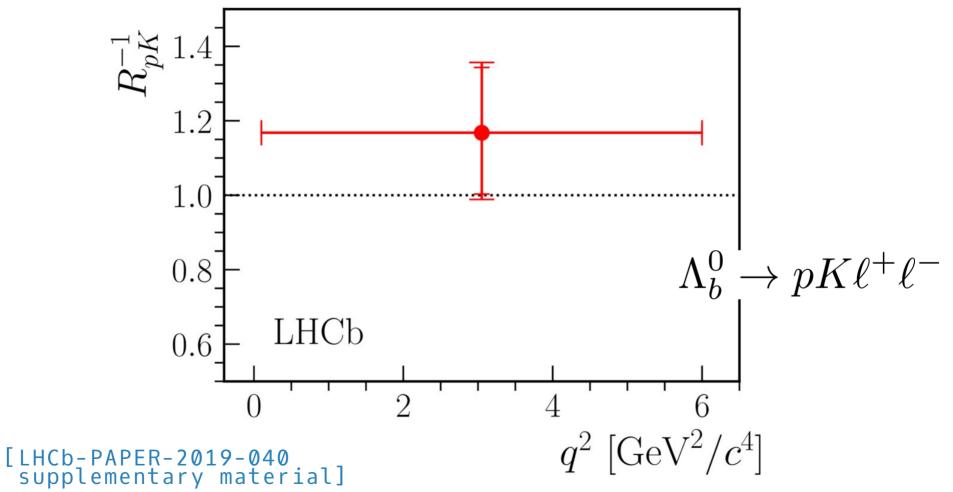
$$R_{K^{(*)}} = \frac{\mathcal{B}\left(B \to K^{(*)}\mu^{+}\mu^{-}\right)}{\mathcal{B}\left(B \to K^{(*)}e^{+}e^{-}\right)}$$



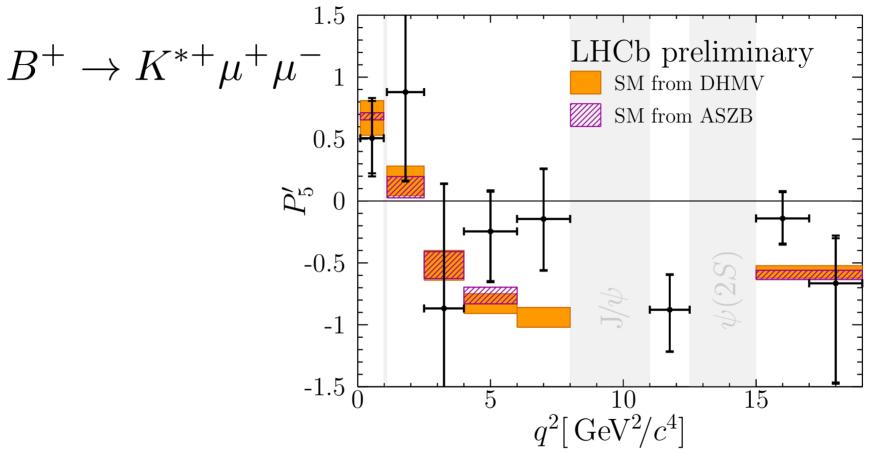




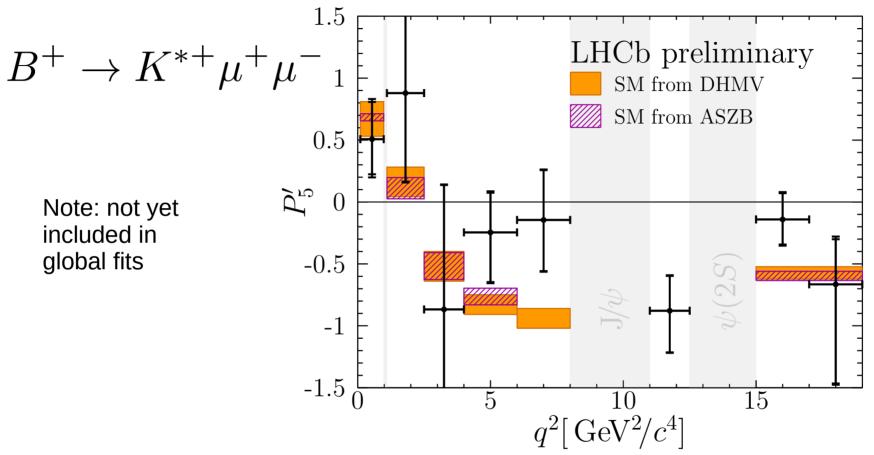








[LHCb seminar - October 2020]



[LHCb seminar - October 2020]

Flavour Anomalies – a history

- Plus many more non "headline" observables
- All in $b \to s\ell\ell$ decay modes
- We often talk about a coherent set of anomalies
 - i.e. all the data points the same way
- Think about this in terms of a global fit

$b \rightarrow s \ell \ell$ operators

- What operators can affect the $b \rightarrow s\ell\ell$ decay?
- $C_9, C_{10}, C'_9, C'_{10}$

$$\mathcal{O}_{9\ell} = \frac{e}{16\pi^2} m_b(\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell), \qquad \mathcal{O}_{9'\ell} = \frac{e}{16\pi^2} m_b(\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \ell),$$
$$\mathcal{O}_{10\ell} = \frac{e}{16\pi^2} m_b(\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell), \qquad \mathcal{O}_{10'\ell} = \frac{e}{16\pi^2} m_b(\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell).$$

$b \rightarrow s \ell \ell$ operators

- What operators can affect the $b \rightarrow s\ell\ell$ decay?
- $C_9, C_{10}, C'_9, C'_{10}$
- $(+C_7, C'_7, C_S, C_P, C_T, C_{T5})$
 - $C_{T,T5} = 0$ from SMEFT
 - $C_7^{(\prime)} \approx 0$ from $B \to X_s \gamma$
 - $C_{S,P} pprox 0$ from $B_s
 ightarrow \mu \mu$ (see backup for more)

Global fit

		All			LFUV			
1D Hyp.	Best fit	$1 \sigma/2 \sigma$	Pull _{SM}	p-value	Best fit	$1 \sigma / 2 \sigma$	Pull _{SM}	p-value
${\cal C}_{9\mu}^{ m NP}$	-1.03	[-1.19, -0.88] $[-1.33, -0.72]$	6.3	37.5%	-0.91	$\begin{bmatrix} -1.25, -0.61 \end{bmatrix}$ $\begin{bmatrix} -1.63, -0.34 \end{bmatrix}$	3.3	60.7%
$\mathcal{C}^{ m NP}_{9\mu}=-\mathcal{C}^{ m NP}_{10\mu}$	-0.50	[-0.59, -0.41] [-0.69, -0.32]	5.8	25.3%	-0.39	[-0.50, -0.28] [-0.62, -0.17]	3.7	75.3%
${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9'\mu}$	-1.02	[-1.17, -0.87] [-1.31, -0.70]	6.2	34.0%	-1.67	[-2.15, -1.05] [-2.54, -0.48]	3.1	53.1%
$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-0.93	[-1.08, -0.78] $[-1.23, -0.63]$	6.2	33.6%	-0.68	[-0.92, -0.46] $[-1.19, -0.25]$	3.3	60.8%

TABLE VII. Most prominent 1D patterns of NP in $b \rightarrow s\mu^+\mu^-$ transitions (state-of-the-art fits as of March 2020). Here, Pull_{SM} is quoted in units of standard deviation and the *p*-value of the SM hypothesis is 1.4% for the fit "All" and 12.6% for the fit LFUV.

[1903.09578 (Apr 2020 addendum)]

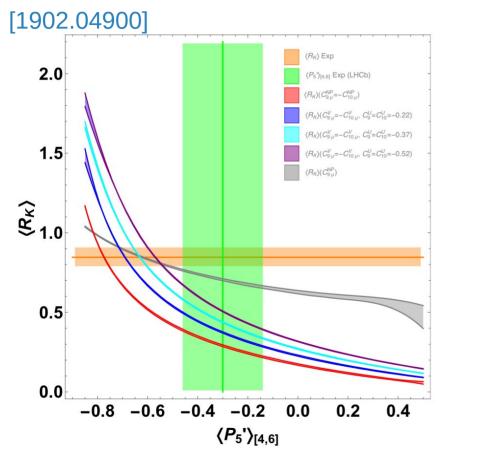
Flavour Anomalies – a history

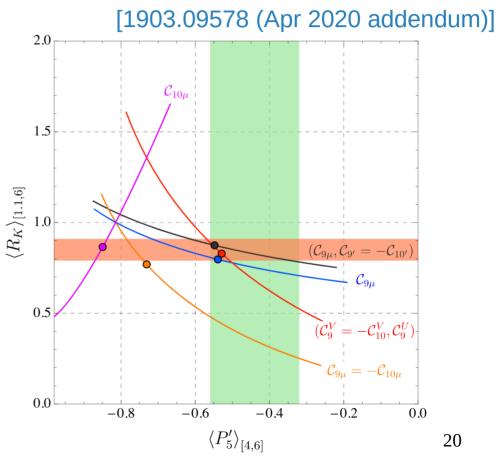
- P_5' in 2013, 2.8 σ deviation
- R_K in 2014 Lation Isn't this a bad sign?
- R_{K^*} in 2017,
- R_K in 2019, 2, nation
- R_{pK}^{-1} in 2010 **viation**
- P_5' (x2) in 2020, 2.5σ deviation

New P'_5

- P'_5 became (a little) less significant
- However, this actually improved the overall fit

New P'_5





NP scenarios

	All				LFUV			
1D Hyp.	Best fit	$1 \sigma/2 \sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	Best fit	$1 \sigma / 2 \sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{ m NP}$	-1.03	[-1.19, -0.88] $[-1.33, -0.72]$	6.3	37.5%	-0.91	[-1.25, -0.61] [-1.63, -0.34]	3.3	60.7%
$\mathcal{C}^{\mathrm{NP}}_{9\mu} = -\mathcal{C}^{\mathrm{NP}}_{10\mu}$	-0.50	[-0.59, -0.41] [-0.69, -0.32]	5.8	25.3%	-0.39	[-0.50, -0.28] [-0.62, -0.17]	3.7	75.3%
${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9'\mu}$	-1.02	[-1.17, -0.87] [-1.31, -0.70]	6.2	34.0%	-1.67	[-2.15, -1.05] [-2.54, -0.48]	3.1	53.1%
$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-0.93	[-1.08, -0.78] $[-1.23, -0.63]$	6.2	33.6%	-0.68	[-0.92, -0.46] [-1.19, -0.25]	3.3	60.8%

TABLE VII. Most prominent 1D patterns of NP in $b \rightarrow s\mu^+\mu^-$ transitions (state-of-the-art fits as of March 2020). Here, Pull_{SM} is quoted in units of standard deviation and the *p*-value of the SM hypothesis is 1.4% for the fit "All" and 12.6% for the fit LFUV.

[1903.09578 (Apr 2020 addendum)]

NP scenarios

- $C_9^{\mu} = -C_{10}^{\mu}$ is quite appealing as this corresponds to an operator with LH quarks and LH muons
- Just what you might expect from some NP above the EW scale that is $SU(2)_L$ invariant

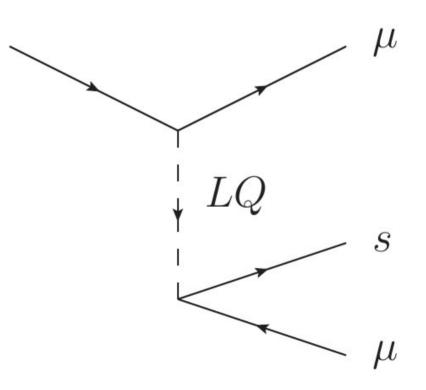
Leptoquarks

- New particle carrying baryon and lepton number
- Interactions of the form $\operatorname{LQ} q\,\ell$
- Can be either vectors or scalars
- Naturally arise in unified theories

Leptoquarks for $b \to s\ell\ell$

- Tree level contribution to the flavour anomalies
- Best fit indicates

$$\frac{M_{\rm LQ}}{\sqrt{\lambda_{b\mu}\lambda_{s\mu}}} \approx 35 \,{\rm TeV}$$



Scalar or vector?

- Massive vector states need to be embedded in a UV complete theory in order to be able to make predictions at loop level
- Adding a new massive scalar is "simpler"
 - (see later for discussion of perturbative stability of scalar masses)

Scalar leptoquarks

- Only one scalar leptoquark that gives $b \rightarrow s\ell\ell$
- $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$
 - Colour anti-triplet
 - $SU(2)_L$ triplet
 - Hypercharge = 1/3

S_3 scalar leptoquark

- $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$
- The lagrangian term relevant for flavour anomalies looks like $\lambda_{ij}^{QL} \overline{Q_i^c} L_j S_3$
- In particular, we need $\lambda_{32,22}^{QL} \neq 0$
- But ...

Problems with S_3

- With non-zero coupling to electrons, we induce LFV (e.g. $\mu \to e \gamma$), which are very tightly constrained
- Similar for tau couplings (e.g. $B \to K \mu \tau$)

Problems with S_3

- There is also generically a diquark coupling that looks like $\lambda_{ij}^{QQ} \overline{Q_i^c} Q_j S_3$
- This induces proton decay

Problems with S_3

• How to get the pattern of couplings:

$$\begin{array}{l} - \ \lambda^{QL}_{32,22} \neq 0 \\ - \ \lambda^{QL}_{i1,i3} \approx 0 \\ - \ \lambda^{QQ}_{11} \approx 0 \end{array} \end{array}$$

S_3 charged under $L_{\mu} - L_{\tau}$

- Extend the gauge symmetry
- $G_{\rm SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ $\rightarrow SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_{L_{\mu}-L_{\tau}}$ • $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3) \rightarrow (\bar{\mathbf{3}}, \mathbf{3}, 1/3, -1)$

$$S_3$$
 charged under $L_μ - L_τ$
• $S_3 ~ (\bar{\mathbf{3}}, \mathbf{3}, 1/3) → (\bar{\mathbf{3}}, \mathbf{3}, 1/3, -1)$

• Forces

$$-\lambda_{ij}^{QL} = \alpha_i \delta_{j2}$$
$$-\lambda_{ij}^{QQ} = 0$$

- Also: $L_{\mu} L_{\tau}$ is anomaly free
 - No extra fermions needed

S_3 charged under $L_{\mu} - L_{\tau}$

- Other benefits:
- $L_{\mu} L_{\tau}$ is anomaly free
 - No extra fermions needed
- Enforces lepton flavour conservation
 - All LFV constraints automatically satisfied

Can we "see" this extra U(1)?

- Are there measurements we can make that can tell we have an extra gauge symmetry?
- A plain new U(1) => new massless gauge boson
 - Ruled out by fifth force searches
- Break the U(1) using Higgs mechanism

Can we "see" this extra U(1)?

- Can we just make our new Higgs-like scalar (Φ) and the new gauge boson (X_{μ}) very heavy?
- These new bosons don't contribute to the "interesting" phenomenology, so maybe?
- Is a hierarchy like $M_h \ll M_{S_3} \ll M_{\Phi}, M_X$ plausible?

Scalar mass stability

• In the SM, there is the hierarchy "problem"

Hierarchy problem

 Calculate the loop corrections to the Higgs mass with cutoff regularization

$$\neg \delta M_h^2 \sim \Lambda^2$$

- If you think SM is valid up to Plank scale
- $\Lambda \approx M_{\rm Pl} \sim 10^{19} \,{\rm GeV} \Rightarrow$ enormous corrections

Hierarchy problem

- But in the SM alone, there is no higher scale
- Higgs mass corrections are calcuable in dim-reg • $\delta M_h^2 = M_h^2 \left(0.133 + \gamma_m \ln \frac{\mu^2}{m_t^2} \right)$
- At the scale $\mu = m_t$ (which is the largest scale in the SM), the mass corrections are ~ 13%

Finite naturalness

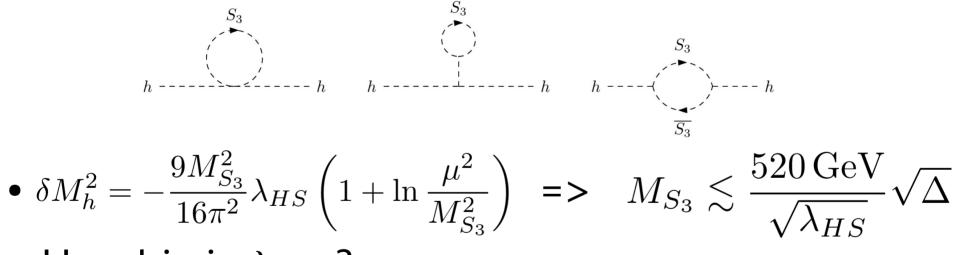
- This idea was introduced in 1303.7244 [Farina, Pappadopulo, Strumia]
- Called finite naturalness
- Define $\Delta = \delta M_h^2/M_h^2\,$ as the measure of naturalness
- $\Delta \lesssim 1\, {\rm is}$ "natural" SM has $\Delta \approx 0.13$

Finite naturalness

• For a NP model, you can "bound" some of the parameters of your model by what size of Δ you think is acceptable.

Finite naturalness for Higgs

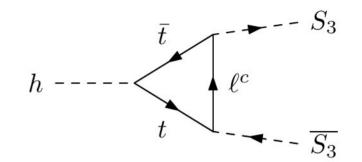
• Get Higgs mass corrections from S_3 in the loop

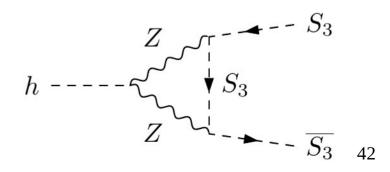


• How big is λ_{HS} ?

Finite naturalness for Higgs

- λ_{HS} is generated by top and gauge boson loops
- Give opposite sign contributions





Finite naturalness for Higgs • $M_{S_3} \lesssim \frac{4.7 \,\text{TeV}}{|\alpha_3 + V_{ts}\alpha_2| \sqrt{\ln M_{S_3}^2/m_t^2}} \sqrt{\Delta}$ (from LQ-q-l) • $M_{S_3} \lesssim 5.8 \,\text{TeV} \sqrt{\Delta}$ (from EW)

 So for certain parameter values, and a light enough LQ, the Higgs mass correction is "natural"

Finite naturalness for S_3

- $\delta M_{S_3}^2 \propto g_X^2 M_X^2$
- So if we take g_X to be very small (and fix M_X , which is equivalent to large v_{Φ}) these corrections are also under control

What does this all mean?

- We can propose our model with the following hierarchy: $M_h \ll M_{S_3} \ll M_\Phi, M_X$
- And make an argument that it is "natural"

What does this all mean?

- Which gives us a LQ that:
 - Couples only to muons
 - Doesn't induce proton decay term
- But the particles associated with the gauge symmetry can be hidden away at much higher mass scales

Gauge decoupled

- The new gauge sector is decoupled from the SM+leptoquark
- We are left with a reduced parameter space:

$$-M_{S_3}, \alpha_1, \alpha_2, \alpha_3$$
$$\bullet \mathcal{L} \supset \alpha_i \overline{Q_i^c} L_2 S_3$$

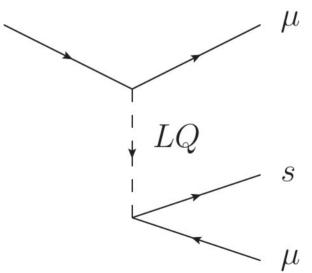
Flavour structure

- Our Lagrangian ($\mathcal{L} \supset \alpha_i \overline{Q_i^c} L_2 S_3$) couples to a simple linear combination of quark flavours
- This an example of linear flavour violation (1509.05020 [Gripaios, Nardecchia, Renner]) and rank-one flavour violation (1903.10954 [Gherardi, Marzocca, Nardecchia, Romanino])

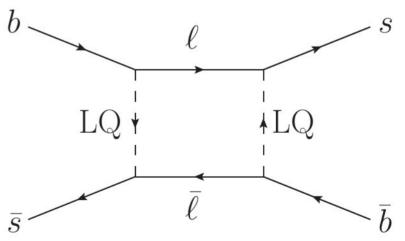
Flavour structure

- A plausible choice for the alignment of this vector in flavour space is the 3rd generation CKM matrix elements
- $(\alpha_1, \alpha_2, \alpha_3) \propto (V_{ub}, V_{cb}, V_{tb})$
- Come naturally out of partial compositeness framework, or a U(2) flavour symmetry for NP

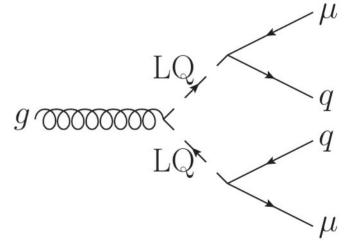
- What do measurements say about our quark couplings?
- Observables:
 - $b \rightarrow s \ell \ell$ anomalies
 - B_s mixing
 - Direct searches at LHC



- What do measurements say about our quark couplings?
- Observables:
 - $b \rightarrow s\ell\ell$ anomalies
 - B_s mixing
 - Direct searches at LHC



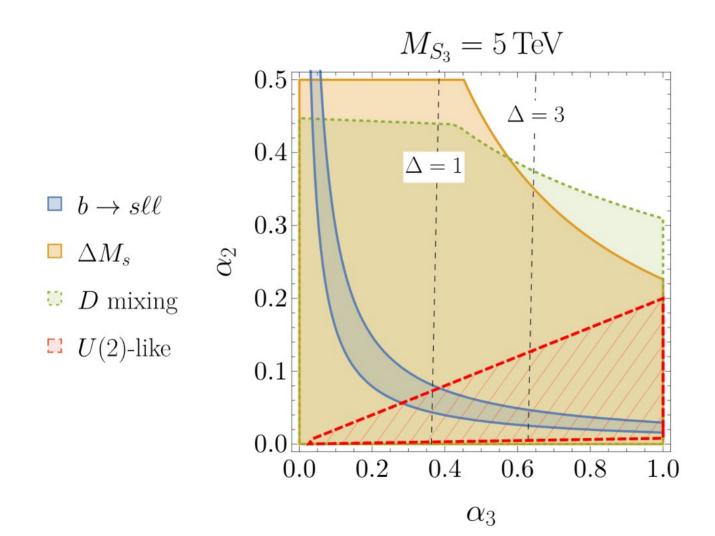
- What do measurements say about our quark couplings?
- Observables:
 - $b \rightarrow s\ell\ell$ anomalies
 - B_s mixing
 - Direct searches at LHC

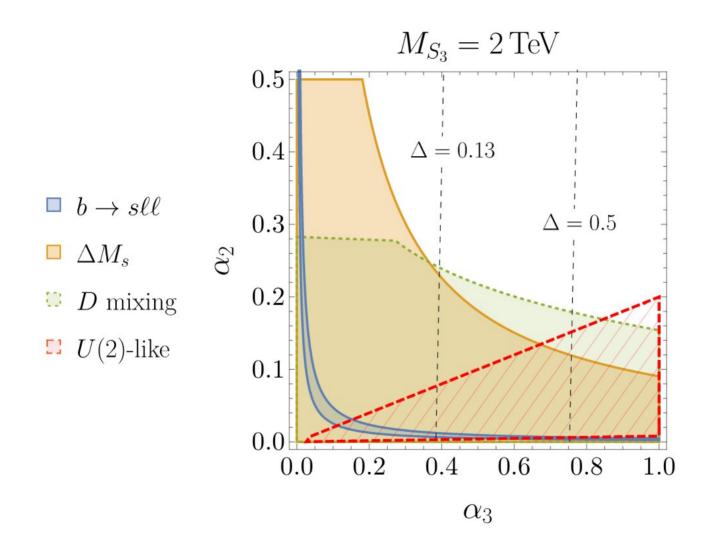


• $b \rightarrow s\ell\ell$ anomalies: 2σ range fixes

$$30\,\mathrm{TeV} \le \frac{M_{S_3}}{\sqrt{\alpha_3\alpha_2}} \le 45\,\mathrm{TeV}$$

- B_s mixing: $\frac{M_{S_3}}{\alpha_3 \alpha_2} \gtrsim 22 \,\mathrm{TeV}$
- Direct searches: $M_{S_3} \gtrsim 1.7 \,\mathrm{TeV}$





Summary

- S_3 is a well known solution of the flavour anomaly problem
- Charging it under $U(1)_{L_{\mu}-L_{\tau}}$ solves some conceptual problems
- It is possible to "hide" the new U(1) at a high scale, in a natural way

Extra

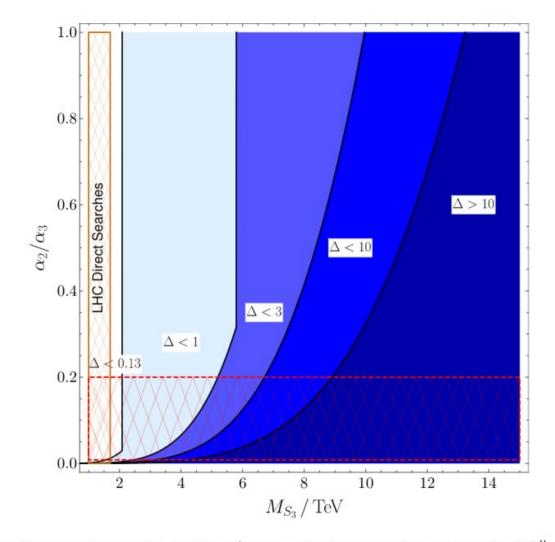


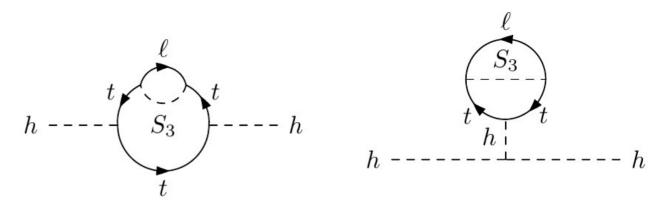
Figure 4: Constraints on the ratio α_2/α_3 vs. the leptoquark mass, with $\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$ everywhere fixed to the central value of the global fit [12] to B anomaly data. The brown

Non-renormalisable proton decay

• Potentially there is an operator of the form

 $\frac{1}{\Lambda} \overline{Q_i^c} Q_j S_3 \Phi$

- which induces proton decay after Φ gets a vev
- Could forbid with guage charge of Φ , but leads to problems if you then want to generate neutrino masses in a minimal way



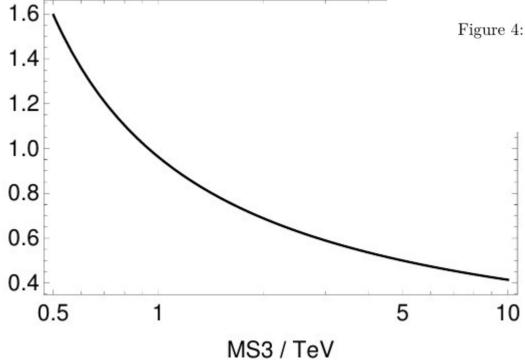
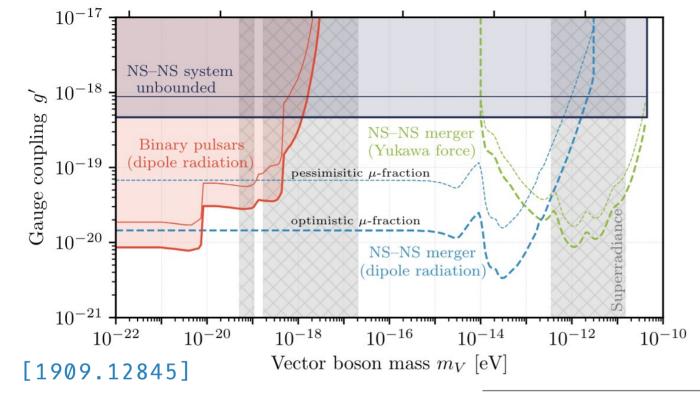


Figure 4: Diagrams contributing to δM_h in our gauge charged LQ model, which parametrically go as $y_t^2 \alpha_3^2$. In both cases, the leptoquark can be $S_3^{1/3}$ or $S_3^{-2/3}$ and the lepton can be a μ or ν_{μ} respectively. The left diagrams has a counterpart with the opposite fermion flow.



[1908.09732]

Compact binary system	g(fifth force)	g(orbital period decay $)$
PSR B1913+16	$\leq 4.99 \times 10^{-17}$	$\leq 2.21\times 10^{-18}$
PSR J0737-3039	$\leq 4.58 \times 10^{-17}$	$\leq 2.17\times 10^{-19}$
PSR J0348+0432	_	$\leq 9.02\times 10^{-20}$
PSR J1738+0333	_	$\leq 4.24\times 10^{-20}$

NN.

Branching Fractions

• The branching fraction measurements for $B_s^0 \rightarrow \mu^+ \mu^-$ and the upper limits on the $B^0 \rightarrow \mu^+ \mu^-$ at 95% CL are:

ATLAS

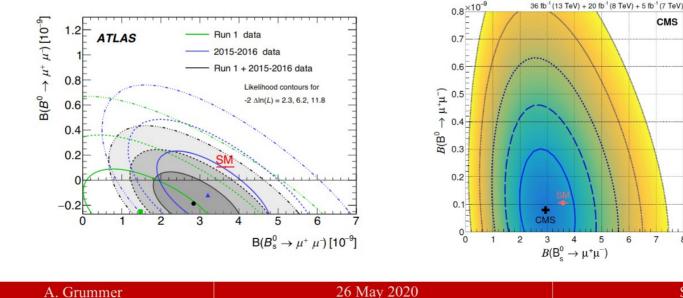
 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 2.1 \times 10^{-10} \end{aligned}$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = [2.9 \pm 0.7 \,(exp) \pm 0.2 \,(frag)] \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10}$$

CMS

Slide 9

• The likelihood contours for the branching fractions are shown in the figures (the Neyman construction is used for ATLAS results)



$$BR(B_s \to \mu^+ \mu^-)_{\text{prompt}} = \frac{G_F^2 \alpha^2}{16\pi^3} \left| V_{ts} V_{tb}^* \right|^2 f_{B_s}^2 \tau_{B_s} m_{B_s} m_{\mu}^2 \sqrt{1 - 4\frac{m_{\mu}^2}{m_{B_s}^2}} \left| C_{10}^{\text{SM}} \right|^2 \left(|P|^2 + |S|^2 \right), \quad (19)$$

where the Wilson coefficients appear through the combinations

$$P = \frac{C_{10} - C'_{10}}{C_{10}^{SM}} + \frac{M_{B_s}^2}{2m_{\mu}} \frac{m_b}{m_b + m_s} \left(\frac{C_P - C'_P}{C_{10}^{SM}}\right), \quad S = \sqrt{1 - 4\frac{m_{\mu}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\mu}} \frac{m_b}{m_b + m_s} \left(\frac{C_S - C'_S}{C_{10}^{SM}}\right), \quad (21)$$