Measuring charged current v_{μ} interactions with an outgoing π^+ using the ND280 detector of T2K

Danaisis Vargas Oliva January 20th, 2021

Neutrinos in the standard model

3 flavors (v_e , v_{μ} , v_{τ}) matched to charged leptons (e , μ , τ)

But this isn't true

- Have no charge
- They have no mass
- They only interact through the weak force
- All this makes them basically... INVISIBLE

✓ Neutrinos cover a wide spectrum of energy.

✓ Detecting them involves using different techniques and detectors.

Neutrino (flavor) oscillation

The weak interaction couples the lepton of a flavor to the neutrino of its corresponding flavor.

Neutrino (flavor) oscillation

We extract: Rotation angle $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta_{23}) \sin^{2}(1.27)^{\Delta m_{32}^{2}}$ We extract: Mass difference

We know: Distance to the far detector (length of the neutrino's long journey)

We calculate: Neutrino flux energy

Note: Which means that at least one of them has to have mass for the oscillation to occur.

$$\mathbf{A} = \sin^2(2\theta_{23})$$

$$\lambda = 1.27 \frac{\Delta m_{32}^2}{4E_{\nu}}$$

Neutrino interactions

Three dominant scattering processes: Charged Current Quasi Elastic, Charged Current Resonant Pion Production, Charged Current Deep Inelastic Scattering

Interaction Modes (nucleon level)

CCOther,-

Interaction Topologies (nucleus level)

Final State Interaction

Changes outgoing particle content or kinematics in final state

T2K experiment

Main Goals: Measure the oscillation parameters $\theta_{13}, \theta_{23}, \Delta m_{32}^2, \delta_{CP}$

T2K experiment

Main Goals: Measure the oscillation parameters $\theta_{13}, \theta_{23}, \Delta m_{32}^2, \delta_{CP}$

Measure oscillated spectrum

Measure unoscillated spectrum

Are used to constrain the flux and cross section parameters reducing the systematics errors in the T2K oscillation analyses. Production of high intensity v / \overline{v} beam

8

4π acceptance

 4π symmetry of the detector.

making more use of ND280 to achieve a 4pi acceptance so we get a more representative constraint on neutrino interactions at SK

T2K near detector: ND280

- π^0 Detector (P0D): neutral pion detector
- Time Projection Chambers (TPCs): energy, angle and identification
- Fine grained detector (FGDs): active target
 - FGD1: Carbon (target used for my study)
 - FGD2: Carbon + Water
- Electromagnetic Calorimeters (ECals): separated tracks from showers
- Side Muon Range Detector (SMRD): energy of muons based in the range
- Magnet: charge of the particles and momentum (when combined with TPCs)

Ratio of interactions in the detector

 $\boldsymbol{R} = \boldsymbol{\phi}(\boldsymbol{E}_{\boldsymbol{\nu}}) *$

The set v		

Motivation

- $CC1\pi^+$ constitutes the main background for the muon neutrino disappearance measurement when the charged pion is not observed.
- Its precise knowledge is relevant for all current and planned neutrino oscillation experiments.
- Single pion production is sensitive mainly to resonant processes but also to non-resonant contributions.
 - Adler's angles were measured with limited statistics in bubble chamber experiments but it is possible to measure them for single charged pion production in neutrino interactions with heavy nuclei as target.

Selection developed

Distribution of the reconstructed muon momentum in the events selected at ND280 for CC inclusive, $CC0\pi$, $CC1\pi^+$ and CC other interactions by topology.

$CC1\pi^+$ kinematics

Distribution of the reconstructed muon momentum and muon cosine of theta in the events selected at ND280 for $CC1\pi^+$ interactions by topology.

Summary

- Neutrino physics is entering high precision era.
- Improving $CC1\pi^+$ measurements will lead to better oscillation analysis in the future.
 - Cross section uncertainty being a major one.
 - Good neutrino interaction model is essential to reduce systematics.
- My PhD has been focused on understanding and measuring $CC1\pi^+$ interactions using the ND280 detector.
- Thanks to my work a new set of analysis, using the 4π acceptance of the ND280 detector, are possible (some already on the way).
- The analysis is close to being finished.

Thanks See You all in ~7 moths for my defense.

Adler's angles

All true $CC1\pi^+$ events reconstructed in CC inclusive

All true $CC1\pi^+$ events

reconstructed in $CC1\pi^+$

Missing events when going from all events to the ones selected as $CC1\pi^+$

Definition of the Adler's Angles at the nuclear level. The momenta of the particles are defined in the $\vec{q} = \vec{p}_{\nu} - \vec{p}_{\mu}$ rest frame.

- The angles θ_{planar} and ϕ_{planar} are defined in the Adler's system which corresponds to the Δ rest frame.
- The Adler's angles carry information about the polarization of the Δ resonance and the interference with non resonant single pion production.

Neutrino Physics History

1932

Wolfgang Pauli postulated the "neutron" to compensate for the apparent loss of energy and conserve the moment of decay β -

1930

The Pauli neutron was renamed "neutrino" by Fermi when the real neutron was discovered by Chadwick Clyde Cowman and Federick Reines detected the neutrino experimentally from a reactor source

1956

1962 Leon Max Lederman, Melvin Schwartz, and Jack Steinberger showed that more than one type of neutrino existed when the muon neutrino was first detected

2000

The DONUT collaboration at Fermilab announced the discovery of the tauonic neutrino

2015 Nobel Prize in

19

Physics to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Solar neutrino problem

The sun produce only electron neutrinos by β decays.

 $p^+ + p^+ \rightarrow {}^2H + e^+ + \nu_e$

Number of solar neutrinos measured experimentally is less than theoretically expected!!!

 $R = \frac{N_{experimental}}{N_{teorico}}$

- John Bahcall (rigth): So my prediction was correct!!!
- Ray Davis(left): And my measurements too!!!

20

Charged Current (CC): $\mathbf{D} + \mathbf{v}_e \rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^-$ Elastic Scattering (ES): $\mathbf{D} + \mathbf{v}_{e,\mu,\tau} \rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^-$ Neutral Current (NC): $\mathbf{e}^- + \mathbf{v}_{e,\mu,\tau} \rightarrow \mathbf{e}^- + \mathbf{v}_{\chi}$

What's so interesting about neutrinos?

In the distant future

- First experimental observation of physics beyond the standard model.
- Discover supernovae and other astrophysical events.
- We could explain the matter/antimatter asymmetry.
- They help explain dark matter.
- Geologically study the interior of the earth.
- Monitor nuclear weapons on earth.
- Method of transmitting information.

Neutrino (flavor) oscillation

These are related through the PMNS matrix:

- 3 angles:
- 2 mass differences:
- 1 CP violating phase:

 $c_{ij} = \cos heta_{ij}$ $s_{ij} = \sin heta_{ij}$ $\Delta m_{ij}^2 = m_i^2 - m_j^2$

Neutrino Masses and Hierarchy

Neutrino mass is an evidence of physics the standard model. The mass difference involved in the neutrino oscillation are a combination of the neutrino masses.

$$|\nu_l\rangle = \sum_{\alpha=1}^{3} U_{l\alpha} |\nu_{\alpha}\rangle$$

Neutrinos have 2 sets of eigenstates: flavour ($l = e, \mu, \tau$) and mass ($\alpha = 1, 2, 3$) and $U_{l\alpha}$ is the leptonic mixture matrix known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

✓ Sign of $\Delta m^2_{32} = m^2_3 - m^2_2$ unknown

- ✓ Two possible arrangements of neutrino masses
- Long baseline experiments sensitive to hierarchy through matter effect
- ✓ The differences have been measured
 - atmospheric neutrino
 - solar neutrino

23

Absolute scale of neutrino masses unknown

T2K experiment

 30 GeV protons collide with carbon target and produce pions

- Magnetic horns can focus either positive or negative pions
 - 2 different beam modes

 $\begin{array}{c} \pi^+ \to \mu^+ + \nu_{\mu} \\ \pi^- \to \mu^- + \bar{\nu}_{\mu} \end{array}$

- All particles except neutrinos stopped in beam dump
- Use off-axis beam for narrower energy spectrum

