Part II

Divergences and their cure

With all this, it seems we have a complete recipe to do particle physics:

* Identify the weakly coupled degrees of freedom.
* Choose an appropriate interpolating field.
* Write an interacting field theory compatible with the symmetries of the system.
* Compute the correlation functions in perturbation theory.
* Use the LSZ reduction formula to evaluate perturbatively the S-matrix elements and cross sections.

With all this, it seems we have a complete recipe to do particle physics:

* Identify the weakly coupled degrees of freedom.
* Choose an appropriate interpolating field.

The problem comes when computing quantum corrections...

Restoring the powers of \hbar, the Feynman rules of a ϕ^{n} are
$\Longrightarrow \quad \frac{i \hbar}{p^{2}-m^{2}+i \varepsilon} \Longrightarrow \quad \Longrightarrow \quad \Longrightarrow \quad \frac{\lambda}{\hbar}$

The power of \hbar of a diagram with E external lines, I internal propagators, and V vertices is

$$
\#(\hbar)=I-V
$$

while the number of loops in the diagram is
global conservation delta function

$$
L=I-(V-1)=I-V+1
$$

\# of independent delta functions

Thus, $\#(\hbar)=I-V=L-1$ and an L-loop diagram scales as \hbar^{L-1}

However, loop diagrams frequently give divergent results.

These integrals are logarithmically divergent

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m^{2} d k}
$$

To avoid meaningless results, we need to regularize our theory
Let us look at a typical Feynman integral:

$$
\begin{aligned}
I & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m^{2}+i \epsilon} \quad\left(\sim \int^{\infty} p d p\right) \\
& =-i \int \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}}
\end{aligned}
$$

There are many ways to make sense of this. For example:

- Sharp momentum cutoff Λ

$$
I(\Lambda)=-i \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}} \sim \Lambda^{2}
$$

This method, however, breaks Lorentz and gauge invariance.

To avoid meaningless results, we need to regularize our theory Let us look at a typical Feynman integral:

$$
\begin{aligned}
I & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m^{2}+i \epsilon} \quad\left(\sim \int^{\infty} p d p\right) \\
& =-i \int \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}}
\end{aligned}
$$

There are many ways to make sense of this. For example:

- Sharp momentum cutoff Λ

$$
I(\Lambda)=-i \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}} \sim \Lambda^{2}
$$

This method, however, breaks Lorentz and gauge invariance.

- Pauli-Villars method: introduce a number of fictitious fields with large masses $\boldsymbol{M}_{\boldsymbol{i}}$ and whose propagators have the "wrong" sign

$$
\begin{aligned}
I\left(M_{i}\right) & =\int \frac{d^{4} p}{(2 \pi)^{4}}\left(\frac{1}{p^{2}-m^{2}+i \epsilon}-\sum_{i=1}^{n} \frac{g_{i}}{p^{2}-M_{i}^{2}+i \epsilon}\right) \\
& =-i \int \frac{d^{4} \ell_{E}}{(2 \pi)^{4}}\left(\frac{1}{\ell_{E}^{2}+m^{2}}-\sum_{i=1}^{n} \frac{g_{i}}{\ell_{E}^{2}+M_{i}^{2}}\right)
\end{aligned}
$$

Wolfgang Pauli (1900-1958)

Felix Villars (192I-2002)

Pauli-Villars regularization is Lorentz and gauge invariant, but rather cumbersome.

- Dimensional regularization: define the Feynman integrals in dimensions and continue d to complex values.

$$
I(d)=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{1}{p^{2}-m^{2}+i \epsilon}=-i \int \frac{d^{d} \ell_{E}}{(2 \pi)^{d}} \frac{1}{\ell_{E}^{2}+m^{2}}
$$

This requires the introduction of an energy scale $\boldsymbol{\mu}$ to preserve the dimensions of the coupling constant. E.g., for a scalar ϕ^{4} theory $\lambda \longrightarrow \mu^{4-d} \lambda$

Dimensional regularization preserves Lorentz and gauge invariance, but one has to be careful when working with chiral theories!

Once the theory is regularized, we can compute finite scattering amplitudes

$$
i \mathscr{M}=f\left(p_{i} ; \lambda, m, \Lambda\right)
$$

Once the theory is regularized, we can compute finite scattering amplitudes
external momenta

Once the theory is regularized, we can compute finite scattering amplitudes

To handle the theory, we introduce the notion of renormalization:

* Only measurable quantities are physical.

Hendrik A. Kramers (I894-I952)

* The quantities appearing in the Lagrangian (masses, couplings, fields, etc.) are unphysical.
* Divergences are "absorbed" in the unphysical parameters

$$
\phi_{0}(x)=\sqrt{Z(\Lambda)} \phi(x)
$$

$$
i \mathscr{M}=f\left(p_{i} ; \lambda_{0}(\Lambda), m_{0}(\Lambda), \Lambda\right) \xrightarrow{\Lambda \rightarrow \infty} f(p_{i} ; \underbrace{\text { renormalized }} \text { quantities }
$$

* The cutoff dependence of the parameters is fixed by the definition of physical quantities (renormalization conditions).

Let us apply this program to a scalar ϕ^{4} theory. The renormalized Lagrangian is

$$
\begin{aligned}
\mathscr{L}_{\text {ren }} & =\frac{1}{2} \partial_{\mu} \phi_{0} \partial^{\mu} \phi_{0}-\frac{m_{0}(\Lambda)^{2}}{2} \phi_{0}^{2}-\frac{\lambda(\Lambda)}{4!} \phi_{0}^{4} \\
& =\frac{1}{2} Z(\Lambda) \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m_{0}(\Lambda)^{2} Z(\Lambda)}{2} \phi^{2}-\frac{\lambda(\Lambda) Z(\Lambda)^{2}}{4!} \phi^{4}
\end{aligned}
$$

$$
\left(\phi_{0}(x)=\sqrt{Z(\Lambda)} \phi(x)\right.
$$

It can be rewritten in terms of the finite, renormalized, masses and couplings as

$$
\mathscr{L}_{\text {ren }}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}+\frac{1}{2} \delta_{Z} \partial_{\mu} \phi \partial^{\mu} \phi-\underbrace{\frac{\delta_{m}}{2}}_{\text {counterterms }} \phi^{2}+\underbrace{\frac{\delta_{\lambda}}{2}}_{\nearrow} \phi^{4}
$$

where

$$
\begin{aligned}
Z(\Lambda) & =1+\delta_{Z}(\Lambda) \\
m_{0}(\Lambda)^{2} & =m^{2}+\delta_{m}(\Lambda) \\
\lambda_{0}(\Lambda) & =\lambda+\delta_{\lambda}(\Lambda)
\end{aligned}
$$

Feynman rules for counterterms

$$
\longrightarrow=i\left(p^{2} \delta_{Z}-\delta_{m}\right)
$$

$$
=-i \delta_{\lambda}
$$

$$
\mathscr{L}_{\text {ren }}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}+\frac{1}{2} \delta_{Z} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{\delta_{m}}{2} \phi^{2}+\frac{\delta_{\lambda}}{2} \phi^{4}
$$

By construction, quantities computed from the renormalized Lagrangian are finite. Renormalization can now be systematically implemented:

- Regularize the theory.
- Compute loop diagrams using the Lagrangian

$$
\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}
$$

- Fix the counterterms to eliminate the divergences at each loop level.
- Evaluate physical quantities in terms of finite renormalized parameters.
- Compute amplitudes

Let us look at it hands-on: ϕ^{4} at one loop.
At one loop there are two divergent diagrams by power counting:

Using a hard cutoff, we have

$$
\begin{aligned}
& p \xrightarrow[\Omega]{\Omega}=-\frac{i \lambda}{2} \int^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon}=-\frac{i \lambda}{2} \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}} \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\text { finite piece } \\
& \overbrace{p_{2}}^{p_{3}}+\mathrm{crossed}=\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}+ \text { finite piece }
\end{aligned}
$$

Let us look at it hands-on: ϕ^{4} at one loop.
At one loop there are two divergent diagrams by power

Diagrams with subdivergences

are dealt with by renormalizing the divergent subdiagram.
Using a hard cutoff, we have

$$
p \longrightarrow=-\frac{i \lambda}{2} \int^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon}=-\frac{i \lambda}{2} \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}}
$$

$$
=-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\text { finite piece } \quad\left[\begin{array}{l}
s=\left(p_{1}+p_{2}\right)^{2} \\
t=\left(p_{1}-p_{3}\right)^{2} \\
u=\left(p_{1}-p_{4}\right)^{2}
\end{array}\right]
$$

$$
\begin{aligned}
\overbrace{p_{2}}^{p_{1}}+\text { crossed }= & \frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}+ \text { finite piece }
\end{aligned}
$$

Let us look at it hands-on: ϕ^{4} at one loop.
At one loop there are two divergent diagrams by power

Diagrams with subdivergences

are dealt with by renormalizing the divergent subdiagram.
Using a hard cutoff, we have

$$
p \longrightarrow=-\frac{i \lambda}{2} \int^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon}=-\frac{i \lambda}{2} \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}}
$$

$$
=-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\text { finite piece } \quad\left[\begin{array}{l}
s=\left(p_{1}+p_{2}\right)^{2} \\
t=\left(p_{1}-p_{3}\right)^{2} \\
u=\left(p_{1}-p_{4}\right)^{2}
\end{array}\right]
$$

$$
\begin{aligned}
\overbrace{p_{2}}^{p_{1}}+\text { crossed }= & \frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}+ \text { finite piece }
\end{aligned}
$$

Let us look at it hands-on: ϕ^{4} at one loop.
At one loop there are two divergent diagrams by power counting:

Using a hard cutoff, we have

$$
\begin{aligned}
& p \xrightarrow[\Omega]{\Omega}=-\frac{i \lambda}{2} \int^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon}=-\frac{i \lambda}{2} \int_{\left|\ell_{E}\right|<\Lambda} \frac{d^{4} \ell_{E}}{(2 \pi)^{4}} \frac{1}{\ell_{E}^{2}+m^{2}} \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\text { finite piece } \\
& \overbrace{p_{2}}^{p_{3}}+\mathrm{crossed}=\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}+ \text { finite piece }
\end{aligned}
$$

$$
\Omega=-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\text { finite piece }
$$

From this result we can identify two of the counterterms at one loop:

where we have introduced an arbitrary energy scale $\boldsymbol{\mu}$. The "bare", cutoff-dependent mass at one loop to be

$$
m_{0}(\Lambda)^{2}=m^{2}+\delta_{m}(\Lambda) \quad m_{0}(\Lambda)^{2}=m^{2}\left\{1-\frac{\lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)\right]\right\}
$$

and

$$
Z(\Lambda)=1+\delta_{Z}(\Lambda)
$$

no field renormalization at one loop!

$$
\begin{aligned}
+ \text { crossed } & =\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}+ \text { finite piece }
\end{aligned}
$$

The logarithmic divergence is cancelled by choosing the counterterm

$$
=-\left.i \delta_{\lambda} \quad \delta_{\lambda}\right|_{1-\text { loop }}=\frac{3 \lambda^{2}}{32 \pi^{2}} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)
$$

where $\boldsymbol{\mu}$ is an arbitrary energy scale.

The "bare" coupling constant at one-loop is:

$$
\lambda_{0}(\Lambda)=\lambda+\delta_{\lambda}(\Lambda)
$$

$$
\lambda_{0}(\Lambda)=\lambda+\frac{3 \lambda^{2}}{32 \pi^{2}} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)
$$

Warning!!! Renormalized quantities are not necessarily physical!
Physical quantities are defined operationally. Let us look a the mass.
In general, the two-point function (full propagator) is given by

$$
\begin{aligned}
& -+-\mathrm{IPI}+-\mathrm{IPI}-\mathrm{IPI}+\quad-\mathrm{IPI}-\mathrm{IPI}-\mathrm{IPI}-\ldots \\
& =\frac{i}{p^{2}-m^{2}}+\frac{i}{p^{2}-m^{2}} \Pi\left(p^{2}\right) \frac{i}{p^{2}-m^{2}}+\frac{i}{p^{2}-m^{2}} \Pi\left(p^{2}\right) \frac{i}{p^{2}-m^{2}} \Pi\left(p^{2}\right) \frac{i}{p^{2}-m^{2}}+\ldots \\
& =\frac{i}{p^{2}-m^{2}} \sum_{n=0}^{\infty}\left[\Pi\left(p^{2}\right) \frac{i}{p^{2}-m^{2}}\right]^{n}=\frac{i}{p^{2}-m^{2}} \frac{1}{1-\Pi\left(p^{2}\right) \frac{i}{p^{2}-m^{2}}} \\
& =\frac{i}{p^{2}-m^{2}-i \Pi\left(p^{2}\right)}
\end{aligned}
$$

We can define the physical mass as the pole of the full propagator

renormalized mass

Warning!!! Renormalized quantities are not necessarily physical!
Physical quantities are defined operationally. Let us look a the mass.
In general, the two-point function (full propagator) is given by
In fact, we also have to require that the residue at the pole equals \boldsymbol{i}

$$
p^{2}-m^{2}-i \Pi\left(p^{2}\right)=\left(1-\left.i \frac{d \Pi}{d p^{2}}\right|_{p^{2}=m_{\text {phys }}^{2}}\right)\left(p^{2}-m_{\mathrm{phys}}^{2}\right)+\ldots
$$

thus,

$$
\left.\frac{d \Pi}{d p^{2}}\right|_{p^{2}=m_{\mathrm{phys}}^{2}}=0
$$

$$
=\frac{i}{p^{2}-m^{2}-i \Pi\left(p^{2}\right)}
$$

We can define the physical mass as the pole of the full propagator

renormalized mass

$$
m_{\mathrm{phys}}^{2}-m^{2}-i \Pi\left(m_{\mathrm{phys}}^{2}\right)=0
$$

From our loop calculation,

$$
\begin{aligned}
\Pi\left(p^{2}\right)_{1-\text { loop }} & =\frac{\bigcap}{\square} \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)\right] \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)
\end{aligned}
$$

which momentum independent. Thus, the physical mass is given in terms of the renormalized parameters \boldsymbol{m} and $\boldsymbol{\lambda}$ by

$$
m_{\mathrm{phys}}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right]
$$

which is independent on the (unphysical) momentum cutoff.

$$
m_{\mathrm{phys}}^{2}-m^{2}-i \Pi\left(m_{\mathrm{phys}}^{2}\right)=0
$$

From our loop calculation,

$$
\begin{aligned}
\Pi\left(p^{2}\right)_{1-\text { loop }} & =\frac{\bigcap}{\square} \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]+\frac{i m^{2} \lambda}{32 \pi^{2}}\left[\frac{\Lambda^{2}}{m^{2}}-\log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)\right] \\
& =-\frac{i m^{2} \lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right) \xrightarrow[\text { at one loop: } \frac{d \Pi}{d p^{2}} \equiv 0]{ }
\end{aligned}
$$

which momentum independent. Thus, the physical mass is given in terms of the renormalized parameters \boldsymbol{m} and $\boldsymbol{\lambda}$ by

$$
m_{\mathrm{phys}}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right]
$$

which is independent on the (unphysical) momentum cutoff.

Next we look at the coupling constant.

We can define the physical coupling constant, for example, as

From our calculation

$$
\begin{aligned}
& =-i \lambda+\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \\
& \\
& \left.+\log \left[\frac{\Lambda^{2}}{m^{2}-x(1-x) u}\right]\right\}-\frac{3 i \lambda^{2}}{32 \pi^{2}} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right) \\
& \binom{s=4 m^{2}}{t=u=0}=
\end{aligned}
$$

$$
\begin{gathered}
-i \lambda_{\text {phys }}=-i \lambda+\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\mu^{2}}{m^{2}(1-2 x)^{2}}\right]+2 \log \left(\frac{\mu^{2}}{m^{2}}\right)\right\} \\
=-i \lambda+\frac{3 i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left[\log \left(\frac{\mu^{2}}{m^{2}}\right)-\frac{1}{3} \log (1-2 x)^{2}\right] \\
\int_{0}^{1} d x \log (1-2 x)^{2}=-2 \\
\lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
\end{gathered}
$$

Other definitions of the physical coupling lead to different results. For example:

$$
m_{\mathrm{phys}}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\mathrm{phys}}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

Physical quantities cannot depend on the fiducial scale μ. The explicit dependence is compensated by the one of the renormalized parameters.

Let us begin with the coupling

$$
\begin{gathered}
\mu \frac{d \lambda_{\text {phys }}}{d \mu}=0 \\
\left(\mu \frac{d \lambda}{d \mu}\right)-\frac{\lambda}{8 \pi^{2}}\left(\mu \frac{d \lambda}{d \mu}\right)\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]-\frac{3 \lambda^{2}}{16 \pi^{2}}=0
\end{gathered}
$$

At leading order in $\boldsymbol{\lambda}$

$$
\mu \frac{d \lambda}{d \mu}-\frac{3 \lambda^{2}}{16 \pi^{2}}=0 \quad \beta(\lambda) \equiv \mu \frac{d \lambda}{d \mu}=\frac{3 \lambda^{2}}{16 \pi^{2}}
$$

This defines the beta function.

$$
m_{\text {phys }}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

Physical quantities cannot depend on the fiducial scale μ. The explicit dependence is compensated by the one of the renormalized parameters.

Let us begin with the coupling

$$
\begin{gathered}
\mu \frac{d \lambda_{\text {phys }}}{d \mu}=0 \\
\left(\mu \frac{d \lambda}{d \mu}\right)-\frac{\lambda}{8 \pi^{2}}\left(\mu \frac{d \lambda}{d \mu}\right)\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]-\frac{3 \lambda^{2}}{16 \pi^{2}}=0
\end{gathered}
$$

At leading order in $\boldsymbol{\lambda}$

$$
\mu \frac{d \lambda}{d \mu}-\frac{3 \lambda^{2}}{16 \pi^{2}}=0 \quad \quad \beta(\lambda) \equiv \mu \frac{d \lambda}{d \mu}=\frac{3 \lambda^{2}}{16 \pi^{2}}
$$

This defines the beta function.

$$
m_{\text {phys }}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

Next we deal with the physical mass

$$
\mu \frac{d m_{\mathrm{phys}}^{2}}{d \mu}=0
$$

$$
\left(\mu \frac{d m^{2}}{d \mu}\right)\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right]+m^{2}\left[\frac{1}{32 \pi^{2}}\left(\mu \frac{d \lambda}{d \mu}\right) \log \left(\frac{m^{2}}{\mu^{2}}\right)+\frac{\lambda}{32 \pi^{2} m^{2}}\left(\mu \frac{d m^{2}}{d \mu}\right)-\frac{\lambda}{16 \pi^{2}}\right]=0
$$

Dropping subleading terms in $\boldsymbol{\lambda}$

$$
\mu \frac{d m^{2}}{d \mu}-\frac{\lambda m^{2}}{16 \pi^{2}}=0 \quad \square \quad \gamma_{m^{2}}(\lambda) \equiv \frac{\mu}{m^{2}} \frac{d m^{2}}{d \mu}=\frac{\lambda}{16 \pi^{2}}
$$

with is the Callan-Symanzik gamma function.

$$
m_{\text {phys }}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

Next we deal with the physical mass

$$
\mu \frac{d m_{\mathrm{phys}}^{2}}{d \mu}=0
$$

$$
\left(\mu \frac{d m^{2}}{d \mu}\right)\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right]+m^{2}\left[\frac{1}{32 \pi^{2}}\left(\mu \frac{d \lambda}{d \mu}\right) \log \left(\frac{m^{2}}{\mu^{2}}\right)+\frac{\lambda}{32 \pi^{2} m^{2}}\left(\mu \frac{d m^{2}}{d \mu}\right)-\frac{\lambda}{16 \pi^{2}}\right]=0
$$

Dropping subleading terms in $\boldsymbol{\lambda}$

$$
\mu \frac{d m^{2}}{d \mu}-\frac{\lambda m^{2}}{16 \pi^{2}}=0 \quad \square \quad \gamma_{m^{2}}(\lambda) \equiv \frac{\mu}{m^{2}} \frac{d m^{2}}{d \mu}=\frac{\lambda}{16 \pi^{2}}
$$

with is the Callan-Symanzik gamma function.

$$
m_{\text {phys }}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

There is a further relevant function to be defined

$$
\gamma(\lambda) \equiv \frac{1}{2} \mu \frac{d}{d \mu} \log Z
$$

but at one loop for the ϕ^{4} theory

$$
\gamma(\lambda)=0
$$

(no field renormalization)

$$
\mu \frac{d m^{2}}{d \mu}-\frac{\lambda m^{2}}{16 \pi^{2}}=0 \quad \square \quad \gamma_{m^{2}}(\lambda) \equiv \frac{\mu}{m^{2}} \frac{d m^{2}}{d \mu}=\frac{\lambda}{16 \pi^{2}}
$$

with is the Callan-Symanzik gamma function.

We can now compute the four-point amplitude in terms of our physical quantities:

$$
m_{\text {phys }}^{2}=m^{2}\left[1+\frac{\lambda}{32 \pi^{2}} \log \left(\frac{m^{2}}{\mu^{2}}\right)\right] \quad \lambda_{\text {phys }}=\lambda-\frac{\lambda^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m^{2}}\right)\right]
$$

Inverting them at this order, we have

$$
m^{2}=m_{\text {phys }}^{2}\left[1-\frac{\lambda_{\text {phys }}}{32 \pi^{2}} \log \left(\frac{m_{\text {phys }}^{2}}{\mu^{2}}\right)\right] \quad \lambda=\lambda_{\text {phys }}+\frac{\lambda_{\text {phys }}^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m_{\text {phys }}^{2}}\right)\right]
$$

while for the amplitude we have found

$$
\begin{aligned}
& =-\log +\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) t}\right]\right. \\
& \left.\quad=-\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) u}\right]\right\}
\end{aligned}
$$

$$
i \mathcal{M}=-i \lambda+\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) t}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) u}\right]\right\}
$$

$$
m^{2}=m_{\text {phys }}^{2}\left[1-\frac{\lambda_{\text {phys }}}{32 \pi^{2}} \log \left(\frac{m_{\text {phys }}^{2}}{\mu^{2}}\right)\right]
$$

$$
\lambda=\lambda_{\text {phys }}+\frac{\lambda_{\text {phys }}^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m_{\text {phys }}^{2}}\right)\right]
$$

At order $\boldsymbol{\lambda}^{2}$ the corrections to the mass are irrelevant, thus

$$
\begin{aligned}
i \mathcal{M}(s, t, u) & =-i \lambda_{\text {phys }}+\frac{i \lambda_{\text {phys }}^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) s}\right]+\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) u}\right]-2\right\}
\end{aligned}
$$

The result is independent of $\boldsymbol{\mu}$ and satisfies the renormalization condition

$$
i \mathcal{M}\left(4 m_{\mathrm{phys}}^{2}, 0,0\right)=-i \lambda_{\mathrm{phys}}
$$

$$
i \mathcal{M}=-i \lambda+\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) t}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) u}\right]\right\}
$$

$$
\left.m^{2}=m_{\text {phys }}^{2}\left[1-\frac{\lambda_{\text {phys }}}{32 \pi^{2}} \log \left(\frac{m_{\text {phys }}^{2}}{\mu^{2}}\right)\right]\right) \quad\left(\lambda=\lambda_{\text {phys }}+\frac{\lambda_{\text {phys }}^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m_{\text {phys }}^{2}}\right)\right]\right.
$$

At order $\boldsymbol{\lambda}^{2}$ the corrections to the mass are irrelevant, thus

$$
\begin{aligned}
i \mathcal{M}(s, t, u) & =-i \lambda_{\text {phys }}+\frac{i \lambda_{\text {phys }}^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) s}\right]+\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) t}\right]\right. \\
& \left.+\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) u}\right]-2\right\}
\end{aligned}
$$

The result is independent of $\boldsymbol{\mu}$ and satisfies the renormalization condition

$$
i \mathcal{M}\left(4 m_{\mathrm{phys}}^{2}, 0,0\right)=-i \lambda_{\mathrm{phys}}
$$

$$
i \mathcal{M}=-i \lambda+\frac{i \lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) s}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) t}\right]+\log \left[\frac{\mu^{2}}{m^{2}-x(1-x) u}\right]\right\}
$$

$$
m^{2}=m_{\text {phys }}^{2}\left[1-\frac{\lambda_{\text {phys }}}{32 \pi^{2}} \log \left(\frac{m_{\text {phys }}^{2}}{\mu^{2}}\right)\right] \quad\left(\lambda=\lambda_{\text {phys }}+\frac{\lambda_{\text {phys }}^{2}}{16 \pi^{2}}\left[1+\frac{3}{2} \log \left(\frac{\mu^{2}}{m_{\text {phys }}^{2}}\right)\right]\right.
$$

At order $\boldsymbol{\lambda}^{\mathbf{2}}$ the corrections to the mass are irrelevant, thus

$$
\begin{aligned}
& =-\log (1-2 x)^{2} \quad=0 \\
& i \mathcal{M}(s, t, u)=-i \lambda_{\text {phys }}+\frac{i \lambda_{\mathrm{phys}}^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left\{\log \left[\frac{m_{\mathrm{phys}}^{2}}{m_{\mathrm{phys}}^{2}-x(1-x) s}\right]+\log \left[\frac{m_{\mathrm{phys}}^{2}}{m_{\mathrm{phys}}^{2}-x(1-x) t}\right]\right. \\
& =0 \\
& \left.+\log \left[\frac{m_{\text {phys }}^{2}}{m_{\text {phys }}^{2}-x(1-x) u}\right]-2\right\}
\end{aligned}
$$

The result is independent of $\boldsymbol{\mu}$ and satisfies the renormalization condition

$$
i \mathcal{M}\left(4 m_{\mathrm{phys}}^{2}, 0,0\right)=-i \lambda_{\mathrm{phys}}
$$

Effectively, once the one-loop correction has been included, the effective coupling constant is given by

$$
\left.\left.\begin{array}{r}
-i \lambda_{\mathrm{eff}}\left(q^{2}\right)= \\
=-i \lambda+\frac{3 i \lambda^{2}}{32 \pi^{2}}\left[\log \left(\frac{\mu^{2}}{m^{2}}\right)+2-\sqrt{1-\frac{4 m^{2}}{q^{2}}} \log \left(\frac{\sqrt{1-\frac{4 \lambda^{2}}{q^{2}}}+1}{32 \pi^{2}} \int_{0}^{1-\frac{4 m^{2}}{q^{2}}}-1\right.\right.
\end{array}\right)\right]
$$

For large momenta $q^{2} \gg m^{2}$, this is given by

$$
\lambda_{\mathrm{eff}}\left(q^{2}\right)=\lambda\left[1+\frac{3 \lambda}{32 \pi^{2}} \log \left(\frac{q^{2}}{\mu^{2}}\right)\right]
$$

Noticing that $\lambda_{\text {eff }}\left(\mu^{2}\right)=\lambda$, this can be written as

$$
\lambda_{\mathrm{eff}}\left(q^{2}\right)=\lambda_{\mathrm{eff}}\left(\mu^{2}\right)\left[1+\frac{3 \lambda_{\mathrm{eff}}\left(\mu^{2}\right)}{32 \pi^{2}} \log \left(\frac{q^{2}}{\mu^{2}}\right)\right] \quad \mu \equiv \text { reference scale }
$$

$$
\lambda_{\mathrm{eff}}(\mu)=\lambda_{\mathrm{eff}}\left(\mu_{0}\right)\left[1+\frac{3 \lambda_{\mathrm{eff}}\left(\mu_{0}\right)}{32 \pi^{2}} \log \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)\right]
$$

Quantum corrections make couplings run with energy.

This running is also governed by the one loop beta function

$$
\mu \frac{d \lambda_{\mathrm{eff}}}{d \mu}=\frac{3 \lambda_{\mathrm{eff}}^{2}}{16 \pi^{2}}
$$

For the ϕ^{4} theory, the effective coupling grows with energy $\longrightarrow \beta(\lambda)>0$

Integrating the beta function equation we have

$$
\lambda_{\text {eff }}(\mu)=\frac{\lambda_{\text {eff }}\left(\mu_{0}\right)}{1-\frac{3 \lambda_{\text {eff }}\left(\mu_{0}\right)}{16 \pi^{2}} \log \left(\frac{\mu}{\mu_{0}}\right)} \quad \stackrel{\text { blows up at }}{ } \mu=\mu_{0} e^{\frac{16 \pi^{2}}{3 \lambda_{\text {eff }}\left(\mu_{0}\right)}} \quad \text { Landau pole }
$$

A similar calculation of the effective coupling can be carried out in QED:

$$
=\eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right) \frac{e^{2}}{4 \pi q^{2}}\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right)+\eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right) \frac{e^{2}}{4 \pi q^{2}} \Pi\left(q^{2}\right)\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right)
$$

where

Regulating the divergence using a sharp cutoff Λ, we have

$$
\Pi_{\mu \nu}(q)=c \Lambda^{2} \eta_{\mu \nu}+\Pi\left(q^{2}\right)\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right)
$$

Breaks gauge invariance, cured
 by adding a local counterterm

$$
\Delta \mathscr{L} \sim \Lambda^{2} A_{\mu} A^{\mu}
$$

Gauge invariant and logarithmically divergent

A similar calculation of the effective coupling can be carried out in QED:

$=\eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right) \frac{e^{2}}{4 \pi q^{2}}\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right)+\eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right) \frac{e^{2}}{4 \pi q^{2}} \Pi\left(q^{2}\right)\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right)$
where

Regulating the divergence using a sharp cutoff Λ, we have

$$
\Pi_{\mu \nu}(q)=c \Lambda^{2} \eta_{\mu \nu}+\Pi\left(q^{2}\right)\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right)
$$

Breaks gauge invariance, cured
 by adding a local counterterm

$$
\Delta \mathscr{L} \sim \Lambda^{2} A_{\mu} A^{\mu}
$$

Gauge invariant and logarithmically divergent

Forgetting about the spurious quadratic divergence, we have

$$
\Pi_{\mu \nu}(q)=\left[\frac{e^{2}}{12 \pi^{2}} \log \left(\frac{q^{2}}{\Lambda^{2}}\right)+\text { finite }\right]\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right)
$$

The logarithmic divergence can be cancelled by a counterterm

$$
\mu \sim \sim \sim \sim \nu=-\frac{e^{2}}{12 \pi^{2}} \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right)
$$

The total contribution to the $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$scattering is then

$$
\begin{aligned}
& =\eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right)\left\{\frac{e^{2}}{4 \pi q^{2}}\left[1+\frac{e^{2}}{12 \pi^{2}} \log \left(\frac{q^{2}}{\mu^{2}}\right)\right]\right\}\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right) \\
& \equiv \eta_{\alpha \beta}\left(\bar{v}_{e} \gamma^{\alpha} u_{e}\right)\left[\frac{e_{\mathrm{eff}}\left(q^{2}\right)^{2}}{4 \pi q^{2}}\right]\left(\bar{v}_{\mu} \gamma^{\beta} u_{\mu}\right)
\end{aligned}
$$

The QED running effective charge is then defined by

$$
\begin{gathered}
e_{\mathrm{eff}}\left(q^{2}\right)^{2}=e^{2}\left[1+\frac{e^{2}}{12 \pi^{2}} \log \left(\frac{q^{2}}{\mu^{2}}\right)\right] \\
e_{\mathrm{eff}}(\mu)^{2}=e_{\mathrm{eff}}\left(\mu_{0}\right)^{2}\left[1+\frac{e_{\mathrm{eff}}\left(\mu_{0}\right)^{2}}{12 \pi^{2}} \log \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)\right]
\end{gathered}
$$

As in the ϕ^{4} case, the QED beta function is positive and the coupling grows with energy

$$
\beta(e)_{\mathrm{QED}}=\frac{e^{3}}{12 \pi^{2}}>0
$$

Again, there is a Landau pole, which for the Standard Model is located at

$$
\mu_{\text {Landau }} \sim 10^{34} \mathrm{GeV}
$$

well beyond any other relevant energy scale.

Heuristically, the running coupling can be understood in terms of screening

As in a dielectric medium, the polarization of the vacuum screens the bare charge

$$
e(\mu)^{2}=e_{0}(\Lambda)^{2}\left[1+\frac{e_{0}(\Lambda)^{2}}{12 \pi^{2}} \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)\right]
$$

Heuristically, the running coupling can be understood in terms of screening

As in a dielectric medium, the polarization of the vacuum screens the bare charge

$$
e(\mu)^{2}=e_{0}(\Lambda)^{2}\left[1+\frac{e_{0}(\Lambda)^{2}}{12 \pi^{2}} \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)\right]
$$

