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The behavior of the effective coupling is quite different for non-Abelian gauge theories

Now, both fermions and gauge bosons contribute to the gauge boson polarization tensor
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For a SU(Nc) gauge theory, the beta function can be negative
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For QCD, the beta function is negative

Nc = 3

Nf = 6

(
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and the theory is asymptotically free at high energies.
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This result explains the quasifree behavior of partons exhibited in deep inelastic 
scattering
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Infinities are taken care of by renormalizing a finite number of quantites.

What do 𝝓4 and QED, and QCD have in common? 

The renormalized Lagrangian contains a finite number of operators, e.g.

Lren = Z (⇤) [i�
µ@µ �m0(⇤)] � 1

4
ZA(⇤)Fµ⌫F

µ⌫ � e0(⇤)Z (⇤)
p
ZA(⇤)Aµ �

µ 

The theory is renormalizable

Rule of thumb: a theory is renormalizable if its bare Lagrangian does not contain 
higher-dimensional (> 4) operators.

All coupling constants have non-negative energy dimensions.
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Sometimes, we need to add operators to renormalize the theory. In the Yukawa theory
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Take the case of a scalar 𝝓n theory.

For a diagram with E external lines, I internal lines and V vertices

# of integrations
# of independent 
delta functions

global conservation
delta function

L = I � (V � 1) = I � V + 1nV = E + 2I

total # of legs
coming out of
vertices

internal legs join 
two vertices

external legs are attached 
to a single vertex

On the other hand, the superficial degree of divergence of a diagram with E external 
lines is

This can be expressed in terms of E and V as

D = 4L� 2I

D = 4L� 2I = 2I � 4V + 4 = (n� 4)V � E + 4

L = I � V + 1 2I = nV � E

D = (n� 4)V � E + 4
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D = (n� 4)V � E + 4

n = 3

D = 4� E � V
There is only a finite number of superficially 
divergent diagrams.

𝝓3 theory is superrenormalizable
n = 4

D = 4� E There are infinitely many superficially divergent 
diagrams. but only with 2 and 4 external legs

⇠ ⇤2 ⇠ log⇤

𝝓4 theory is renormalizable
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D = (n� 4)V � E + 4

n = 6

D = 2V � E + 4
There are infinitely many divergent diagrams 
with an arbitrary number of external legs

Thus, we need to add an infinite number of counterterms with arbitrary number of 
external legs.

The renormalized Lagrangian contains an infinite number of operators

Lren =
1

2
Z�(⇤)@µ�@

µ�� 1

2
Z�(⇤)m0(⇤)

2�2 �
1X

n=2

1

(2n)!
Z�(⇤)

n�2n,0(⇤)�
2n

In principle, to compute amplitudes we need to specify infinitely many renormalizations 
conditions!

𝝓6 theory is  not renormalizable (as well as 𝜙n for n > 4)
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In principle, to compute amplitudes we need to specify infinitely many renormalizations 
conditions!

𝝓6 theory is  not renormalizable (as well as 𝜙n for n > 4)

Let us look at the energy dimensions of the coupling constants:

𝝓3 theory:

[�n] = 4� n

[�3] = 1

[�n] = 4� n < 0

superrenormalizable

𝝓4 theory: renormalizable

𝝓n theory (n > 4): non renormalizable

[�4] = 0
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A physical (i.e., Wilsonian) view of renormalization.

Kenneth G. Wilson
(1936-2013)

E = ⇤

Let us take the cutoff seriously and start with our quantum field theory 
defined at the scale 𝜦

E = µ
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Z
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The Good QFT:
Locality, Causality & Unitarity

Part III
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There are a number of features to be demanded from a healthy quantum field 
theory (e.g., the standard model)

• Lorentz invariance: the action should be Lorentz invariant.

• Locality: local measurements at a point are determined by what is going on in an 
arbitrarily small neighborhood around that point. 

The action only contain terms in which the fields and their derivatives are evaluated 
at the same spacetime point:

At the level of the observables, locality is identified with cluster decomposition

Thus, all interactions are propagated from point to point (there are no action at a 
distance!)

hO1(x)O2(y)i = hO1(x)i hO2(y)i if (x� y)2 < 0
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• Unitarity: probability should be conserved

H† = H
d

dt
|| (t)||2 = 0

Unitarity of the S-matrix have important implications:

S = 1+ iT

S†S = SS† = 1

S† = 1� iT †
1 = (1� iT †)(1+ iT ) = 1+ i(T � T †) + T †T

Thus, the T-matrix satisfies

i(T † � T ) = T †T

In a scattering experiment |ii �! |fi

ihf |T †|ii � ihf |T |ii ⌘ ihi|T |fi⇤ � ihf |T |ii = hf |T †T |ii
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ihi|T |fi⇤ � ihf |T |ii = hf |T †T |ii

Now, let us remember that hf |T |ii ⌘ (2⇡)4�(4)(Pf � Pi)Mi!f

i(2⇡)4�(4)(Pf � Pi)
h
M ⇤

f!i � Mi!f

i
= hf |T †T |ii

Next, let us use the closure relation                                         on the right-hand side

Invariant momentum measure
(phase space factor)

hf |T †T |ii =
X

X

Z
d⇧Xhf |T †|Xi hX|T |ii =

X

X

Z
d⇧XhX|T |fi⇤ hX|T |ii

1 =
X

X

Z
d⇧X |Xi hX|

=
X

X

Z
d⇧X(2⇡)4�(4)(PX � Pf )(2⇡)

4�(4)(PX � Pi)M
⇤
f!XMi!X

and we arrive at the generalized optical theorem

Mi!f � M ⇤
f!i = i

X

X

Z
d⇧X(2⇡)4�(4)(PX � Pi)M

⇤
f!XMi!X
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There are two interesting particular cases:

✦                         is a single particle state. Then                              and|ii = |fi = |Ai

Mi!f � M ⇤
f!i = i

X

X

Z
d⇧X(2⇡)4�(4)(PX � Pi)M

⇤
f!XMi!X

Mi!f ⌘ Mf!i

Thus, the imaginary part of the propagator gives the total decay width.

2ImMA!A =
X

X

Z
d⇧X(2⇡)4�(4)(pA � PX)|MA!X |2 ⌘ 2!pA�total

✦                         is a two-particle state (forward elastic amplitude,           )|ii = |fi = |Ai t = 0

2ImMA!A(s, 0) =
X

X

Z
d⇧X(2⇡)4�(4)(pA � PX)|MA!X |2 ⌘ 2E

CM

|pi|�total

(A ! X)

4E1E2|v1 � v2|
in CM frame

Optical theorem2ImMA!A(s, 0) = 2E
CM

|pi|
X

X

�
total

(A ! X)
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Unitary also imposes strong constraints on the growth of scattering amplitudes with 
energy:

Let us stick to the case of elastic two-particle scattering in the center-of-mass 
frame

A+B �! A+B

The amplitude is a function of the angle of scattering 𝜽
A B

B

A

𝜽

�
total

(AB ! AB) =

1

32⇡E2

CM

Z
1

�1

d cos ✓ |MAB!AB(✓)|2

and we can expand it into partial waves using the basis of Legendre polynomials

MAB!AB(✓) = 16⇡
1X

`=0

a`(2`+ 1)P`(cos ✓)

Z 1

�1
d cos ✓ |MAB!AB(✓)|2 = 2(16⇡)2

1X

`=0

(2`+ 1)|a`|2

�
total

(AB ! AB) =
16⇡

E2

CM

1X

`=1

(2`+ 1)|a`|2

partial wave amplitude
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�
total

(AB ! AB) =
16⇡

E2
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Combining these results 

2ImMAB!AB(0) = 2E
CM

|pi|
X

X

�
total

(AB ! X) � 2E
CM
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(AB ! AB)
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1X
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1X

`=0

(2`+ 1)Im a` �
2|pi|
ECM

1X

`=0

(2`+ 1)|a`|2

P`(1) = 1

Partial wave
unitarity bound

Im a` �
2|pi|
ECM

|a`|2

Expanding the amplitude 
using the angular momentum 
basis
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At very high energies, masses can be neglected (                 ) and

Im a` �
2|pi|
ECM

|a`|2

ECM =
p
s = 2|p0i | = 2|pi|

Im a` � |a`|2
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Example: the limits of Fermi four-fermion theory

Fermi’s theory of weak interactions is based on a four-fermion contact interaction

where

Lint = �GFp
2
JµJ†

µ

= u�↵
(1� �5)(d cos ✓C + s sin ✓C) + c�↵

(1� �5)(�d cos ✓C + s cos ✓C)

J↵ = J↵
hadron

+ J↵
lepton

(✓C = Cabibbo angle ⇡ 13

�
)

Let us study electron-neutrino scattering, e�⌫e �! e�⌫e

⌫e

e� ⌫e

e�k

k0

p0

p ⌘ iMe⌫e!e⌫e = �i
GFp
2

h
u(p0)�µ(1� �5)u(k)

ih
u(k0)�µ(1� �5)u(p)

i

and averaging over polarizations

|iMe⌫e!e⌫e |2 = 32G2
F (s�m2

e)
2

GF =

✓
1

292.9GeV

◆2

+⌫e�
↵(1� �5)e+ ⌫µ�

↵(1� �5)µ
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|iMe⌫e!e⌫e |2 = 32G2
F (s�m2

e)
2

The differential and total cross sections for unpolarized scattering in the center-
of mass frame are:

d�

d cos ✓
=

G2
F

2⇡

(s�m2
e)

2

s
�
total

=
G2

F

⇡

(s�m2

e)
2

s

This averaged amplitude is isotropic, so we only have the s-wave contribution

�
total

=
16⇡

E2

CM

1X

`=1

(2`+ 1)|a`|2 |a0|2 =
G2

F

16⇡2
(s�m2

e)
2 ⇡ G2

F s
2

16⇡2

s � m2
e

The strong growth of the total cross section with energy means that the unitarity 
bound will eventually be violated

|a0| < 1
GF s

4⇡
< 1

Fermi´s theory breaks down at the energy

E =

r
4⇡

GF
⇡ 1000GeV
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But we know that Fermi’s theory is replaced by the standard model well below this 
energy:

8.5 The Renormalization Group in Quantum Field Theory 171

This is indeed a perturbation by an irrelevant operator, since in four-dimensions
Dψ = 3

2 . Interactions generated by the extra term are suppressed at low energies
since typically their effects are weighted by the dimensionless factor E2/M2, where
E is the energy scale of the process. This means that as we try to capture the relevant
physics at lower and lower energies, the effect of the perturbation is weaker and
weaker rendering in the infrared limit E → 0 again a free theory. Hence, the irrelevant
perturbation in (8.98) makes the theory flow back to the fixed point.

On the other hand, relevant operators dominate the physics at low energies. This
is the case, for example, of a mass term. As we lower the energy the mass becomes
more important, and once the energy goes below the mass of the field its dynamics
is completely dominated by the mass term. This is, for example, how Fermi’s theory
of weak interactions emerges from the standard model at energies below the mass of
the W ± boson

At energies below mW = 80.4 GeV the dynamics of the W + boson is dominated
by its mass term and therefore becomes nonpropagating, giving rise to the effective
four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators domi-
nate the dynamics in the infrared, taking the theory away from the fixed point, irrel-
evant perturbations become suppressed in the same limit. Finally, we consider the
effect of marginal operators. As an example we take the interaction term in massless
QED, O = ψγ µψ Aµ. Taking into an account that in d = 4 the dimension of the
electromagnetic potential is [Aµ] = 1, the operator O is a marginal perturbation. In
order to decide whether the fixed point theory

L0 = −1
4

Fµv Fµv + iψ/∂ψ (8.99)

is restored at low energies or not we need to study the perturbed theory in more detail.
This we have done in Sect. 8.1 where we learned that the effective coupling in QED
decreases at low energies. Then we conclude that the perturbed theory flows towards
the fixed point in the infrared.
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The interchange of the gauge boson tame the growth of the total cross section at high 
energies

�
total

=
G2

F

⇡

m2

W s

s+m2

W

⇠ G2

Fm
2

W

⇡
s � m2

W

Once the Fermi theory is embedded in the full standard model, unitarity is restored.




