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The very basics of QFT

Loops, divergences and renormalization

What to ask from a “healthy” QFT 

Lorentz invariance

Locality

Unitarity

Renormalizability?

Symmetries and their breaking

Gauge invariance

Massive gauge fields

Building the standard model

An “ideal” list of topics
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Schedule

Lectures: Monday to Thursday (first week), from 9:00 to 10:00.

Tutorials:

Monday 4th, 15:30 to 16:30

Tuesday 5th, 16:30 to 17:30

 Thursday 7th, 18:00 to 19:00 

Tutor: Ramon Miravitllas. 



M.Á. Vázquez-Mozo                                                           Quantum Field Theory and the Standard Model                                                         Taller de Altas Energías 2017

A sample of textbooks

L. Álvarez-Gaumé & M.A. Vázquez-Mozo, “An Invitation to Quantum Field Theory”, Springer 
2012.

M.E. Peskin & D.V. Schroeder, “An Introduction to Quantum Field Theory”, Perseus Books 
1995.

C. Quigg, “Gauge theories of the strong, weak, and electromagnetic interactions” (2nd 
edition), Princeton University Press 2013.

M. Schwartz, “Quantum field theory and the standard model”,  Cambridge 2014.
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A note about conventions:

 We use the “mostly minus” metric (a.k.a. West Coast metric):

 Unless otherwise said, natural units are used throughout:

276 A Notation, Conventions and Units.

Fµν

0 Ex Ey Ez
Ex 0 Bz By
Ey Bz 0 Bx
Ez By Bx 0

, Fµν

0 Bx By Bz
Bx 0 Ez Ey
By Ez 0 Ex
Bz Ey Ex 0

, (A.4)

with E Ex,Ey,Ez and B Bx,By,Bz the electric and magnetic fields. Similar
expressions are valid in the nonabelian case.

Pauli and Dirac matrices.

We have used the notation σ µ 1, σi where σi are the Pauli matrices

σ1
0 1
1 0 , σ2

0 i
i 0 , σ3

1 0
0 1 . (A.5)

They satisfy the identity

σiσ j δi j1 εi jkσk, (A.6)

from where their commutator and anticommutator can be easily obtained.
Dirac matrices have always been used in the chiral representation

γµ
0 σ µ

σ µ 0 . (A.7)

The chirality matrix is normalized as γ25 1 and defined by γ5 iγ0γ1γ2γ3. In
many places we have used the Feynman’s slash notation a γµaµ .

Units.

Unless stated otherwise, we work in natural units h̄ c 1. Electromagnetic
Heaviside-Lorentz units have been used, where the Coulomb and Ampère laws take
the form

F
1
4π

qq
r3
r,

dF
dℓ

1
2πc2

II
d

. (A.8)

In these units the fine structure constant is

α
e2

4π h̄c
. (A.9)

The electron charge in natural units is dimensionless and equal to e 0.303.

 We use Heaviside-Lorentz electromagnetic units:

⌘µ⌫ =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

r ·E = ⇢

r ·B = 0

r⇥E = �@B

@t

r⇥B = j+
@E

@t

↵ =
e2

4⇡
(fine structure constant)
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From elementary particles to 
quantum fields

Part I
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Quantum mechanics, even relativistic, is not enough to describe these high energy 
experiments…

Elementary particles are studied through scattering experiments, typically

p1 p2

q1
q2

qn�1
qn

. . . . . .

. . .. . .

Interaction
region
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Let us consider the relativistic quantum evolution of a localized, single-particle wave 
packet:

 (t,x) = e�it
p
�r2+m2

�(3)(x) =

Z
d3k

(2⇡)3
eik·x�it

p
k2+m2

(H =
p

p2 +m2

The integral can be regularized by                 , to give 

= � i

4⇡2|x|

Z 1

�1
kdk eik|x|�it

p
k2+m2

=
1

2⇡2|x|

Z 1

0
kdk sin(k|x|)e�it

p
k2+m2

t ! t� i✏

 (t,x) = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘

The probability                 spills outside the light-cone| (t,x)|2

Causality is violated!

positive
frequency
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packet:
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�(3)(x) =

Z
d3k

(2⇡)3
eik·x�it

p
k2+m2

(H =
p

p2 +m2

The integral can be regularized by                 , to give 

= � i

4⇡2|x|

Z 1

�1
kdk eik|x|�it

p
k2+m2

=
1

2⇡2|x|

Z 1

0
kdk sin(k|x|)e�it

p
k2+m2

t ! t� i✏

 (t,x) = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘

The probability                 spills outside the light-cone| (t,x)|2

Causality is violated!

What we are computing is the propagator of a 
relativistic particle:

 (t,x) = hx|e�itH |0i ⌘ G(t,x; 0,0)

Relativistic quantum mechanics propagates states 
outside the light cone

G(t0,x0; t,x) 6= 0 when (t0 � t)2 � (x0 � x)2 < 0

positive
frequency
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But when                      there are frames in which          happens before         .  Thus,t2 � x

2 < 0 (t,x) (0,0)

 (t,x) =

(
hx|e�itH |0i

hx|e�itH |0i+ h0|eitH |xi = 2Re hx|e�itH |0i

when t2 � x

2 > 0

when t2 � x

2 < 0

But since we have computed

hx|e�itH |0i = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘

the result is

 (t,x) = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘
✓(t2 � x

2)

Causality is restored!



M.Á. Vázquez-Mozo                                                           Quantum Field Theory and the Standard Model                                                         Taller de Altas Energías 2017

But when                      there are frames in which          happens before         .  Thus,t2 � x

2 < 0 (t,x) (0,0)

 (t,x) =

(
hx|e�itH |0i

hx|e�itH |0i+ h0|eitH |xi = 2Re hx|e�itH |0i

when t2 � x

2 > 0

when t2 � x

2 < 0

But since we have computed

hx|e�itH |0i = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘

the result is

 (t,x) = � i

2⇡2

m2t

t2 � x

2
K2

⇣
im

p
t2 � x

2
⌘
✓(t2 � x

2)

Causality is restored!

t t0

x

x

0
boost along x

x

0 = �(x� vt)

t

0 = �(t� vx)

(t0, x0)

(t00, x
0
0)
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We have to allow particles travelling backward in time!!

Richard Feynman
(1981-1988)

Their wave functions are

Thus, under any global U(1) symmetry

these particles have oposite charges,                    (but the same mass!                                 )

To restore causality we are forced to introduce antiparticles!!

q+ = �q*

 (t,x)+ �! e�iq✓ (t,x)+ (t,x)* �! eiq✓ (t,x)*

 (t,x)+ = h0|eitH |xi = hx|e�itH |0i⇤ =  (t,x)⇤*

Ernst Stückelberg
(1905-1984)

H*,+ =
p

�r2 +m2
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We have to allow particles travelling backward in time!!

Richard Feynman
(1981-1988)

Their wave functions are

Thus, under any global U(1) symmetry

these particles have oposite charges,                    (but the same mass!                                 )

To restore causality we are forced to introduce antiparticles!!

q+ = �q*

 (t,x)+ �! e�iq✓ (t,x)+ (t,x)* �! eiq✓ (t,x)*

 (t,x)+ = h0|eitH |xi = hx|e�itH |0i⇤ =  (t,x)⇤*

Ernst Stückelberg
(1905-1984)

H*,+ =
p

�r2 +m2

States moving backward in time can be reinterpreted as 
negative frequency states with reversed momentum, 
propagating forward in time:

 (t,x)+ =

Z
d3k

(2⇡)3
e�ik·x+it

p
k2+m2

=

Z
d3k

(2⇡)3
ei(�k)·x�it(�

p
k2+m2)

negative
frequency
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Switching on interactions, charge conservation allows the creation of particle-
antiparticle pairs, provided enough energy is available.

For example, localizing particle below their Compton wavelength

�x�p ⇠ 1

�x ⇠ 1

m

�p ⇠ m �E ⇠ m

and due to energy quantum fluctuations the creation of particle-antiparticle pairs 
cannot be prevented.

We have to give up the single-particle description!
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Relativistic quantum mechanics is a dead end for high energy particle physics…

To handle many particles, second quantization seems the best approach, introducing 
creation-annihilation operators for particles with on-shell momentum p

[a(p), a(p0)†] = (2⇡)3(2!p)�
(3)(p� p0)

[a(p), a(p0)] = [a(p)†, a(p0)†] = 0!p =
p
p2 +m2

Lorentz invariant (exercise)

a(p), a(p)†

(Multi-)particle states are obtained from the Poincaré-invariant vacuum |0i

|pi = a(p)†|0i hp|p0i = (2⇡)3(2!p)�
(3)(p� p0)

p2 = m2

Lorentz invariant (exercise)

|fi =
Z "

nY

i=1

d3pi
(2⇡)3

1

2!pi

#
f(p1, . . . ,pn)a(p1)

† . . . a(pn)
†|0i
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To handle many particles, second quantization seems the best approach, introducing 
creation-annihilation operators for particles with on-shell momentum p

[a(p), a(p0)†] = (2⇡)3(2!p)�
(3)(p� p0)

[a(p), a(p0)] = [a(p)†, a(p0)†] = 0!p =
p
p2 +m2
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a(p), a(p)†

(Multi-)particle states are obtained from the Poincaré-invariant vacuum |0i

|pi = a(p)†|0i hp|p0i = (2⇡)3(2!p)�
(3)(p� p0)

p2 = m2

Lorentz invariant (exercise)

|fi =
Z "

nY

i=1

d3pi
(2⇡)3

1

2!pi

#
f(p1, . . . ,pn)a(p1)

† . . . a(pn)
†|0iU (⇤)a(p)U (⇤)† = a(⇤p)

U (⇤)|pi = |⇤pi

where

U (⇤)|0i = e�ia·P |0i = |0i

U (⇤) 2 SO(1,3)
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Free fields are linear combinations of creation-annihilation operators. E.g., for a free 
Hermitian scalar field

�(x) =

Z
d

3
p

(2⇡)3
1

2!p

h
f(x,p)a(p) + f(x,p)⇤a(p)†

i
�(x) = �(x)†

Imposing the equations of motion,

(⇤+m

2)�(x) = 0 f(x,p) = e

�i!pt+ip·x

The free quantum field satisfies:

 Equal-time canonical commutation relations

 Microcausality

[�(t,x),�(t,x0)] = [�̇(t,x), �̇(t,x0)] = 0

[�(x),�(x0)] = 0 when (x� x

0)2 < 0

[�(t,x), �̇(t,x0)] = i�(3)(x� x

0),
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Free fields are linear combinations of creation-annihilation operators. E.g., for a free 
Hermitian scalar field

�(x) = �(x)†

Imposing the equations of motion,

(⇤+m

2)�(x) = 0 f(x,p) = e

�i!pt+ip·x

positive
frequency

negative
frequency

�(x) =

Z
d

3
p

(2⇡)3
1

2!
p

h
e

�i!pt+ip·x
a(p) + e

i!pt�ip·x
a(p)†

i

The free quantum field satisfies:

 Equal-time canonical commutation relations

 Microcausality

[�(t,x),�(t,x0)] = [�̇(t,x), �̇(t,x0)] = 0

[�(x),�(x0)] = 0 when (x� x

0)2 < 0

[�(t,x), �̇(t,x0)] = i�(3)(x� x

0),
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The many-particle Fock states diagonalize the free field Hamiltonian

H =
1

2

Z
d3x

h
�̇2 + (r�)2 +m2�2

i

=

Z
d3p

(2⇡)3
1

2!p

h
!pa(p)

†a(p)
i
+ E0

(exercise)

Subtracting the (divergent) zero-point energy

H =
1

2

Z
d3p

(2⇡)3

h
a(p)†a(p) + (2⇡)3!p�

(3)(0)
i

H|pi = 1

2

Z
d3k

(2⇡)3
a(k)†a(k)a(p)†|0i = !p|pi

[a(p), a(p0)†] = (2⇡)3(2!p)�
(3)(p� p0)

H|p1, . . . , pni ⌘ Ha(p1)
† . . . a(pn)

†|0i =
 

nX

i=1

!pi

!
|p1, . . . , pni

Particles are the low-lying excitations of quantum fields

E0



M.Á. Vázquez-Mozo                                                           Quantum Field Theory and the Standard Model                                                         Taller de Altas Energías 2017

The many-particle Fock states diagonalize the free field Hamiltonian
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p

1

2
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To do particle physics, we have to choose the appropriate interpolating field:

A particle is characterized by a number of “Casimirs”:

Poincaré group:

n
Mass

Spin

Wµ =
1

2
✏µ⌫↵�J⌫↵P�

vector de Pauli-Lubański

PµP
µ = m2

WµW
µ = �m2s(s+ 1)

Internal symmetry groups:

n
electric charge

…

It transforms correctly (i.e., the right value for the “Casimirs”)

It creates the corresponding particle out of the vacuum:

h0|�(x)|pi 6= 0
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The x-dependence is fixed by the Poincaré invariance of the vacuum

h0|�(x)|pi = h0|eiP ·x
�(0)e�iP ·x|pi = h0|�(0)|pie�ip·x

The fields can be canonically normalized, such that:

Scalar field: 

Dirac field:

Photon field:

h0|�(0)|pi = 1

h0|Aµ(0)|p,�i = "(�)µ (p)

n
h0| ↵(0)|p,�; 0i = u(�)

↵ (p)

h0| ↵(0)|0; p,�i = v(�)↵ (p)

Any properly normalized interpolating field does the job, provided it satisfies 
microcausality

[�(x),�(x0)] = 0 when (x� x

0)2 < 0

Borchers classes
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Scalar field: 
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Photon field:

h0|�(0)|pi = 1

h0|Aµ(0)|p,�i = "(�)µ (p)

n
h0| ↵(0)|p,�; 0i = u(�)

↵ (p)

h0| ↵(0)|0; p,�i = v(�)↵ (p)

Any properly normalized interpolating field does the job, provided it satisfies 
microcausality

[�(x),�(x0)] = 0 when (x� x

0)2 < 0

Borchers classes

To describe scalar particles, instead of         we can also use�(x)

�(x) = � 1

m

2
⇤�(x)

h0|�(x)|pi = � 1

m

2
⇤h0|�(x)|pi = � 1

m

2
⇤e

�ip·x = e

�ip·x

and

[�(x),�(x0)] =
1

m

4
⇤

x

⇤
x

0 [�(x),�(x0)] = 0

for (x� x

0)2 < 0
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Still, to study particle physics we need to introduce interactions…

In interacting field theories, particles still emerge as weakly coupled excitations:

L (�, @�) = L (�, @�)free +
X

i

giOi(�, @�)

where       is “small” and

dimensionless 
effective couplings

ground state of
the full theory

nonquadratic terms

gi

 Particles are identified by quantizing the free theory.

 Interactions are treated in perturbation theory.

Thus:

h⌦|�(x)|pi = �(p)e�ip·x one-particle 
wave function
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Still, to study particle physics we need to introduce interactions…

In interacting field theories, particles still emerge as weakly coupled excitations:

L (�, @�) = L (�, @�)free +
X

i

giOi(�, @�)

where       is “small” and

dimensionless 
effective couplings

ground state of
the full theory

nonquadratic terms

gi

 Particles are identified by quantizing the free theory.

 Interactions are treated in perturbation theory.

Thus:

h⌦|�(x)|pi = �(p)e�ip·x one-particle 
wave function

Examples

QED: electrons+photons

QCD (high energies): quarks+gluons

QCD (low energies): pions (+nucleons)

L = �1

4
Fµ⌫F

µ⌫ +  (�µ@µ �m) � qAµ �
µ 

L = �1

4
F a
µ⌫F

aµ⌫ +
6X

f=1

Qf (�
µ@µ �mf )Qf � gAa

µ

6X

f=1

QfT
a�µQf

L =
1

2
tr
⇣
@µ⇡@

µ⇡
⌘
� 1

3f2
⇡

tr
⇣
@µ⇡[⇡, [⇡, @

µ⇡]]
⌘
+ . . .
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p1 p2

q1
q2

qn�1
qn

. . . . . .

. . .. . .

Interaction
region

A scattering experiment is characterized by its initial (in) and final (out) multiparticle state:

|p1, p2iin |q
1

, q
2

, . . . , qn�1

, qniout

Both are Heisenberg-picture (i.e., time-independent) states in a very complicated 
interacting theory. 

Our aim is to compute the probability amplitude:

S(i �! f) =
out

hq
1

, . . . , qn|p1, p2iin
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These states can also be seen as belonging to the free, multiparticle Fock space

|p1, p2iin |q
1

, q
2

, . . . , qn�1

, qniout

|p1, p2i, |q1, q2, . . . , qni 2 F ⌘
1M

n=0

H1⌦ (n). . . ⌦H1

The scattering experiment is then described by the S-matrix operator

S : F �! F

The S-matrix operator satisfies a number of properties:

 Unitarity: S† = S�1

 Lorentz invariance:                                     with 

                                   is analytic in the external momenta.hq1, . . . , qn|S|p1, p2i

U (⇤)SU (⇤)† = S ⇤ 2 SO(1,3)

S(i �! f) =
out

hq
1

, . . . , qn|p1, p2iin ⌘ hq
1

, . . . , qn|S|p1, p2i
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i�
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i0

I �

I +
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=

0

i�

i+

i0

I �

I +

r
=

0

The S-matrix is a kind of holographic quantity in Minkowski space-time: in- and out-
states live on its boundary.

massive states massless states

|piin

|piin

|pi
out

|pi
out
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The computation of the S-matrix in terms of the 
interacting field theory is done using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction 
formula.

Harry Lehmann
(1924-1998)

Kurt Symanzik
(1923-1983)

Wolfhart Zimmermann
(1928-2016)

+iZ

�1/2

Z
d

4

x e

�ip1·x(⇤+m

2)
out

hq
1

, . . . , q

n

|�(x)|p
2

i
in

out

hq
1

, . . . , qn|p1, p2iin =
nX

i=1

(2⇡)3(2!qi)�
(3)(qi � p

1

)
out

hq
1

, . . . , bqi, . . . , qn|p2iin

p1

p2

q1
q2

q3

qn

… =

nX

i=1 p2

q1

q2

qn

…
…

qi

p1 qi

p2

q1
q2

q3

qn

…�(x)

  
+

Symbolically:

  
(⇤+m2)

" "

FT
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Iterating the procedure, we trade all incoming and outgoing particles by time-ordered field 
insertions:

hq1, . . . , qn|S|p1, p2i = disconected terms

+i(Z�1/2)n+2

Z
d

4
x1d

4
x2e

�ip1x1�ip2x2

Z
d

4
y1 . . . d

4
y

n

e

iq1y1+...+iqnyn

⇥(⇤+m

2)
x1(⇤+m

2)
x2(⇤+m

2)
y1 . . . (⇤+m

2)
ynh⌦|T [�(x1)�(x2)�(y1) . . .�(yn)]|⌦i

Inverse free propagators

S-matrix amplitudes are computed in terms of time-ordered (amputated) correlation 
functions

G(x1, . . . , xn) = h⌦|T [�(x1) . . .�(xn)]|⌦i

which can be computed in perturbation theory.

Feynman diagrammatics
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We can isolate nontrivial scattering in the S-matrix by writing

S = 1+ iT

so the matrix elements have the structure

hq1, . . . , qn|S|p1, p2i = hq1, . . . , qn|p1, p2i+ hq1, . . . , qn|iT |p1, p2i

= hq1, . . . , qn|p1, p2i+ (2⇡)4�(4)
 
p1 + p2 �

nX

i=1

qi

!
iMi!f

invariant
amplitude

In terms of the invariant amplitude, the differential cross section is given by

( (
phase space factorobserver dependent

d� =
|iMi!f |2

4!p1!p2 |v1 � v2|
(2⇡)4�(4)

 
p1 + p2 �

nX

i=1

qi

!
nY

k=1

d3qk
(2⇡)3

1

2!qk
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In the case of particle decay,

d� =
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 the decay width is given by

|pi |q1, . . . , qni
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The perturbative computation of correlation functions in momentum space is 
carried out using Feynman diagrammatics 

12.3 The φ4 Theory: A Case Study 237

L = 1
2
∂µφ∂

µφ − 1
2

m2φ2 − λ

4!φ
4. (12.20)

As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
do not have orientation.

The quantization using DR requires defining the theory in d dimensions

S =
∫

dd xL (φ, ∂µφ). (12.21)

Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
! = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1

Dφ = d − 2
2

. (12.22)

The same analysis can be done for fermions and gauge fields with the respective
result

Dψ = d − 1
2

, DA = d − 2
2

. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1 + 4− d
2

gφψψ =⇒ Dg = 4− d
2

(12.25)

1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xµ] = E−1, which we denote by Dx = −1.

For a       scalar theory, the Feynman rules are

whereas for QED
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opposite directions. These are the only two diagrams that can be drawn to this order
in perturbation theory.

It should be noticed that the two diagrams contribute with opposite signs. The
reason is that the second diagram can be obtained from the first one by interchanging
the incoming positron external line attached to the vertex on the left with that of
the outgoing electron coming from the vertex on the right. This permutation of two
fermions introduces the minus sign.

We have learned how to draw Feynman diagrams in QED. Now it is time to
compute the contribution of each one to the amplitude using the Feynman rules. The
idea is simple: each of the diagram’s building blocks (vertices as well as external and
internal lines) comes associated with a term. Putting all of them together according
to certain rules results in the contribution of the corresponding diagram to the ampli-
tude. In the case of QED in the Feynman gauge (ξ = 1), we have the following
correspondence for vertices and internal propagators:

In addition, each vertex carries a factor (2π)4δ(4)(p1 + p2 + p3) implementing
momentum conservation, where we take the convention that all momenta are entering
the vertex. The Feynman rules for other values of the gauge fixing parameter ξ only
differ from the ones above by an extra term in the photon propagator. In addition,
one has to perform an integration over the momenta running in internal lines with
the measure

∫
d4 p

(2π)4 , (6.42)

and introduce a factor of −1 for each fermion loop in the diagram.5

5 The contribution of each diagram comes also multiplied by a symmetry factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to one for many diagrams.
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A number of integrations over the internal momenta can be eliminated using the
delta functions from the vertices. The result is a global delta function implementing
the total momentum conservation in the diagram [cf. Eq. (6.8)]. In fact, there is a
whole class of diagrams for which all integrations can be eliminated in this way.
These are the so-called tree level diagrams containing no closed loops. As a general
rule, there will be as many remaining integrations as the number of independent
loops in the diagram.

Generically, finding the contribution of a Feynman diagram with ℓ independent
loops involves the calculation of integrals of the form

I (p1, . . . , pn) =
∫

d4q1

(2π)4 . . .
d4qℓ
(2π)4 f (q1, . . . , qℓ; p1, . . . , pn), (6.43)

where f (q1, . . . , qℓ; p1, . . . , pn) is a rational function of its arguments and
p1, . . . , pn are the external momenta. In many cases these integrals are divergent.
When the divergence is associated with the limit of small loop momenta it is called
an infrared divergence. They usually cancel once all diagrams contributing to a given
order in perturbation theory are added together. The second type of divergences that
one expects in the integrals (6.43) comes from the region of large loop momenta.
These are called ultraviolet divergences. They cannot be cancelled by adding the
contribution of different diagram and have to be dealt with using the procedure of
renormalization. We will discuss this problem in some detail in Chaps. 8 and 12.

This is not the end of the story. In the calculation of S-matrix amplitudes the
contribution of the Feynman diagram contains factors associated with the external
legs. These are the wave functions and/or polarization tensor of the corresponding
asymptotic states containing all the information about the spin and polarization of
the incoming and outgoing particles. In the case of QED these factors are:

Incoming fermion: α uα p, s( )

Incoming antifermion: α vα p, s( )

Outgoing fermion: α uα p, s( )

Outgoing antifermion: α vα p, s( )
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Incoming photon: µ εµ p( )

Outgoing photon: µ εµ p( )∗

Here uα(p, s), vα(p, s) are the positive and negative energy solutions of the Dirac
equation introduced in Chap. 3, whereas εµ(p, λ) is the polarization tensor of the
photon with polarization λ. Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram, and all external
momenta are on-shell, p2

i = m2
i .

The use of Feynman diagrams is not restricted to quantum field theory, they can
also be found in condensed matter physics and statistical mechanics. Their calculation
is not an easy task. The number of diagrams contributing to a process grows very
fast with the order of perturbation theory and the integrals arising in calculating loop
diagrams soon get very complicated.

Feynman rules can be constructed for any interacting quantum field theory with
scalar, vector or spinor fields. For the nonabelian gauge theories introduced in Chap. 4
these are:
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�4

+ integration over internal momenta, a delta function momentum conservation at 
each vertex, a factor of −1 for each fermion loop, and a combinatorial factor.

Richard Feynman
(1981-1988)
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As an example, for Compton scattering 

the invariant amplitude at leading             is given byO(e2)

116 6 Towards Computational Rules: Feynman Diagrams

µ , A

σ ,C

ν , B

λ , D

ig2 f ABE f CDE ηµσ ηνλ ηµλ ηνσ

permutations

As in the case of QED, each vertex includes a delta function implementing momentum
conservation.

It is not our aim here to give a full and detailed description of the Feynman
rules for nonabelian gauge theories. We only point out that, unlike the case of QED,
here the gauge fields interact among themselves. These three and four gauge field
vertices are a consequence of the cubic and quartic terms in the Lagrangian (4.54).
The self-interactions of the nonabelian gauge field theories have crucial dynamical
consequences and its at the very heart of their physical successes.

6.4 An Example: Compton Scattering at Low Energies

We illustrate now the use of Feynman diagrams in the calculation of observables
in physical processes by studying an example with important physical applications.
This is the calculation of the cross section for the dispersion of photons by free
electrons: Compton scattering

γ (k, ε) + e−(p, s) −→ γ (k′, ε′) + e−(p′, s′). (6.44)

Inside the parenthesis we have indicated the momenta for the different particles,
as well as the polarizations and spins of the incoming and outgoing photons and
electrons respectively. We study this scattering in the nonrelativistic limit for the
electrons.

The first step in our calculation is to identify all the diagrams contributing to (6.44)
at leading order. Since the vertex of QED contains two fermion and one photon leg
it is immediate to realize that any diagram contributing to this process must contain
at least two vertices, so the leading contribution is of order e2. A first diagram that
can be drawn is:
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There is however a second possibility given by the following diagram:

These two diagrams are topologically nonequivalent, since deforming one into the
other requires changing the label of the external legs. In addition, unlike the example
of the Bhabha scattering studied in the previous section, both diagrams contribute
with the same sign. This is because they are related by interchanging the incoming
with the outgoing photon. Since photons are bosons, no minus sign comes from this
permutation.

Using the Feynman rules of QED we find the contribution of the two diagrams
to be

(6.45)

where me is the electron mass and we have factored out (2π)4 times the delta function
implementing momentum conservation. As explained in Sect. 6.3, all incoming and
outgoing particles are on-shell,

p2 = m2
e = p′2 and k2 = 0 = k′2. (6.46)

Our calculation involves only tree-level diagrams, so there is no integration left
over internal momenta. To get an explicit result we begin by simplifying the numer-
ators. The following simple identity turns out to be very useful

/a/b = −/b/a + 2(a · b)1. (6.47)

In addition, we are interested in Compton scattering at low energy when electrons
are nonrelativistic particles. This is known in the literature as Thomson scattering.
To be more precise, we take all spatial momenta much smaller than the electron mass

|p|, |k|, |p′|, |k′|≪ me. (6.48)
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In the low energy limit                                 the invariant amplitude isp2,p02,k2,k02 ⌧ m2

iMi!f =
ie2

m

h
"(k) · "0(k0)

i
u(p0, s0)

k/

|k|u(p, s)

If our experiment is blind to the electron spin, we have to average over the incoming 
electron spin and sum over the spin of the outgoing electron

|iMi!f |2 =
1

2

✓
e2

m|k|

◆2

|"(k) · "0(k0)⇤|2
X

s=± 1
2

X

s0=± 1
2

|u(p0, s0)k/u(p, s)|2

average over
incoming e− spin

sum over
outgoing e− spin

= 4e4|"(k) · "0(k0)⇤|2

For an electron at rest, the differential cross section is

d�

d⌦
=

3e4

48⇡m2
|"(k) · "0(k0)⇤|2

(exercise)

(exercise)




